EXX
eXX

Programmer’s
Reference

2"d Edition

by Howard
Fosdick

foreword by
Mark Hessling

Easy. Powerful. Open source. Runs everywhere
and interfaces to everything. That's Rexx.

This book explains the language, from an easy
tutorial to advanced programming.

You'll learn -

* Rexx for Windows, Linux, Macs, mainframes, and cell phones
* Interfacing to GUIs, DBMSs, XML, JSON, Apache, & other tools
* Open Object Rexx for object-oriented scripting
* Java integration with NetRexx

* How to write edit macros

* Mainframe programming

* Advanced arrays, parsing, debugging, OS commands, & more!

The only Rexx reference
you'll ever need!

IGEBN 9T9-898611913-7

9 ““?QJQ“i “"11!1!?‘”‘
RexxInfo.org
RexxLA.org

Rexx Programmer’s Reference, 2™ Edition

Howard Fosdick

Rex

LANGUAGE
ASSOCIATION

Rexx Programmer’s Reference, 2" Edition

Published by Rexx Language Association
8525 Pinefield Road,
Apex, NC 27523-9601, USA

The Rexx Language Association is a Non-Profit Corporation registered in North Carolina, USA, incorporated
in 1998. Visit RexxLA.org.

ISBN 978-9-40374-552-7

© 2025 2™ Edition by H. Fosdick

This is a fully revised 2" edition of the book with the same title published in 2005 by Wiley Publishing, Inc.

This updated and revised reprint is published under authority of clause 18 of the publishing contract dated July 8, 2004
between Wiley Publishing Inc., and Fosdick Consulting Inc., and subsequent letter dated December 14, 2015, affirming right
to reprint, from Fosdick Consulting Inc. to Wiley Publishing Inc., as pursuant to that contract.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER AND AUTHOR ARE NOT ENGAGED IN
RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL
ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE
SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING
HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A
CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE
AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY
PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT
INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN
WHEN THIS WORK WAS WRITTEN AND WHEN IT WAS READ.

TRADEMARKS: All trademarks are the property of their respective owners. The Rexx Language
Association is not associated with any vendor mentioned in this book.

About the Author

Howard Fosdick is an independent IT consultant who supports databases and operating systems. He's
written seven books and over 500 articles and frequently speaks at conferences. He co-founded the International
DB2 Users Group, the Midwest Database Users Group, and CAMP IT, and invented concepts like hype curves
and open consulting. While he’s coded in many programming languages, Rexx remains his favorite.

RexxInfo.org for everything Rexx.

Download free guides --
How to Build a Free Computer -- from Cast-offs
How to Fix Computer Hardware
Privacy in a Digital World
... more ...

from RexxInfo.org/guides

Credits for 1° Edition

Senior Acquisitions Editor
Debra Williams Cauley

Development Editor
Eileen Bien Calabro

Production Editor
Felicia Robinson

Technical Reviewer
Mark Hessling

Copy Editor
Publication Services

Editorial Manager
Mary Beth Wakefield

Vice President & Executive Group Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Credits for 2™ Edition

Project Coordinator
Erin Smith

Graphics and Production Specialists
Jonelle Burns

Carrie Foster

Lauren Goddard

Denny Hager

Joyce Haughey

Jennifer Heleine

Quality Control Technicians
John Greenough

Leeann Harney

Jessica Kramer

Carl William

Pierce

Proofreading and Indexing
TECHBOOKS Production Services

Content, Layout, Typesetting, Cover Designs: Howard Fosdick

Technical Reviewers: Many. Please see the Acknowledgments.

To Pippy, Vandy, Josie, Phoebe Jane, and Schnappsi.

Foreword

Rexx is a very underrated programming language; elegant in design, simple syntax, easy to learn, use
and maintain, yet as powerful as any other scripting language available today.

In 1979, Mike Cowlishaw, IBM fellow, designed a “human-centric” programming language, Rexx.
Cowlishaw’s premise was that the programmer should not have to tell the interpreter what the
language syntax was in each program they wrote; that was the job of the interpreter. So unlike most
other programming languages, Rexx does not suffer from superfluous, meaningless punctuation
characters throughout the code.

Since the release of Rexx outside of IBM, Rexx has been ported to virtually all operating systems and
was formally standardised with the publishing of the ANSI Standard for Rexx in 1996. In late 2004, IBM
transferred their implementation of Object REXX to the Rexx Language Association under an Open
Source license. This event signalled a new era in the history of Rexx.

This book provides a comprehensive reference and programming guide to the Rexx programming lan-
guage. It shows how to use the most popular implementations of Rexx and Rexx external function pack-
ages and is suited to both the programmer learning Rexx for the first time as well as the seasoned Rexx
developer requiring a single, comprehensive reference manual.

Rexx has had a major influence on my life for the past 20 years since I wrote my first XEDIT macro in
Rexx. In the last 10 years [have maintained the Regina Rexx interpreter, ably assisted by Florian Grof3e-
Coosmann, and in my remaining spare time have developed several Rexx external function packages
(and my XEDIT-like text editor, THE). However, like many developers of open source products, I have
never quite documented the products as completely as they deserve.

This is the book I would have liked to write if I had had the time. I'm glad Howard had the time!

Mark Hessling

Author of Rexx/SQL, Rexx/gd, Rexx/DW,
Rexx/CURL, Rexx/Curses, Rexx/Wrapper,
Rexx/Trans,

The Hessling Editor (THE), Maintainer of Regina,
Rexx/Tk, PDCurses, http://www.rexx.org/

Foreword to the 2" Edition

The release of the 2nd edition of The Rexx Programmer’s Reference is a testament to the passion that
Howard and the majority of users have for Rexx and the longevity of the Rexx programming
language itself.

As software technologies change over the years, Rexx easily incorporates those new technologies
due to its exceptional design. This flexibility to change does not come at the expense of breakage of
existing code as is so common in most other programming languages. As a result, new program
development using Rexx is as viable now as it was when Rexx first appeared, and existing code still
runs unchanged as reliably now as when it was first developed.

This edition includes new content and changes that reflect the current state of Rexx.

I'hope I'm around for the 3rd edition of The Rexx Programmer’s Reference!

Mark Hessling

Author of Rexx/SQL, Rexx/gd, Rexx/DW, Rexx/CURL, Rexx/Curses, Rexx/Wrapper, Rexx/Trans,
Rexx/JSON, The Hessling Editor (THE), and Maintainer of Regina, Rexx/Tk, and PDCurses.

www.Rexx.org

Acknowledgments for the 1** Edition

Special thanks are due to Mark Hessling, who writes and maintains Regina Rexx and a wide variety of
open source Rexx tools and interfaces. As the technical reviewer for this book, Mark was an invaluable
source of recommendations for improvement as well as (oops!) corrections. His expertise and helpful-
ness were critical to improving this book.

Special gratitude is also due to the inventor of Rexx, Michael Cowlishaw. His advice and feedback were
very much appreciated.

In the process of developing this book, I wrote inquiries to many people without any prior introduction.
Each and every one of them responded helpfully. It was a great pleasure to meet people with such an
interest in Rexx, who so kindly answered questions and who greatly improved this book with their
suggestions.

I'would like to give heartfelt thanks to Maria Teresa Alonso y Albado, W. David Ashley, Gil Barmwater,
Dr. Dennis Beckley, Alex Brodsky, Frank Clarke, Steve Coalbran, Ian Collier, Les Cottrell, Michael
Cowlishaw, Chip Davis, Prof. Rony Flatscher, Jeff Glatt, Etienne Gloux, Bernard Golden, Bob Hamilton,
Henri Henault , Stéphane Henault, Mark Hessling, Jack Hicks, IBM Corporation, René Vincent Jansen,
Jaxo Inc., Kare Johansson, Kilowatt Software, Les Koehler, Laboratorios Bagd S.A., Joseph A. Latone,
Henri LeFebure, Michael Lueck, Antoni Levato, Dave Martin, Rob McNair, Patrick T] McPhee, Dr. Laura
Murray, Walter u. Christel Pachl, Lee Peedin, Priscilla Polk, the Rexx Language Association, Pierre G.
Richard, Peggy Robinson, Morris Rosenbaum, Dr. Elizabeth Rovelli, David Ruggles, Roger E. Sanders,
Thomas Schneider, Theresa Stewart, UniForum Chicago, Vasilis Vlachoudis, Stan Wakefield, Keith
Watts, Dr. Sandra Wittstein, and Claudio Zomparelli.

Beyond those who provided technical advice and input for this book, I wish to thank my editors at John
Wiley and Sons, Inc. Eileen Bien Calabro greatly improved the readability of this book through her writ-
ing recommendations. Debra Williams Cauley provided insightful perspective and guidance on the
preparation and organization of the book. Finally, I thank Richard Swadley. I appreciate his confidence
and hope this book fulfills its promise both in the quality of its material and in its sales and distribution.

Special thank you to the following developers for permission to reprint or refer to their code (most of
these items fall under various open source licenses):

W. David Ashley —IBM Corporation, project leader of the Mod_Rexx project for scripts appearing in the
chapter on Apache programming with Mod_Rexx

Les Cottrell and the Stanford Linear Accelerator Laboratory — Authors of Rexx/CGI library for a script
illustrating their Rexx/CGI library

Henri Henault & Sons— Authors of the Internet/REXX HHNS WorkBench for a script and screen shot
illustrating the Internet/REXX HHNS WorkBench.

Mark Hessling—Developer/maintainer of Regina Rexx and many open source Rexx tools
for material on Rexx/gd and the reference tables of Rexx/Tk functions

Acknowledgments

Patrick T] McPhee —Developer of RexxXML for the example program appearing in the chapter on
RexxXML

Pierre G. Richard, Joseph A. Latone, and Jaxo Inc. —Developers of Rexx for Palm OS for example scripts
appearing in the chapter on Rexx for Palm OS

Acknowledgments for the 2" Edition

Thank you to René Jansen, President of the Rexx Language Association, for his advice and guidance in
putting together this updated edition.

Thank you also to all the members of the RexxLA and others who helped by giving advice or reviewing
this update: Grant Ward Able, Bill Backs, Janet Backs, Volker Bandke, Gil Barmwater, Michael Beer,
Wayne V. Bickerdike, Josep Maria Blasco, Frank Clarke, Michael Cowlishaw, Chip Davis, Marcel Diir,
Lionel B. Dyck, Tony Dycks, Dr Rony Flatscher, Mark L. Gaubatz, Eva Gerger, Sam Golob, Thomas
Grundmann-Kahr, Rob Hamilton, Jeffrey Hennick, Mark Hessling, Peter Jacob, Willy Jensen, Dave
Jones, Per Olov Jonsson, Mark McDonald, Rick McGuire, Shmuel (Seymour J.) Metz, Jeremy Nicoll,
Walter Pachl, Ross Patterson, Lee Peedin, Jochem Peelen, Priscilla Polk, Julian Reindorf, Marc Remes,
Pierre G. Richard, Larry Schacher, Martin Scheffler, Bruce Skelly, David Spiegel, Hobart Spitz, Bob Stark,
Erich Steinb6ck, Theresa Stewart, J. Leslie Turriff, Vasilis Vlachoudis, James Warren, and Jon Wolfers.

