
Rexx Vs CLIST     by H. Fosdick   © 2024 RexxInfo.org 

These charts are for those who know one of these languages and want to learn about the other. They 
may also be useful for conversions.

The Basics
  Rexx CLIST

     
Easy to learn, use, and maintain   Yes   Yes
Very powerful   Yes   No (lacks common language features)
Open source   Yes   No
Portable   Yes   No
Runs on all platforms   Yes   No
Runs as the OS Shell   No   Yes
Interfaces to tons of tools   Yes   No (intended to issue OS commands)
ANSI or ISO Standard   Yes  (ANSI-1996)   No

Profiles
  Rexx CLIST

     

Dialects TRL-2, ANSI, Mainframe, ooRexx, 
NetRexx CLIST

Unique Usage

* Default scripting language for 
mainframes and several minor platforms
* Interfaces to all mainframe 
environments and address spaces

* Available on all z/OS 
mainframes

Programming paradigms Procedural, scripting, object-oriented 
(ooRexx and NetRexx), functional Procedural, scripting

OOP: classes, objects, multi-
inheritance, polymorphism, 
encapsulation

In ooRexx and NetRexx Unsupported

User Group Rexx Language Association SHARE
Quick Online Lookup Quick Lookup IBM TSO CLISTs Manual
Cheat Sheet (printable PDF) ANSI Rexx, Mainframe Rexx Only this one

Forum RexxLA forum Expert Forum @ 
IBMMainframes.com

Further information RexxInfo.org IBM TSO CLISTs Manual

https://www.RexxInfo.org/
https://rexxinfo.org/reference/articles/tso_e_clists.pdf
https://RexxInfo.org/
https://ibmmainframes.com/forum-41.html
https://ibmmainframes.com/forum-41.html
https://groups.io/g/rexxla-members
https://rexxinfo.org/reference/articles/rexx_reference_card_zos.pdf
https://rexxinfo.org/reference/articles/rexx_reference_card.pdf
https://rexxinfo.org/reference/articles/tso_e_clists.pdf
https://rexxinfo.org/reference/index_reference.html
https://www.share.org/
https://RexxLA.org/
../who_uses_rexx_and_where/who_uses_rexx_and_where.html#mainframe_integration
../who_uses_rexx_and_where/who_uses_rexx_and_where.html#mainframe_integration


Language Comparison
  ANSI Rexx CLIST

     
Format Free form Free form
Case-sensitive No Yes

Variable Names Valid Symbol that does not start 
with a digit (0-9) or a period (.)

Start with & 
Next character must be one of: 
A-Z, (a-z), _, #, $, @

Comments Enclose inside /* and */
Enclose inside /* and */. Or put 
comment at end of a line by starting it 
with /*

Line Continuation , (comma) - (minus sign) or + (plus sign)
Statement Separator ; (semi-colon) None (implied by line end)
Repeated line scanning for 
substitution No (use INTERPRET instruction) Yes 

Code Blocks Define by do - end
DO-END, SELECT-END
(Also DATA-ENDDATA, DATA 
PROMPT-ENDDATA)

Undefined Variables
Allowed. Use SYMBOL to 
determine if a variable has been 
defined

Allowed until misused

Assignment Operators = SET =
Arithmetic Operators +  -  *  /  %  **  // +  -  *  /  **  //

Comparison Operators

==  \==  >>  <<  >>=  \<<  <<=  \
>>  =  \=  <>  ><  >  <  >=  \<  <=
\> 
( \ can be replaced with ¬ in any 
of these)

=   EQ  ¬=   NE  <   LT  >   GT  <=   LE
>=   GE   ¬>   NG  ¬<   NL

Logical Operators &  |  &&  \ (prefix)  ¬ (prefix) AND   &&   OR   |

Concatenation Operators

||  Or, concatenate with blank 
between
Or, concatenate by abuttal (no 
blank)

By abuttal: SET 
VARIABLE=&VAR1&VAR2

Bitwise Operators Use built-in functions Unsupported
Membership Operators Unsupported Unsupported

Regular Expressions Use RexxRE Regular 
Expressions external Library Unsupported

Built-in Functions About 70 functions 15 functions, plus about 55 Control 
Variables

Data Types Everything's a string, types are 
reflected in usage Defined by usage

Function to Check Data Type datatype &DATATYPE

Collections of Variables Use compound variables Unsupported, you would have to 
program this



Associative Arrays Use compound variables Unsupported
Multidimensional Arrays Use compound variables Unsupported

Stack & Queue Operations Yes (push, pull, parse pull, queue,
queued)

Unsupported as a generalized feature, 
but can manage the terminal input 
buffer as a stack

Decimal Arithmetic Default Unsupported

Flow of Control if, do, select, call, exit, return, 
iterate, leave, signal, nop

IF-THEN-ELSE, DO, SELECT, GOTO,
EXIT, RETURN, SYSCALL, ATTN, 
ERROR, TERMIN, TERMING

GOTO none (use signal) GOTO
Calling Subroutine call SYSCALL
Manage Scope of Variables to
Subroutines procedure expose Use PROC

Subroutine End return END

Getting Return Code
special variable RC
RESULT set by subroutine 
RETURN

&LASTCC, &MAXCC for highest 
return code set

Trace Script Execution trace (instruction), trace 
(function) Use CONTROL statement

Show Full Execution trace a CONTROL LIST
Exception Handling signal ERROR, ATTN

Standard Exceptions novalue, error, failure, halt, 
notready, syntax, lostdigits

ATTN (attention key pressed), ERROR 
(traps any of more than 100 error 
conditions)

Attention Routines signal on halt ATTN

Run an Operating System 
Command

Just issue the command string
(Rexx passes unrecognized 
strings to the default active 
environment)

Just issue the command

Terminate Process exit EXIT
End with Return Code exit 8 EXIT(8)

Get User Input say "Enter your name:"
parse pull name

WRITE Enter your name:
READ NAME

Read Input Record
linein
execio (mainframe only, not 
ANSI)

GETFILE

Write Output Record
lineout
execio (mainframe only, not 
ANSI)

PUTFILE

Array Read/Write execio (mainframe only, not 
ANSI) Unsupported

Detecting File EOF Sets return code Treats as a detected error

Write without line feed Unsupported WRITENR



Get Date and Time date and time functions &SYSDATE, &SYSTIME
Get Length of a String length("MYSTRING") &LENGTH(MYSTRING)
Get a Substring substr("MYSTRING",1,4) &SUBSTR(1:4,MYSTRING)

Based on Rexx Programmer's Reference and IBM TSO CLISTs Manual.

https://rexxinfo.org/reference/articles/tso_e_clists.pdf
https://rexxinfo.org/tutorials/articles/Rexx_Programmers_Reference.pdf

	Rexx Vs CLIST by H. Fosdick   © 2024 RexxInfo.org
	The Basics
	Profiles
	Language Comparison