Thank you to those who contributed code for this new edition: Frank Clarke, Marcel Diir, Lionel B. Dyck,
Tony Dycks, Dr Rony Flatscher, Eva Gerger, Thomas Grundmann-Kahr, Mark Hessling, IBM Corporation,
Willy Jensen, Julian Reindorf, Pierre G Richard, and Vasilis Vlachoudis.

Also thank you to Marcel Diir, Eva Gerger, Thomas Grundmann-Kahr, and Julian Reindorf for the very
useful theses they wrote on running Rexx on Android while at the Vienna University of Economics and
Business. Congratulations to Dr Rony Flatscher for his success nourishing such a talented crop of budding
developers and software engineers.

Finally, thank you to Mark Hessling for his help and advice on both editions of this work, and for writing
the Forewords. Mark is the developer behind Regina Rexx and many of the excellent free tools that add key

functionality to Rexx. Several chapters in this book cover products he develops and supports.

And, of course, special thanks to the inventor of Rexx and NetRexx, Michael Cowlishaw.

An Open Source, Not-for-Profit Book

The author has directed that all monies made by this book be donated directly to the Rexx Language
Association, a non-profit entity incorporated in North Carolina, USA.

This book is published under the Creative Commons license BY-ND. You can freely use and distribute
this work, but with these restrictions:

U BY -- You can not change the authorship

0 ND -- You must distribute this work in its entirety without altering its contents

Thank you for respecting my effort in writing this book by your cooperation.

Contents

Foreword ix
Acknowledgments Xi
Introduction Xv
Part | 1
Chapter 1: Introduction to Scripting and Rexx 3
Chapter 2: Language Basics 21
Chapter 3: Control Structures 33
Chapter 4: Arrays 53
Chapter 5: Input and Output 67
Chapter 6: String Manipulation 79
Chapter 7: Numbers, Calculations, and Conversions 99
Chapter 8: Subroutines, Functions, and Modularity 109
Chapter 9: Debugging and the Trace Facility 133
Chapter 10: Errors and Condition Trapping 143
Chapter 11: The External Data Queue, or “Stack” 159
Chapter 12: Rexx with Style 169
Chapter 13: Writing Portable Rexx 189
Chapter 14: Issuing System Commands 209
Chapter 15: Interfacing to Relational Databases 229
Chapter 16: Graphical User Interfaces 255
Chapter 17: Web Programming with CGI and Apache 273
Chapter 18: XML and Other Interfaces 291
Part I 305
Chapter 19: Evolution and Implementations 307
Chapter 20: Regina 331
Chapter 21: Rexx/imc 345
Chapter 22: BRexx 359
Chapter 23: Reginald 385
Chapter 24: Programming Single Board Computers 421
Chapter 25: Android Programming 433
Chapter 26: r4 and Object-Oriented roo! 447
Chapter 27: Open Object Rexx 459
Chapter 28: Open Object Rexx Tutorial 475

Table of Contents

Chapter 29: IBM Mainframe Rexx 493
Chapter 30: NetRexx 515
Part lli 529
Appendix A: Resources 531
Appendix B: Instructions 535
Appendix C: Functions 547
Appendix D: Regina Extended Functions 573
Appendix E: Mainframe Extended Functions 593
Appendix F: Rexx/SQL Functions 597
Appendix G: Rexx/Tk Functions 607
Appendix H: Tools, Interfaces, and Packages 615
Appendix I: Open Object Rexx: Classes 619
Appendix J: Mod_Rexx: Functions and Special Variables 623
Appendix K: NetRexx: Quick Reference 629
Appendix L: Retrieving System Information 635
Appendix M: Answers to “Test Your Understanding” Questions 637
Appendix N: How to Use EXECIO 657
Appendix O: How to Write ISPF Edit Macros 665
Appendix P: How to Run Rexx In Batch on Mainframes 671
Appendix Q: Rexx <-> Clist 677
Appendix R: Mainframe Rexx <--> ANSI Rexx 683
Appendix S: How to Code with JSON 689
Appendix T: Java Integration 695
Appendix U: The Secrets of PARSE 701
Appendix V: Array I/0 705
Appendix W: Job Interview Questions 709
Appendix X: Rexx <--> Bash 721
Appendix Y: Rexx <-> Python 725
Appendix Z: BRexx/370 for Mainframe Emulation 729
Index 733

Xiv

Introduction

Of all the free scripting languages, why should you learn Rexx? Rexx is unique in that it combines power
with ease of use. Long the dominant scripting language on mainframes, it is definitely a “power”
language, yet it is also so easy to use that its popularity has expanded to every conceivable platform.
Today Rexx developers use the language on Windows, Linux, Unix, BSD, Macs, mainframes and many
dozens of other systems . . . and, there are many free and open source Rexx interpreters available.
Here’s the Rexx story in a nutshell:

O Rexx runs on every platform under nearly every operating system.

So, your skills apply anywhere . . . and your code runs everywhere.

O Rexx enjoys a strong international standard that applies to every Rexx interpreter . . .

from cell phones and handhelds to PCs to servers to mainframes.

O

Rexx is as easy as JavaScript or PHP, yet about as powerful as Java or Perl.
O Rexx’s large user community means:

O Many free interpreters optimized for different needs and environments
O A vastarray of free interfaces and tools

O Good support

O Rexx comes in object-oriented versions as well as versions that are Java-compatible
(one even runs on the Java virtual machine!)

You may be wondering why ease of use is so important in a programming language. A truly easy
language is easy to use, learn, remember, and maintain. The benefits to beginners are obvious. With
Rexx, you can start coding almost immediately. There are no syntax tricks or language details to
memorize before you begin. And, since Rexx is also a power language, you can rest assured that you
won’t run out of capability as you learn and grow with it. Read the first few chapters in this book, and
you'll be scripting right away. Continue reading, and you’ll mature into advanced scripting before you
finish.

If you are an experienced developer, Rexx offers more subtle benefits. You will be more productive, of
course, as you free yourself from the shackles of syntax-driven code. More important is this: simplicity
yields reliability. Your error rate will decline, and you'll develop more reliable programs. This benefit is
greatest for the largest systems and the most complicated scripts. Your scripts will also live longer because
others will be able to understand, maintain, and enhance them. Your clever scriptlets and application
masterpieces won't die of neglect when someone else takes over and maintains your code.

Few easy languages are also powerful. Now, how does Rexx do that?

Introduction

Rexx surrounds its small instruction set with an extensive function library. Scripts leverage operating
system commands, external interfaces, programs, and functions. Rexx is a “glue” language that ties it all
together. Yet the language has few rules. Syntax is simple, minimal, flexible. Rexx doesn’t care about
uppercase or lowercase or formatting or spacing. Rexx scripts don’t use special symbols and contain no
punctuation.

Power does not require coding complexity!

If you’ve worked in the shell languages, you’ll breathe a sigh of relief that you've found a powerful
language in which you can program now and then without trying to recall arcane language rules. If
you’ve struggled with the syntax of languages such as Bash, Korn, Awk, Perl, C++, or the C-shell, you'll
enjoy focusing on your programming problem instead of linguistic peculiarities. And if you've ever had
to maintain someone else’s code written in one of those languages, well . . . you might really be thankful
for Rexx!

This book contains everything you need to know to get started with Rexx. How to freely download and
install an appropriate interpreter. How to program in standard "classic" Rexx and object-oriented Rexx.
How to program Windows, Linux, Unix, Macs, Androids, and mainframes. How to program in the Java
environment with object-oriented Rexx, or a Rexx-based language called NetRexx. How to script
operating system commands, control Web servers and databases and graphical user interfaces (GUIs)
and Extensible Markup Language (XML) and Apache and . . . you name it.

Everything you need is in this one book. It's a Rexx encyclopedia. It teaches standard Rexx so that your
skills apply to any platform —from cell phones to desktops and laptops to midrange servers to
mainframes. Yet it goes beyond the basics to cover interface programming and advanced techniques.
The book starts out easy, based on coding examples throughout to make learning fast, simple, and fun.
But it's comprehensive enough to cover advanced scripting as well. You can freely download all the
Rexx interpreters, tools, and interfaces it covers. Welcome to the world of free Rexx !

Who This Book Is For

Xvi

This book is for anyone who wants to learn Rexx, or who already works with Rexx and wants to expand
his or her knowledge of the language, its versions, interfaces, and tools. How you use this book depends
on your previous programming or scripting knowledge and experience:

O If you are a complete beginner, you'll find Rexx easy to learn. This book will tell you
everything you need to know. It's a progressive tutorial based on coding examples, so you
won't get lost. You'll be able to handle almost any programming problem by the end of the
book.

O If you are an experienced programmer, you can quickly learn Rexx by reading the tutorial
chapters. You'll be programming immediately. As the book progresses into tutorials on
interfaces to databases, Web servers, GUIs, and the like, you'll learn to program Rexx in the
context of the larger environment.

Introduction

O If you are a systems administrator or support person, you'll learn a language that applies to a
wide variety of situations and can be a great tool. This book covers the interfaces, tools, and
varieties and implementations of Rexx you'll need to know. It doesn’t stop with the basics. It
explores the advanced features you’ll want to use.

O If you already script Rexx, you will be able to expand your knowledge. You'll learn about free
Rexx interfaces and tools with which you may not be familiar. You'll learn Rexx programming
in new environments, such as object-oriented scripting, scripting in the Java environment...
and even how to program Rexx in mainframe emulation on your personal computer. You'll
find this complete reference the only Rexx book you’ll ever need.

What This Book Covers

This book teaches standard Rexx, quickly and simply. It emphasizes coding examples. It teaches you
what you need to know to work with Rexx on any platform. You'll know a language that runs
everywhere and applies to almost any programming problem.

Beyond the Rexx language proper, this book covers all the major interfaces into Web servers, SQL
databases, GUIs, XML, JSON, graphics processing, and the like. It describes many of the free tools that
are available to make scripting with Rexx easier and more productive.

The book covers a number of free Rexx interpreters. Most meet the international standards for Rexx, yet
each adds its own special features and extensions. The book tells where to download each interpreter,
shows how to install it, and demonstrates how to leverage its particular strengths.

All the Rexx interpreters, tools, and interfaces this book covers are free or open source. One exception is
IBM mainframe Rexx, which comes bundled with IBM’s operating systems.

Ultimately, this book covers not only Rexx scripting, but the whole world of Rexx programming across
all environments and interfaces, and with all Rexx interpreters.

How This Book Is Structured

Take a quick look at the table of contents, and you will see that this book is broken down into three
broad sections:

O The book begins with a progressive tutorial that covers the basics of the Rexx language. These
eventually lead into more advanced scripting topics, such as how to write portable code and
using optimal coding style. The last chapters of this section (Chapters 15 through 18) cover the
most common Rexx interfaces and tools. These introduce and demonstrate how to code scripts
that interface to operating systems, SQL databases, Web servers, GUIs, XML, and other tools.

XVii

Introduction

O The second section of the book describes the different Rexx interpreters and the unique
advantages of each. These chapters apply Rexx to different environments and include tutorials
on object-oriented Rexx, cell phone scripting, programming in Java environments, and many
other topics. All include complete example programs.

O Finally, the book contains a comprehensive reference section in its appendices. You won't
need any other book to script Rexx.

What You Need to Use This Book

You need nothing beyond this book. All its examples were all run using freely downloadable Rexx
interpreters, tools, and interfaces. The chapters tell you where to download any interpreters, tools, and
interfaces the book demonstrates, as well as how to set up and install them. Most of the examples in this
book were run under Windows and/or Linux, but you can work with this book with Rexx running any
operating system you like.

Download the Example Code

We recommend that you download the source code for all of the examples in this book from
www.RexxInfo.org. All our downloads are free and require no registration or email address.

Conventions

We’ve used a number of conventions throughout the book.

Boxes like this one hold important, not-to-be-forgotten information that is directly
relevant to the surrounding text.

Concerning styles in the text:

O We italicize important words when we introduce them.

O We show keyboard strokes like this: Ctrl-A.

0 We show filenames, URLs, variable names, and code within the text like this: my file.txt.
O We present code in two different ways:

In code examples we highlight new and important code with a gray background.

The gray highlighting is not used for code that’s less important in the present
context, or that has been shown before.

xviii

Introduction

The Rexx language is not case-sensitive, so its instructions and functions can be encoded in uppercase,
lowercase, or mixed case. For example, the wordlength function can be encoded as wordlength,
WordLength, or WORDLENGTH. This book uses capitalization typical to the platforms for which its sample
scripts were written, but you can use any case you prefer.

Due to the typesetting software used in preparing this book, in a few places in the text, quotation
marks might appear as forward-leaning or backward-leaning. Please consider the leftmost
examples as equivalent to the vertical quotation marks that Rexx requires:

‘Hello® ‘Hello” ‘Hello® “Hello” Correct: 'Hello' "Hello"

Only vertical single or double quotation marks will run correctly when coded in a Rexx program.

Reporting Errors

Thousands of programmers used the first edition of this book and reported no errors beyond a few typos.
Our goal is to match this level of quality in this 2™ edition. This new edition has been reviewed by many
experts from the Rexx Language Association.

However, updating for this new edition required working off the 1* edition's PDF files -- an error-prone
process, especially when working with code in text boxes and frequent font changes. So, try as we might to
catch them, errors introduced by typesetting could slip through.

If you find an error, please contact the author via his website at www.RexxInfo.org and report it. We'll
correct the digital edition immediately, and the print edition as soon as the next printing. Thank you for
your help in making this the best possible resource for Rexx programmers.

Online Resources

The website www.RexxInfo.org is a one-stop shop for all things Rexx. It offers free downloads for all
Rexx interpreters and tools, articles, sample code, information, links, and other resources. Its reference
section offers quick online lookup for all Rexx language instructions, functions, classes, and methods, and
also a full set of free manuals for all Rexx products, including all IBM manuals.

Appendix A on "Resources” describes many other good sources of Rexx information.

What’s New in the 2" Edition?

This is a fully revised 2" edition of a book originally published in 2005.

Completely new content in this edition includes: the Introduction; chapters 1, 19, 22, 24, 25,
and 27; and, appendices A,LL,N,O,P,Q,R,S, T, U, V, W, X, Y, and Z. Of course, all other
content has been updated as appropriate.

XiX

Introduction

XX

Much new material has been added in this edition including:

OO0 000000 oao

Java integration

Using JSON

Array I/O

Advanced parsing

Android programming

Rexx on single board computers

SQLite programming

Equivalence charts for Rexx <--> Bash
Equivalence charts for Rexx <--> Python

Sample job interview questions

Readers have also asked for more coverage of mainframe Rexx, so we've added:

a

O 0000

Using EXECIO

How to write ISPF edit macros

How to run Rexx in batch

Rexx on personal computers that emulate mainframes

Equivalence charts for IBM mainframe REXX <--> ANSI-1996 standard Rexx

Equivalence charts for Rexx <> Clist

Much new content has been provided in new appendices, rather than chapters, due to typesetting constraints.

We've retained coverage of a few topics that are less important than previously. This includes the
chapters on the out-of-support interpreters Reginald, r4, and roo!, and the brief discussion of
Windows CE. We've kept this content because some readers requested it. It's clearly marked in
the text. If it is not of interest to you, please just skip it.

Among Rexx’s great benefits are its strong language standards and remarkable stability. Thus it hasn’t been
necessary to modify or update the book's code examples. The proof is in the product -- you can rely on Rexx to
run mature code without difficulty or disruption.

Note that this edition does not always reflect the latest names of a few rebranded products. For example, it may
refer to the Db2 database under its older name of "DB2".

And remember that website addresses do change. If one this book suggests becomes obsolete, just use your

search engine to find the material you seek.

Part |

Introduction to Scripting
and RexXx

Overview

Before learning the Rexx language, you need to consider the larger picture. What are scripting
languages? When and why are they used? What are Rexx’s unique strengths as a scripting
language, and what kinds of programming problems does it address? Are there any situations
where Rexx would not be the best language choice?

This chapter places Rexx within the larger context of programming technologies. The goal is
to give you the background you need to understand how you can use Rexx to solve the
programming problems you face.

Following this background, the chapter shows you how to download and install the most popular
free Rexx interpreter on your Windows, Linux, Unix, BSD, or Apple computer. Called Regina, this
open-source interpreter provides a basis for your experiments with Rexx as you progress in the
language tutorial of subsequent chapters.

Note that you can use any standard Rexx interpreter to learn Rexx. So, if you have some other
Rexx interpreter available, you are welcome to use it. We show how to download and install
Regina for readers who do not already have a Rexx interpreter installed, or for those who would
like to install an open-source Rexx on their PC.

Why Scripting?

Rexx is a scripting language. What's that? While most developers would claim to “know one when
they see it,” a precise definition is elusive. Scripting is not a crisply defined discipline but rather
a directional trend in software development. Scripting languages tend to be:

O High level — Each line of code in a script produces more executable instructions — it
does more — than an equivalent line encoded in a lower-level or “traditional”
language.

Chapter 1

g

Glue languages — Scripting languages stitch different components together — operating
system commands, graphical user interface (GUI) widgets, objects, functions, or service
routines. Some call scripting languages glue languages. They leverage existing code for higher
productivity.

Interpreted — Scripting languages do not translate or compile source code into the
computer’s machine code prior to execution. No compile step means quicker
program development.

Interactive debugging — Interpreted languages integrate interactive debugging. This
gives developers quick feedback about errors and makes them more productive.

Variable management — Higher-level scripting languages automatically manage variables.
Rexx programmers do not have to define or “declare” variables prior to use, nor do they
need to assign maximum lengths for character strings or worry about the maximum number
of elements tables will hold. The scripting language handles all these programming details.

Typeless variables — Powerful scripting languages like Rexx even relieve the programmer of
the burden of declaring data types, defining the kind of data that variables contain. Rexx
understands data by usage. It automatically converts data as necessary to perform
arithmetic operations or comparisons. Much of the housekeeping work programmers
perform in traditional programming languages is automated. This shifts the burden of
programming from the developer to the machine.

Figure 1-1 contrasts scripting languages and more traditional programming languages.

Scripting Versus Traditional Languages

T

Scripting Traditional
-- High level -- Lower level
-- Interpretive -- Compiled
-- More productive -- More detail-oriented
-- Varying degrees of -- Manual variable management
automatic variable management -- Pre-declared variables
-- Shifts burden to the machine -- More programmer effort
-- “Glue” languages -- “Coding” languages
-- Acceptable execution speed -- Optimize execution speed
Examples-- Rexx, Perl, Python, Examples-- C++, C, COBOL,
JavaScript, others Java, Go, others

Figure 1-1

On the downside, scripting requires greater machine resources than hand-coded programs in
traditional, compiled languages. But in an era where machine resources are less expensive than ever and
continue to decline in price, trading off expensive developer time for cheaper hardware makes sense.

4

Introduction to Scripting and Rexx

Hardware performance increases geometrically, while the performance differential
between scripting and compiled languages remains constant.

Here’s how hardware addresses scripting performance. The original IBM PC ran an 8088 processor at

4.77 MHz. It executes less than a hundred clauses or statements of a Rexx script every second. Current
personal computers execute millions of Rexx clauses per second.

Just for fun, this table shows how much faster a standard Rexx benchmark script runs on typical PCs
at various times. Later in this chapter, we’ll show you how to benchmark your own computer against
the numbers in this table:

YearMake Processor SpeedMemory g)ll’s?;tf;;fqi"g Rexx g?c%sneols per
1982 IBMPC 8088 477 Mhz 320KB DOS 6.2 Mansfield 70

Zenith 8088-2 8 Mhz 640 KB DOS 6.2 Mansfield 95
1988 Clone 386/DX 25Mhz 2 MB DOS 6.2 BRexx 3,600
1993 Clone 486/SX 25Mhz 8 MB Windows 3.1 BRexx 6,000
1998 Gateway Pentium Il 266 Mhz 512 MB Red Hat 8 Regina 180,000
2005 Clone Celeron 26Ghz 1GB Windows XP Regina 1,100,000
2010 Lenovo Core2Duo 2*3.0Ghz 4 GB Windows 7 Regina 4,545,455
2014 Dell 5-3350p 4*3.1Ghz 8 GB Windows 8.1 00Rexx 3,030,303
2017 HP 8570p i7-3520m 8*2.9Ghz 8 GB Win 7 Ent. ooRexx 7,363,893
2019 Dell Vostro i7-3770 8*34Ghz 8 GB Linux Mint 19 BRexx 8,498,672
2022 Gigabyte amd3900x 3.8Chz 32GB Win 10 Pro Regina 9,250,694
2023 Acer amd6800u 2.7 Ghz 16 GB Windows 11 00Rexx 13,636,364
2023 Apple M1 32Ghz 16 GB Ventura 13.3.1 Regina 22,233,751

Source- author’s hands-on tests and contributions by members of the Rexx Language Association.

The bottom line is that the program that consumes over an hour on a decades-old 8088 runs in a split
second on a modern desktop. While the table ignores subtle factors that affect performance, the trend
is clear. For most programming projects, trading machine cycles for labor costs makes sense. Why not
use a more productive tool that shifts the burden to the machine?

Labor-saving benefits extend beyond program development to maintenance and enhancement. Experts
like T. Capers Jones estimate that up to 75 percent of IT labor costs are devoted to program maintenance.
An easy-to-read, easy-to-maintain scripting language like Rexx saves a great deal of money.

Chapter 1

Sometimes, you’'ll hear the claim that scripting languages don’t support the development of large,
robust, “production-grade” applications. Years ago, scripting languages were primitive and this charge
rang true. But no longer. IT organizations routinely develop and run large applications written in Rexx
and other scripting languages. The author has run across many large production business applications
consisting of tens of thousands of lines of code. You can run an entire enterprise on scripts.

Why Rexx?

The distinguishing feature of Rexx is that it combines ease of use with power. Its goal is to make scripting
as easy, fast, reliable, and error-free as possible. Many programming languages are designed for
compatibility with older languages, the personal tastes of their inventors, the convenience of compiler-
writers, or machine optimization. Rexx ignores extraneous objectives. It was designed from day one to
be powerful yet easy to use.

One person invented Rexx and guided its development: Michael Cowlishaw of IBM’s UK laboratories.
Cowlishaw gave the language the coherent vision and guiding hand that ambitious software projects
require to succeed. Anticipating how the Internet community would cooperate years later, he posted
Rexx on the internet of its day, IBM’s VNET, a network of tens of thousands of users. Cowlishaw
solicited and responded to thousands of emailed suggestions and recommendations on how people
actually used early Rexx. The feedback enabled Cowlishaw to adapt Rexx to typical human behavior,
making Rexx a truly easy-to-use language.

Ease of use is critical — even to experienced developers — because it leads to these benefits:

U Low error rate — An easy-to-use language results in fewer bugs per program. Languages that
rely on arcane syntax, special characters and symbols, and default variables cause more errors.

O Reliability — Programs are more reliable due to the lower error rate.

O Longer-lived code — Maintenance costs dictate the usable life span of code. Rexx scripts are
much easier to maintain than scripts written in languages that rely on special characters and
complex syntax.

O Reduced cost — Fast program development, coupled with a low error rate and high reliability,
lead to reduced costs. Ease of maintenance is critical because up to three-quarters of IT
professionals engage in maintenance activities. Code written by others is easier to understand
and maintain if it is written in Rexx instead of syntax-driven languages like the Linux shell
languages or Perl or Awk or C++. This reduces labor costs.

O Higher productivity — Developer productivity soars when the language is easy to work with.
Scripting in Rexx is more productive than coding in either lower-level compiled languages
or syntax-based shell languages.

O Quicker testing — Interpretive scripting languages lend themselves to interactive testing.
Programmers get quick feedback and can easily trace program execution. Combined with
the low error rate of an easy-to-use language, this means that less test time is required.

O Easy to learn — An easy-to-use language is easier to learn. If you have programmed in any
other programming or scripting language, you can pick up Rexx very quickly.

Introduction to Scripting and Rexx

U Easy to remember — If you write only the occasional program, you'll find Rexx easy to
remember. Languages with special characters and quirky syntax force you to review
their rules if you only script now and then.

U Transfer skills — Since Rexx is easy to work with, developers find it easy to adapt to platform
differences or the requirements of different interfaces. Rexx has a strong platform-
independent standard. As well, many Rexx interfaces and tools are themselves cross-platform
products.

Power and Flexibility

That Rexx is easy to learn and use does not mean that it has limited features or is some sort of
“beginner’s language.” Rexx competes, feature for feature, with any of the other major scripting
languages. If it didnt, it certainly would not be the primary scripting language for mainframes, nor
would it have attained the widespread use it enjoys today on so many other platforms. Nor would there
be thousands of Rexx users distributed around the world.

Ease of use and power traditionally force language trade-offs. It is easy to get one without the other, but
difficult to achieve both. Rexx is specifically designed to combine the two. It achieves this goal through
these principles:

O Simple syntax — Some very powerful languages rely extensively on special symbols,
nonobvious default behaviors, default variables, and other programming shortcuts. But there
is no rule that power can only be achieved in this manner. Rexx eschews complex “syntax
programming” and encourages simpler, more readable programming based on English-
language keyword instructions and functions.

O Small command set, with functions providing the power — Rexx has a small core of only two dozen
instructions. This simplicity is surrounded by the power of some 70 built-in functions. A well-
defined, standard interface permits Rexx to call upon external function libraries. This allows
you to extend the language yourself, and it means that many open-source extensions or
libraries of routines are freely available. Rexx scripts also wield the full power of the operating
system because they easily issue operating system commands.

U Free-form language — Rexx is not case-sensitive. It is a free-form language and is about as
forgiving concerning placement of its source text as a programming language can be. This
permits programmers to self-describe programs by techniques such as indentation, readable
comments, case variations, and the like. Rexx relieves programmers from concern about
syntax and placement, and lets them concentrate on the programming problem they face.

U Consistent, reliable behavior — Rexx behaves “as one would assume” at every opportunity. Its
early user community provided feedback to one “master developer” who altered the
language to conform to typical human behavior. As the inventor states in his book defining
Rexx: “The language user is usually right.” Rexx was designed to encourage good programming
practice and then enhanced by user feedback to conform to human expectations.

O Modularity and structured programming — Rexx encourages and supports modularity and
structured programming. Breaking up large programming problems into discrete pieces and
restricting program flow to a small set of language constructs contributes greatly to ease of
use and a low error rate when developing large applications. These principles yield simplicity
without compromising power. (Chapters 3 and 8 explore them.)

Chapter 1

a

Fewer rules — Put the preceding points together, and you’ll conclude that Rexx has fewer
rules than many programming languages. Developers concentrate on their programming
problem, not on language trivia.

Standardization — While there are many free Rexx interpreters, nearly all adhere to the Rexx
standards. This makes your scripts portable and your skills transferable. A standardized
language is easier to use than one with numerous variants. Rexx has two strong, nearly
identical standards. One is defined in the book The Rexx Language, or TRL-2, by Michael
Cowlishaw (Prentice-Hall, 1990, second edition). The other is the 1996 standard from the
American National Standards Institute, commonly referred to as ANSI-1996. The ANSI-1996
specification is a true superset of TRL-2 that adds just a few important language features.

Free and Open Source

As we'll describe below, you can select from a good number of different Rexx interpreters. They come in
both open source and commercial versions. If you prefer a free and open source (or FOSS) product, there
is always a Rexx interpreter available for your platform.

The vast majority of Rexx tools are free and open source, too. Hundreds of them cover every
conceivable need, from graphical user interfaces to databases, from telecommunications to

development environments, to almost every other category you can imagine.

Universality

Rexx is a universal language. It runs on every platform, from cell phones and handhelds, to laptops and
desktops, to servers of all kinds, all the way up to the largest mainframes and supercomputers.

Here are the many platforms on which free Rexx interpreters run:

a

O O

All versions of Windows, Linux, Unix, BSD, Apple operating systems and macOS, and all
IBM operating systems.

Cell phones and tablets running Android and other various kinds of handhelds
Single board computers and embedded systems applications

IBM servers (i-series, pSeries, POWER/PowerPC, Linux for Z, OpenEdition/Unix System
Services), Amiga-derived systems (AmigaOS 4 or AOS4, MorphOS, AROS, aeROS or
AEROS), DOS-family systems (MS-DOS, PC-DOS, FreeDQOS, all others), OS/2-derived systems
(eCS and ArcaOS), plus OpenVMS, QNX, and others

Many other lesser-used platforms too numerous to list

Introduction to Scripting and Rexx

The benefits of a universal language are several. Among them:

O Your skills apply to any platform

U Your scripts run on any platform

Here’s an example. A site that downsizes its mainframes to Linux servers could install free Rexx on the
Linux machines. Rexx becomes the vehicle to transfer personnel skills, while providing a base for
migrating scripts.

As another example, an organization migrating from procedural to object-oriented programming (OOP)
could use free Rexx as its cross-platform entry point into OOP. Standard, procedural Rexx is a true subset
of object-oriented Rexx.

A final example: a company runs a data center with mainframes and Unix servers, uses Windows on the
desktop, and programs Android tablets for field agents. Rexx runs on all these platforms, making
developers immediately productive across the whole range of company equipment. Rexx enables a
mainframer to program a handheld, or Windows developer to script under Unix.

A standardized scripting language that is freely available across a wide range of systems yields
unparalleled skills applicability and code portability.

Typical Rexx Applications

Rexx is a general-purpose language. It is designed to handle diverse programming needs. Its power
gives it the flexibility to address almost any kind of programming problem. Here are examples.

O Asa “glue” language — Rexx has long been used as a high-productivity “glue” language for
stitching together existing commands, programs, and components. Rexx offers a higher-level
interface to underlying system commands and facilities. It leverages services, functions,
objects, widgets, programs, and controls.

O Automating repetitive tasks — Rexx scripts automate repetitive tasks. You can quickly put
together little scripts to tailor the environment or make your job easier. Rexx makes it easy
to issue commands to the operating system (or other environments or programs) and react
to their return codes and outputs.

O Systems administration — Rexx is a high-level, easy-to-read, and easy-to-maintain way to script
system administration tasks. By its nature, systems administration can be complex.
Automating it with an easily understood language raises system administration to a higher,
more abstract, and more manageable level. If you ever have to enhance or maintain systems
administration scripts, you'll be thankful if they’re written in Rexx instead of some of the
alternatives!

U Extending the operating system — You typically run Rexx scripts simply by typing their name
at the operating system’s command prompt. In writing scripts, you create new operating
system “commands” that extend or customize the operating system or programming
environment.

Chapter 1

U Application interfaces — Rexx scripts can create flexible user interfaces to applications
programmed in lower-level or compiled languages.

O Portable applications — Rexx’s standardization and extensive cross-platform support make it a
good choice for applications that must be ported across a range of systems. Its readability and
ease of maintenance make it easy to implement whatever cross-platform enhancements may
be desired. For example, while Rexx is the same across platforms, interfaces often vary.
Standardizing the scripting language isolates changes to the interfaces.

O Prototyping and exploratory programming — Since Rexx supports quick development, it is ideal
for developing prototypes, whether those prototypes are throw-aways or revisable. Rexx is
also especially suitable for exploratory programming or other development projects apt to
require major revision.

O Personal programming — An easy-to-use scripting language offers the simplicity and the
speedy development essential to personal programming. PCs and handheld devices often
require personal programming.

O Text processing — Rexx provides outstanding text processing. It's a good choice for text
processing applications such as dynamically building commands for programmable
interfaces, reformatting reports, text analysis, and the like.

U Handheld devices — Small devices require compact interpreters that are easy to program.
Rexx is useful for handheld devices of various kinds, including mobile and smart phones.

O Migration vehicle — Given its cross-platform strengths, Rexx can be used as a migration
vehicle to transfer personnel skills and migrate legacy code to new platforms.

U Macro programming — Rexx provides a single macro language for the tools of the
programming environment: editors, text processors, applications, and other languages.
Rexx’s strengths in string processing play to this requirement, as does the fact it can easily
be invoked as a set of utility functions through its standardized application programming
interface, or APL

U Embeddable language — ANSI Rexx is defined as a library which can be invoked
from outside applications by its standard APIL Rexx is thus a function library that
can be employed as an embeddable utility from other languages or systems.

O Mainframe support — Rexx is the default scripting language for several operating
systems. Mainframe systems like z/OS, z/VM, and VSE/n are examples. Not only is
Rexx the most popular scripting language on these systems, it is also the only high-
level language that links into many subsystems essential to managing and
administering them.

O Mathematical applications — Rexx performs computations internally in decimal arithmetic,
rather than in the binary or floating-point arithmetic of most programming languages. The
result is that Rexx always computes the same result regardless of the underlying platform.
And, it gives precision to 999999 decimal places! But Rexx is not suitable for all
mathematical applications. Advanced math functions are external add-ins rather than
built-in functions for most Rexx interpreters, and Rexx performs calculations slowly
compared to compiled languages optimized for these tasks, such as Fortran or Julia.

10

Introduction to Scripting and Rexx

What Rexx Doesn’t Do

There are a few situations where Rexx may not be the best choice.

Rexx is not a systems programming language. If you need to code on the machine level, for example, to
write a device driver or other operating system component, Rexx is probably not a good choice. While
there are versions of Rexx that permit direct memory access and other low-level tasks, languages like
C/C++ or assembler are more suitable. Standard Rexx does not manipulate direct or relative addresses,
change specific memory locations, or call PC interrupt vectors or UEFI/BIOS service routines.

Rexx is a great tool to develop clear, readable code. But it cannot force you to do so; it cannot save you
from yourself. Chapter 12 discusses “Rexx with style” and presents simple recommendations for
writing clear, reliable code.

Scripting languages consume more processor cycles and memory than traditional compiled languages.
This affects a few projects. An example is a heavily used transaction in a high-performance online trans-
action processing (OLTP) system. The constant execution of the same transaction might make it worth
the labor cost to develop it in a lower-level compiled language to optimize machine efficiency.

Another example is a heavily computational program in scientific research. Continual numeric
calculation might make it worthwhile to optimize processor cycles through a computationally oriented
compiler.

A final example might be where you’re writing part of an operating system that is in constant use. In
this case it might be worth investing the extra effort to develop the code in a low-level language like an
assembler, or at least a fast compiled language (like C), to gain maximum efficiency and the quickest
possible execution time.

In most other situations, for most other applications, our profession has reached the consensus that
scripting languages are plenty fast enough. And they are so much more productive! This is why

the shift to scripting has been one of the biggest software trends since the turn of the century.

If you're interested in reading further about the evolution towards scripting, chapter 19 explores this
in some detail.

Figure 1-2 summarizes the kinds of programming problems to which Rexx is best suited as well as those
for which it may not be the best choice.

11

Chapter 1

When to Use Rexx

-- Highest productivity

-- Quick development -- Optimal execution speed

-- Glue language is required

-- Prototyping

-- Systems administration -- Systems-level programming

-- OS extensions
-- Portable applications
-- Migrations off the mainframe
-- Embedded programming
-- Handheld programming
-- Text processing
-- Interactive development
and debugging

Figure 1-2

Which Rexx?

12

There are many free implementations of what we refer to as standard or classic Rexx. This is Rexx as
defined by the TRL-2 or ANSI standards mentioned earlier. There are also two object-oriented supersets
of classic procedural Rexx. And, there is NetRexx, the free Rexx-like language that runs in a Java Virtual
Machine and presents a complementary or an alternative to Java for developing applications. Which
Rexx should you use?

The first half of this book teaches classic Rexx. It applies to any standard Rexx interpreter on any platform.
Once you know standard Rexx you can easily pick up the extensions unique to any Rexx interpreter.
You can also easily learn interface programming, how to use Rexx tools and packages, object-
oriented Rexx, NetRexx, or any Rexx variant. After all, the whole point of Rexx is ease of learning!

This table summarizes the major Rexx interpreters. All are free and available at no cost (except for IBM's Rexx
Compiler). Most are open source, while a few are proprietary and come bundled with an operating system.

They are distributed either as easy-to-install packages, directly executable binaries, or source code.

Introduction to Scripting and Rexx

Interpreter Platforms Cost & Licensing

Regina Nearly everywhere Free, open source, GNU Library or
(except mainframes) LGPLv2

Open Object Rexx Windows, Linux, Unix, BSD, Free, open source, GPLv2, CPL 1.0

(aka “ooRexx”) macOS

Open Object Rexx for Android Android
(aka "ooRexx for Android")

Free, open source, Apache 2.0

BRexx Linux, Unix, BSD, macQOS, Free, open source, GPLv2
Android, Windows, DOS

BRexx370 Mainframes Free, open source, GPLv2

Rexx/imc BSD, Unix, Linux Free, open source, no warranty

IBM REXX Mainframes Bundled, Proprietary license

IBM REXX Compiler Mainframes Proprietary license

Rexxoid Android Free, open source

(aka “Rexx for Android”)

NetRexx

Anywhere with a Java

Free, ICU License

Virtual Machine
ARexx Amiga-derived systems Free, bundled, license varies
cREXX z/VM, others soon Free, MIT license
R4 (out of support) Windows Free. Limited warranty
Roo! (out of support) Windows Free. Limited warranty
Reginald (out of support) Windows Free. No warranty

All these interpreters meet the TRL-2 Rexx language standard. The single exception is NetRexx, which is
best termed a “Rexx-like” language. Any standard Rexx you have installed can be used for working with
the sample code in the first half of this book. This includes all the previously listed interpreters (except
NetRexx), as well as standard Rexx interpreters bundled with mainframe or other operating systems.

To get you up and programming quickly, we defer closer consideration of the unique strengths of the
various Rexx interpreters and the differences between them.

(If you need to know more right now, skip ahead to Chapter 19. That chapter discusses the evolution
of Rexx and the roles it plays as a scripting language. It describes all the free Rexx interpreters above
and presents the strengths of each. Chapters 20 through 30 then show how and where to download
and install each Rexx interpreter. They describe the unique features of each and demonstrate many of
them in sample scripts.)

If you're new to Rexx, we recommend starting with Regina Rexx. Regina Rexx is a great place to start for
several reasons:

O Popularity — Regina is the most widely used free Rexx. Its large user community makes
it easy to get help on public forums. More interfaces and tools are tested with Regina
than any other Rexx implementation.

13

Chapter 1

O Runs anywhere — Rexx is a platform-independent language, and Regina proves the
point. Regina runs on almost any operating system including those in these families:
Windows, Linux, Unix, BSD, macOS, and many lesser-used systems.

U Meets all standards — Regina meets all Rexx standards including the TRL-2
and ANSI- 1996 standards.

O Well Documented — Regina comes with complete documentation that precisely
and fully explains the product.

O Open source — Regina is free and open source and distributed under the GNU Library
General Public License. A few Rexx interpreters are free but not open source, as shown
in the preceding table.

The code examples in this book all conform to standard Rexx and were tested using Regina Rexx under
Windows and/or Linux. Run these scripts under any standard Rexx in any environment. A few scripts
require a specific operating system. For example, those in Chapter 14 illustrate how to issue operating
system commands and therefore are system-specific. Other scripts later in the book use specific open-
source interfaces, tools, or interpreters. Where we present examples that run only in certain environments,
we'll point it out.

To get you ready for the rest of the book, the remainder of this chapter shows you how to download
and install Regina under Windows, Linux, Unix, BSD, and macOS. You need only install Regina if you
don’t already have access to a Rexx interpreter.

Downloading Regina Rexx

14

For a free download of Regina Rexx, go to the Regina project homepage at SourceForge at
https://sourceforge.net/projects/regina-rexx/. Click on the Files tab on the horizontal menu
to access the downloads page at https://sourceforge.net/projects/regina-rexx/files/.

From the Files page, you can click on regina-documentation and download Regina's two PDF product
manuals. You'll probably want to download the files for the latest product release.

Also on the Files page, you can also click on regina-rexx to download the product itself. Again, you'll
encounter a list of releases. Pick the latest one.

Now you'll face a screen with a long list of downloadable files. (There are so many files because Regina
runs on so many different platforms.) Scroll down and you'll see the files grouped by operating
system. You'll see groupings for Windows, Linux, macOS, BSD, and Others.

Once you find the group of downloads for your operating system, it's a simple matter of selecting
which download matches your specific computer.

Okay, let's walk through the exact install steps you need to follow to install for Windows, Linux, and
other systems like macOS, BSD, and Unix.

Introduction to Scripting and Rexx

Installing Regina On Windows

From the list of downloadable files at the SourceForge project webpage, scroll down to the Windows
group.

Your goal is to select the correct Windows download for your computer. You want each column in the
table to match your computer's specifications.

Select the entry in the Architecture column that matches your computer: x86_64 for 64-bit Windows on
Intel processors, x86 for 32-bit Windows on Intel processors, or armé64 for 64-bit ARM processors. The
Format column tells what kind of install format you're downloading.

For example, for my computer I selected the file Regina__we64.exe (the underscores represent a variable
product release number). That's for 64-bit Windows on Intel computers. The Format entry describes
this as a "Self-installing executable.” Perfect! That makes for a very easy Windows installation.

Once you've downloaded the proper file, double-click on it to start the installation. You'll proceed
through a standard Windows install. Accept the defaults all the way through.

This installs Regina's Demos, Development Kit, and Documentation, along with the interpreter itself. It
requires very little space (less than ten megabytes).

The Windows default install directory will be C:\ Program Files\rexx.org\Regina for 64-bit Intel
architecture and ARM processors, and C: \Program Files (x86) \rexx.org\Regina for 32-bit Intel
architecture processors.

The default install will also add the Regina installation directory to your PATH variable and include
the REGINA HOME environmental variable. These settings enable you to easily run Regina scripts
without any additional steps.

Another screen will prompt you for the filename extensions for your Regina scripts. Traditionally,
Regina scripts use filename extension of . rexx, so select that.

A final screen asks whether you want to install and optionally auto-start the Regina Stack Service. The
stack is a general-purpose data structure that Regina programs can use to pass or temporarily store data.
(Chapter 11 describes the stack in detail.) For learning purposes, it's convenient to install this service.

That's it! You're done. Now, you can navigate to your Windows' installed Program List and see the
ReginaRexx entry. Beneath it will appear its list of components.

Remember those computer benchmarks on page 5? Let’s benchmark your computer and see how it
compares. This will also verify that Regina is installed and working properly.

15

Chapter 1

Select ReginaRexx from the Windows Program list. Under the ReginaRexx entry, pick Regina Rexx Demos.
Then click on the program Rexxcps. The program will run in a command window and give you a
benchmark you can directly compare to those on page 5.

So, you can run any Rexx program with the file extension of . rexx simply by double-clicking its filename.

Or you can run programs from the command line. Assuming you've navigated to the directory containing
the program you want to run, (or that your PATH environmental variable contains that directory), you can
enter its full filename to run it: rexxcps.rexx

The filename extension of . rexx tells Windows to run the file using Regina Rexx. Or you can run a file
by explicitly invoking the Regina interpreter. Since you've already set the filename extension within
Windows, you can either specify the full or partial filename. Either will work:

regina rexxcps.rexx or regina rexxcps

What about entering just the filename, but without its extension? Windows can't run this program
because it doesn't know it should invoke Regina to run it. So this will not work: rexxcps

Installing Regina on Linux / Unix / BSD / macOS

16

There are several ways to install Regina on Linux and similar computers, such as those running macOS,
Unix, and BSD. Perhaps the quickest and easiest is to use your distribution’s package manager, its software
interface for installing and removing software products.

Example package managers include Ubuntu’s Software Center, the Synaptic Package Manager, APT, DNF,
YUM, and ZYPP. The one you have available depends on which Linux distribution you run. All have easy-
to-use GUI interfaces.

Most Linux package managers connect to large repositories of software products. Just search for Regina in
that list of installable programs, and then select and install Regina using the package manager’s graphical
interface.

In most cases, the package manager will direct you to download two Regina files. One is for the
interpreter itself, and the other is for its library. For example, using Synaptic Package Manager directed
me to download the files regina-rexx, anditslibrary, 1ibregina3. (The exact file names may vary
in your case.) The point is that the package manager will often automatically direct you to download
more than a single file to install Regina. Just download these files and double-click to install them.

If you're on a Mac and use HomeBrew, you can install simply by: brew install regina-rexx

Installing Regina with your operating system’s package manager is quick and easy. But it does have one
possible downside. Sometimes repositories don’t contain the latest release of the software.

Introduction to Scripting and Rexx

Thus, you may want to install Regina directly from its permanent project homepage at
SourceForge.net. This is the same SourceForge webpage mentioned in the above discussion on

“Installing Regina on Windows.” The web address for downloading Regina files is:
https://sourceforge.net/projects/regina-rexx/files/.

Once there, you can download the product documentation by selecting the directory regina-
documentation, and the product itself by choosing regina-rexx.

We recommend downloading the two Regina manuals available under the regina-documentation
directory. You may have need of them later.

In the regina-rexx directory, you’ll want to select the current release. There you'll view a very long product
list. Scroll down to the section labelled Linux. This reduces the downloads to a more manageable list.

To find the file to download, scroll through the list under the label Operating System and locate yours.
(If you can't find an exact match, pick the one closest to your system. For example, someone running a
Debian-based distribution that is not explicitly listed could use the Debian packages.)

Once you've located your operating system, ensure that the Architecture and 32bit or 64bit columns
match your system. The rightmost column will then tell you which kind of package is involved: Debian,
RPM, Alpine, or whatever.

Now you’ll need to download and install two packages. One will be Regina’s library package, while the
second is the interpreter itself.

Here’s an example. At the time of writing, I ran Linux Mint 21.2. I found that Linux Mint did not appear in
the list of Operating Systems in the Linux section. A quick web search showed that Mint 21.x is based on
Ubuntu 22. So I downloaded the files for Ubuntu 22. They worked fine.

Just as when you install via your Linux package manager, you'll likely need to install two files. I installed
these two (the underscores contain the variable product release numbers):

libregina3 -amd64-Ubuntu-22.04.deb
regina-rexx —amd64-Ubuntu-22.04.deb

As always with package manager files, you just double-click to install them. So first I installed the library
. deb, then next, the regina-rexx package. Done!

Afterwards, you'll want to test the install to ensure it worked correctly. Let's run the benchmarking
program that produced the table on page 5. You can benchmark your computer against those in the table.

The benchmarking program is called rexxcps. With the default Regina extension of . rexx, that means the
full name of this program is rexxcps . rexx. Use your operating system's Search function to locate this

program. Then open a terminal window, change to the directory where it resides, and execute it:

regina rexxcps or regina rexxcps.rexx

17

Chapter 1

If Regina can’t find the program to run it, you can run it by specifying that it resides in the current
directory:

regina ./rexxcps or regina ./rexxcps.rexx

Manual Installation From Source Code

If the simple "package install" we describe above didn't work for you, or if you have an uncommon
system not included in Regina's list of package installs, here we’ll describe a simple, generic approach
that will work for almost any Unix-derived operating system, including the macOS.

Where slight differences exist between systems, the Regina Install Notes will tell you what you need to
know. These typically reside in INSTALL* or README* files. They download with the product. Be sure to
read those instructions!

To install Regina under any Linux, Unix, BSD, or macOS operating system, use the root user ID and
download the source file into an empty directory.

The source file will be compressed. It will thus end in one of these file name extensions:
.tar.bz2,.tar.gz, .tgz, .tar, or . zip. To uncompress this file, just double-click on the file name.

If double-clicking produces a second compressed file (such asa . tar file), double-click on that file.

You'll know you're done decompressing when you see a long list of files being created. (So,
decompressing might be either a one-step or two-step process, depending on what kind of compressed
file you initially downloaded.)

Now, open a terminal window and navigate to the home directory into which you extracted Regina.

Look in the directory into which the files were extracted and find and read the Install Notes. They are
usually in a file named INSTALL* or README*. These notes give operating system specific instructions
you must follow to successfully install Regina.

The Install Notes will tell you that you need to enter these two commands as the root user id to the
operating system:

./configure
make install

These commands configure and install Regina. Since they compile source code, they require a C
compiler to run. Almost all Linux, Unix, and BSD machines will have a C compiler present. If your
system does not have one installed, download a free compiler from any of several sites including
www.gnu.org. For macOS, go to the Apple Store and download Xcode.

Introduction to Scripting and Rexx

The Install Notes will tell you if you need to set any environmental variables. Typically you'll need to set your
PATH to include the location of the Regina binary. And, you'll need to point the LD LIBRARY PATH
environmental variable to where Regina's shared library file resides (usually in /usr/local/1lib).
Again, refer to the install instructions! They'll give you the exact commands to run, which do vary by the
operating system.

Finally, test your installation by running one of the Regina-provided demo scripts. Let’s
benchmark your system by running the benchmark program used in the table on page 5 of this

chapter. You can compare your system’s performance to the examples listed in that table.

The program to run is called rexxcps.rexx. You may have to look around in the Regina
install directories to locate it. Change to that directory, then enter this to run the program:

regina rexxcps or regina ./rexxcps.rexx

If you have any problems with installing, check that your PATH variable properly includes the path of the
Regina executable, and that the LD_LIBRARY PATH or its equivalent properly points to Regina's shared
library.

Also, remember that to run a program you may need to set its permission bits as executable:

chmod +x your program name.rexx

Testing Rexx Statements: Rexxtry

As well as the rexxcps program that benchmarks your computer's performance, another common
program distributed with most Rexx interpreters is called rexxtry (if you can't find it, it's included with
the sample programs for this book that you can download for free from www.RexxInfo.org) .

Start this program from the command line, and you can enter various Rexx statements to it. It responds by
executing the statement and returning its results to you.

Rexxtry can be useful to learn how Rexx works. Here's an example interaction where we test to see if Rexx
treats single and double quotation marks as the same by entering a say instruction:

babs@delll:~$ regina rexxtry
Try out Rexx statements interactively.

To end, enter EXIT

Rexxtry:

say 'Are single quotes' "the same as double quotes?"
Are single quotes the same as double quotes?
Rexxtry:

exit

19

Chapter 1

Summary

This chapter lists the advantages of scripting in Rexx and suggests where Rexx is most useful. Given its
power, flexibility, portability, and ease of use, Rexx is suitable for addressing a wide range of
programming problems. The only situations where Rexx does not apply are those oriented toward
“systems programming” and programs that demand totally optimized machine utilization.

Rexx distinguishes itself among scripting languages by combining ease of use with power. Rexx uses
specific interpreter design techniques to achieve this combination. Rexx has simple syntax, minimal
"special variables," no "default variables”, and a case-insensitive free-format combined with a small, easily
learned instruction set. Its many built-in functions, extensibility, and the ability to issue commands to the
operating system and other external interfaces give Rexx power while retaining ease of use.

Ease of use is important even to highly experienced computer professionals because it reduces error
rates and determines the life span of their code. Experienced developers leverage a quickly coded
language like Rexx to achieve outstanding productivity.

The final part of this chapter showed how to download and install Regina Rexx under Windows, Linux,
Unix, BSD, and macOS. This popular Rexx interpreter is a free, open-source product you can use to
learn Rexx in the tutorial of the following chapters. Any other standard Rexx interpreter could be used
as well. The next several chapters get you quickly up and running Rexx scripts through an example-
based tutorial.

Test Your Understanding

1. Inwhat way is Rexx a higher-level language than compiled languages like C or C++? What's a
Qlue language? Why is there an industry-wide trend towards scripting languages?

2. Are developers required to code Rexx instructions starting in any particular column? In upper-
or lowercase?

3. Evenif you're an expert programmer, why is ease of use still important?

4. What are names of the two object-oriented Rexx interpreters? Will standard or classic
Rexx scripts run under these OO interpreters without alteration?

5. Does Rexx run on Android? How about departmental servers? PCs? Mainframes?

6. What are the two key Rexx standards? Are these two standards almost the same or
significantly different?

7. Traditionally there is a trade-off between ease of use and power. What specific
techniques does Rexx employ to gain both attributes and circumvent the trade-
off?

20

Language Basics

Overview

This chapter describes the basic elements of Rexx. It discusses the simple components that make
up the language. These include script structure, elements of the language, operators, variables,
and the like. As a starting point, we explore a simple sample script. We’ll walk through this script
and explain what each statement means. Then we’ll describe the language components individu-
ally, each in its own section. We’ll discuss Rexx variables, character strings, numbers, operators,
and comparisons.

By the end of this chapter, you'll know about the basic components of the Rexx language. You'll be
fully capable of writing simple scripts and will be ready to learn about the language features
explored more fully in subsequent chapters. The chapters that follow present other aspects of the
language, based on sample programs that show its additional features. For example, topics cov-
ered in subsequent chapters include directing the logical flow of a script, arrays and tables, input
and output, string manipulation, subroutines and functions, and the like. But now, let’s dive into
our first sample script.

A First Program

Had enough of your job? Maybe it’s time to join the lucky developers who create computer games
for a living! The complete Rexx program that follows is called the Number Game. It generates a
random number between 1 and 10 and asks the user to guess it (well, okay, the playability is a bit
weak. ...) The program reads the number the user guesses and states whether the guess is correct.

/* The NUMBER GAME - User tries to guess a number between 1 and 10 */
/* Generate a random number between 1 and 10 */
the_number = random(1,10)

say "I'm thinking of number between 1 and 10. What is it?"

Chapter 2

22

pull the_guess

if the_number = the_guess then
say 'You guessed it!'
else
say 'Sorry, my number was: ' the_number

say 'Bye!'’
Here are two sample runs of the program:

C:\Regina\pgms>number_game.rexx
I'm thinking of number between 1 and 10. What is it?
4

Sorry, my number was: 6
Bye!

C:\Regina\pgms>number_game .rexx

I'm thinking of number between 1 and 10. What is it?
8

You guessed it!

Bye!

This program illustrates several Rexx features. It shows that you document scripts by writing whatever
description you like between the symbols /* and */. Rexx ignores whatever appears between these
comment delimiters. Comments can be isolated on their own lines, as in the sample program, or they can
appear as trailing comments after the statement on a line:

the_number = random(1l,10) /* Generate a random number between 1 and 10 */

Comments can even stretch across multiple lines in box style, as long as they start with /* and end
with */:

/**

* The NUMBER GAME - User tries to guess a number between 1 and 10 *

* Generate a random number between 1 and 10 *
**/

Rexx is case-insensitive. Code can be entered in lowercase, uppercase, or mixed case; Rexx doesn’t care.
The if statement could have been written like this if we felt it were clearer:

IF the_number = the_guess THEN
SAY 'You guessed it!'
ELSE
SAY 'Sorry, my number was: ' the_number

The variable named the_number could have been coded as THE_NUMBER or The_Number. Since Rexx
ignores case it considers all these as references to the same variable. The one place where case does mat-

ter is within literals or hardcoded character strings:

say 'Byel!! outputs: Bye!

Language Basics

while
say 'BYE!' displays: BYE!

Character strings are any set of characters occurring between a matched set of either single quotation
marks (') or double quotation marks (").

What if you want to encode a quote within a literal? In other words, what do you do when you need to
encode a single or double quote as part of the character string itself? To put a single quotation mark
within the literal, enclose the literal with double quotation marks:

say "I'm thinking of number between 1 and 10. What is it?"
To encode double quotation marks within the string, enclose the literal with single quotation marks:
say 'I am "thinking" of number between 1 and 10. What is it?"'

Rexx is a free-format language. The spacing is up to you. Insert (or delete) blank lines for readability, and
leave as much or as little space between instructions and their operands as you like. Rexx leaves the cod-
ing style up to you as much as a programming language possibly can.

For example, here’s yet another way to encode the if statement:

IF the_number = the_guess THEN SAY 'You guessed it!'
ELSE SAY 'Sorry, my number was: ' the_number

About the only situation in which spacing is not the programmer’s option is when encoding a Rexx furnc-
tion. A function is a built-in routine Rexx provides as part of the language; you also may write your own
functions. This program invokes the built-in function random to generate a random number between 1
and 10 (inclusive). The parenthesis containing the function argument(s) must immediately follow the
function name without any intervening space. If the function has no arguments, code it like this:

the_number = random()

Rexx requires that the parentheses occur immediately after the function name to recognize the function
properly.

The sample script shows that one does not need to declare or predefine variables in Rexx. This differs
from languages like C++, Java, COBOL, or Pascal. Rexx variables are established at the time of their first
use. The variable the_number is defined during the assignment statement in the example. Space for the
variable the_guess is allocated when the program executes the pull instruction to read the user’s
input:

pull the_guess
In this example, the pull instruction reads the characters that the user types on the keyboard, until he

or she presses the <ENTER> key, into one or more variables and automatically translates them to upper-
case. Here the item the user enters is assigned to the newly created variable the_guess.

23

Chapter 2

All variables in Rexx are variable-length character strings. Rexx automatically handles string length
adjustments. It also manages numeric or data type conversions. For example, even though the variables
the_number and the_guess are character strings, if we assume that both contain strings that represent

numbers, one could perform arithmetic or other numeric operations on them:

their_sum = the_number + the_guess

Rexx automatically handles all the issues surrounding variable declarations, data types, data conver-
sions, and variable length character strings that programmers must manually manage in traditional
compiled languages. These features are among those that make it such a productive, high-level
language.

Language Elements

24

Rexx consists of only two dozen instructions, augmented by the power of some 70 built-in functions.
Figure 2-1 below pictorially represents the key components of Rexx. It shows that the instructions and
functions together compose the core of the language, which is then surrounded and augmented by other
features. A lot of what the first section of this book is about is introducing the various Rexx instructions
and functions.

Elements of Rexx

Operators
Arithmetic
Comparison

Logical

String

2 dozen Instructions

70 Built-in
Functions

Other language components & features
Figure 2-1

Of course, this book also provides a language reference section in the appendices, covering these and
other aspects of the language. For example, Appendix B is a reference to all standard Rexx instructions,
while Appendix C provides the reference to standard functions.

Language Basics

The first sample program illustrated the use of the instructions say, pull, and if. Rexx instructions are
typically followed by one or more operands, or elements upon which they operate. For example, say is
followed by one or more elements it writes to the display screen. The pull instruction is followed by a
list of the data elements it reads.

The sample script illustrated one function, random. Functions are always immediately followed by
parentheses, usually containing function arguments, or inputs to the function. If there are no arguments,
the function must be immediately followed by empty parentheses () . Rexx functions always return a
single result, which is then substituted into the expression directly in place of the function call. For
example, the random number returned by the random function is actually substituted into the statement
that follows, on the right-hand side of the equals sign, then assigned to the variable the_number:

the_number = random(1l,10)

Variables are named storage locations that can contain values. They do not need to be declared or defined
in advance, but are rather created when they are first referenced. You can declare or define all variables
used in a program at the beginning of the script, but Rexx does not require this. Some programmers like
to declare all variables at the top of their programs, for clarity, but Rexx leaves the decision whether or
not to do this up to you.

All variables in Rexx are internally stored as variable-length strings. The interpreter manages their
lengths and data types. Rexx variables are “typeless” in that their contents define their usage. If strings
contain digits, you can apply numeric operations to them. If they do not contain strings representing
numeric values, numeric operations don’t make sense and will fail if attempted. Rexx is simpler than
other programming languages in that developers do not have to concern themselves with data types.

Variable names are sometimes referred to as symbols. They may be composed of letters, digits, and charac-
terssuchas . ! ? _.Avariable name you create must not begin with a digit or period. A simple variable
name does not include a period. A variable name that includes a period is called a compound variable and
represents an array or table. Arrays will be covered in Chapter 4. They consist of groups of similar data
elements, typically processed as a group.

If all Rexx variables are typeless, how does one create a numeric value? Just place a string representing a
valid number into a Rexx variable. Here are assignment statements that achieve this:

whole_number_example = 15
decimal_example = 14.2
negative_number = -21.2
exponential_notation_example = 14E+12

A number in Rexx is simply a string of one or more digits with one optional decimal point anywhere in
the string. Numbers may optionally be preceded by their sign, indicating a postive or a negative num-
ber. Numbers may be represented very flexibly by almost any common notation. Exponential numbers
may be represented in either engineering or scientific notation (the default is scientific). The following

table shows examples of numbers in Rexx.

25

Chapter 2

26

Number Type Also Known As Examples

Whole Integer ‘37 '+67 “9835297590239032

Decimal Fixed point ‘0.3 "17.36425

Exponential Real --or-- "1.235E+11" (scientific, one digit left of decimal point)
Floating point 171.123E+11" (engineering, 1 to 3 digits left of decimal)

Variables are assigned values through either assignment statements or input instructions. The assign-
ment statement uses the equals sign (=) to assign a value to a variable, as shown earlier. The input
instructions are the pull or parse instructions, which read input values, and the arg and parse arg
instructions, which read command line parameters or input arguments to a script.

If a variable has not yet been assigned a value, it is referred to as uninitialized. The value of an uninitial-
ized variable is the name of the variable itself in uppercase letters. This i f statement uses this fact to
determine if the variable no_value_vyet is uninitialized:

if no_value_yet = 'NO_VALUE_YET' then
say 'The variable is not yet initialized.'

Character strings or literals are any set of characters enclosed in single or double quotation marks (' or ").

If you need to include either the single or double quote within the literal, simply enclose that literal with
the other string delimiter. Or you can encode two single or double quotation marks back to back, and
Rexx understands that this means that one quote is to be contained within the literal (it knows the dou-
bled quote does not terminate the literal). Here are a few examples:

literal= 'Literals contain whatever characters you like: !@#$%7&*()-=+~.<>2/_"
need_a_qguote_mark_in_the_string = "Here's my statement."
same_as_the_previous_example = 'Here''s my statement.'
this_is_the_null_string = '' /*two quotes back to back are a "null string" */

In addition to supporting any typical numeric or string representation, Rexx also supports hexadecimal or
base 16 numbers. Hex strings contain the upper- or lowercase letters A through F and the digits 0 through
9, and are followed by an upper- or lowercase X:

twenty_six_in_hexidecimal = 'la'x /* 1A is the number 26 in base sixteen */
hex_string = "3E 11 4A"X /* Assigns a hex string value to hex_string */

Rexx also supports binary, or base two strings. Binary strings consist only of 0s and 1s. They are denoted
by their following upper- or lowercase B:

example_binary_string = '10001011'b
another_binary_string = '1011'B

Rexx has a full complement of functions to convert between regular character strings and hex and binary
strings. Do not be concerned if you are not familiar with the uses of these kinds of strings in program-
ming languages. We mention them only for programmers who require them. Future chapters will
explain their use more fully and provide illustrative examples.

Language Basics

Operators

Every programming language has operators, symbols that indicate arithmetic operations or dictate that
comparisons must be performed. Operators are used in calculations and in assigning values to variables,
for example. Rexx supports a full set of operators for the following.

Q Arithmetic

Q Comparison

Q Logical operators
Q

Character string concatenation

The arithmetic operators are listed in the following table:

Arithmetic Operator Use

+ Addition

- Subtraction

* Multiplication

/ Division

% Integer division —returns the integer part of the result from division
// Remainder division —returns the remainder from division

** Raise to a whole number power

+ (as a prefix) Indicates a positive number

- (as a prefix) Indicates a negative number

All arithmetic operators work as one would assume from basic high-school algebra, or from program-
ming in most other common programming languages. Here are a few examples using the less obvious

operators:
say (5 % 2) /* Returns the integer part of division result. Displays: 2 */
say (5 // 2) /* Returns the remainder from division. Displays: 1 */
say (5 ** 2) /* Raises the number to the whole power. Displays: 25 */

Remember that because all Rexx variables are strings, arithmetic operators should only be applied to
variables that evaluate to valid numbers. Apply them only to strings containing digits, with their
optional decimal points and leading signs, or to numbers in exponential forms.

Numeric operations are a major topic in Rexx (as in any programming language). The underlying princi-
ple is this — the Rexx standard ensures that the same calculation will yield the same results even when run under
different Rexx implementations or on different computers. Rexx provides an exceptional level of machine- and
implementation-independence compared with many other programming languages.

27

Chapter 2

28

If you are familiar with other programming languages, you might wonder how Rexx achieves this
benefit. Internally, Rexx employs decimal arithmetic. It does not suffer from the approximations caused
by languages that rely on floating point calculations or binary arithmetic.

The only arithmetic errors Rexx gives are overflow (or underflow). These result from insufficient storage to
hold exceptionally large results.

To control the number of significant digits in arithmetic results, use the numeric instruction.
Sometimes the number of significant digits is referred to as the precision of the result. Numeric precision
defaults to nine digits. This sample statement illustrates the default precision because it displays nine
digits to the right of the decimal place in its result:

say 2 / 3 /* displays 0.666666667 by default */

This example shows how to change the precision in a calculation. Set the numeric precision to 12 digits
by the numeric instruction, and you get this result:

numeric digits 12 /* set numeric precision to 12 digits */
say 2 / 3 /* displays: 0.666666666667 */

Rexx preserves trailing zeroes coming out of arithmetic operations:
say 8.80 - 8 /* displays: 0.80 */

If a result is zero, Rexx always displays a single-digit 0:

say 8.80 - 8.80 /* displays: 0 */

Chapter 7 explores computation further. It tells you everything you need to know about how to express
numbers in Rexx, conversion between numeric and other formats, and how to obtain and display
numeric results. We'll defer further discussion on numbers and calculations to Chapter 7.

Comparison operators provide for numeric and string comparisons. These are the operators you use to
determine the equality or inequality of data elements. Use them to determine if one data item is greater
than another or if two variables contain equal values.

Since every Rexx variable contains a character string, you might wonder how Rexx decides to perform a
character or numeric comparison. The key rule is: if both terms involved in a comparison are numeric, then
the comparison is numeric. For a numeric comparison, any leading zeroes are ignored and the numeric
values are compared. This is just as one would expect.

If either term in a comparison is other than numeric, then a string comparison occurs. The rule for string
comparison is that leading and trailing blanks are ignored, and if one string is shorter than the other, it
is padded with trailing blanks. Then a character-by-character comparison occurs. String comparison is
case-sensitive. The character string ABC is not equal to the string Abc. Again, this is what one would
normally assume.

Rexx features a typical set of comparison operators, as shown in the following table:

Language Basics

Comparison Operator

\= -=
>
<
>= \<
<= \ >
>< <>

>

Meaning

Equal

Not equal

Greater than

Less than

Greater than or equal to, not less than
Less than or equal to, not greater than

Greater than or less than (same as not equal)

The “not” symbol for operators is typically written as a backslash, as in “not equal:” \= But some-
times you'll see it written as - as in “not equal:” == Both codings are equivalent in Rexx. The first repre-
sentation is very common, while the second is almost exclusively associated with mainframe scripting.
Since most keyboards outside of mainframe environments do not include the symbol — we recommend always
using the backslash. This is universal and your code will run on any platform. The backslash is the ANSI-
standard Rexx symbol. You can also code “not equal to” as: <> or ><.

In Rexx comparisons, if a comparison evaluates to TRUE, it returns 1. A FALSE comparison evaluates to 0.
Here are some sample numeric and character string comparisons and their results:

370 = 137
'0037'= 37"
370 = 137
'ABC' = 'Abc'
'ABC' =" ABC

/* TRUE -
/* TRUE -
/* TRUE -
/* FALSE -
' /* TRUE-
/* TRUE-

a numeric comparison */
numeric comparisons disregard leading zeroes */
blanks disregarded */
string comparisons are case-sensitive */
preceding & trailing blanks are irrelevant */
null string is blank-padded for comparison */

Rexx also provides for strict comparisons of character strings. In strict comparisons, two strings must be iden-
tical to be considered equal —leading and trailing blanks count and no padding occurs to the shorter
string. Strict comparisons only make sense in string comparisons, not numeric comparisons. Strict com-
parison operators are easily identified because they contain doubled operators, as shown in the follow-

ing chart:

Strict Comparison Operator

>>=

<<=

==

\<<

\>>

<<

Meaning

Strictly equal

Strictly not equal

Strictly greater than

Strictly less than

Strictly greater than or equal to, strictly not less than

Strictly less than or equal to, strictly not greater than

29

Chapter 2

Here are sample strict string comparisons:

'37' == '37 ' /* FALSE - strict comparisons include blanks */
'"ABC' >> 'AB' /* TRUE - also TRUE as a nonstrict comparison */
'"ABC' == ' ABC ' /* FALSE - blanks count in strict comparison */
v == ' /* FALSE - blanks count in strict comparison */

Logical operators are sometimes called Boolean operators because they apply Boolean logic to the operands.

Rexx’s logical operators are the same as the logical operators of many other programming languages.
This table lists the logical operators:

Logical Operator Meaning Use
& Logical AND TRUE if both terms are true
| Logical OR TRUE if either term is true
&& Logical EXCLUSIVE OR TRUE if either (but not both)
terms are true
- or \ (asa prefix) Logical NOT Changes TRUE to FALSE and
vice versa

Boolean logic is useful in if statements with multiple comparisons. These are also referred to as com-
pound comparisons. Here are some examples:
if ('A' = varl) & ('B' = var2) then
say 'Displays only if BOTH comparisons are TRUE'

if ('A' =wvarl) | ('B' = var2) then
say 'Displays if EITHER comparison is TRUE'

if ('A' = varl) && ('B' = var2) then
say 'Displays if EXACTLY ONE comparison is TRUE'

if \('A' = varl) then say 'Displays if A is NOT equal to varl'

Concatenation is the process of pasting two or more character strings together. Strings are appended one
to the end of the other. Explicitly concatenate strings by coding the concatenation operator | | . Rexx also
automatically concatenates strings when they appear together in the same statement. Look at these
instructions executed in sequence:

my_var = 'Yogi Bear'
say 'Hi there,' || ' ' || my_var /* displays: 'Hi there, Yogi Bear' — */
say 'Hi there, 'my_var /* displays: 'Hi there,Yogi Bear'

no space after the comma */
say 'Hi there,' my_var /* displays: 'Hi there, Yogi Bear'

one space after the comma */

The second say instruction shows concatenation through abuttal. Aliteral string and a variable appear
immediately adjacent to one another, so Rexx concatenates them without any intervening blank.

30

Language Basics

Contrast this to the last say instruction, where Rexx concatenates the literal and variable contents, but
with one blank between them. If there are one or more spaces between the two elements listed as
operands to the say instruction, Rexx places exactly one blank between them after concatenation.

Given these three methods of concatenating strings, individual programmers have their own prefer-
ences. Using the concatenation operator makes the process more explicit, but it also results in longer
statements to build the result string.

Rexx has four kinds of operators: arithmetic, comparison, logical, and concatenation. And there are sev-
eral operators in each group. If you build a statement with multiple operators, how does Rexx decide
which operations to execute first? The order can be important. For example:

4 times 3, then subtract 2 from the result is 10
Perform those same operations with the same numbers in a different order, and you get a different result:

3 subtract 2, then multiple that times 4 yields the result of 4

Both these computations involve the same two operations with the same three numbers but the opera-
tions occur in different orders. They yield different results.

Clearly, programmers need to know in what order a series of operations will be executed. This issue is
often referred to as the operator order of precedence. The order of precedence is a rule that defines which
operations are executed in what order.

Some programming languages have intricate or odd orders of precedence. Rexx makes it easy. Its order
of precedence is the same as in conventional algebra and the majority of programming languages. (The
only minor exception is that the prefix minus operator always has higher priority than the exponential
operator).

From highest precedence on down, this lists Rexx’s order of precedence:

Q Prefix operators + =\

0 Power operator o

Q Addition and subtraction + -

QO Concatenation by intervening blanks || by abuttal

Q Comparison operators = == > < >= <= ..and the others
Q Logical AND &

Q Logical OR |

Q EXCLUSIVE OR &&

If the order of precedence is important to some logic in your program, an easy way to ensure that opera-
tions occur in the manner in which you expect is to simply enclose the operations to perform first in
parentheses. When Rexx encounters parentheses, it evaluates the entire expression when that term is
required. So, you can use parentheses to guarantee any order of evaluation you require. The more
deeply nested a set of parentheses is, the higher its order of precedence. The basic rule is this: when Rexx
encounters expressions nested within parentheses, it works from the innermost to the outermost.

31

Chapter 2

To return to the earlier example, one can easily ensure the proper order of operations by enclosing the
highest order operations in parentheses:

say (4 * 3) -2 /* displays: 10 */
To alter the order in which operations occur, just reposition the parentheses:

say 4 * (3 - 2) /* displays: 4 */

Summary

This chapter briefly summarizes the basic elements of Rexx. We’ve kept the discussion high level and
have avoided strict “textbook definitions.” We discussed variable names and how to form them, and the
difference between simple variable names and the compound variable names that are used to represent
tables or arrays. We discussed the difference between strings and numbers and how to assign both to
variables.

We also listed and discussed the operators used to represent arithmetic, comparison, logical, and string
operations. We gave a few simple examples of how the operators are used; you'll see many more, real-
world examples in the sample scripts in the upcoming chapters.

The upcoming chapters round out your knowledge of the language and focus in more detail on its capa-
bilities. They also provide many more programming examples. Their sample scripts use the language
elements this chapter introduces in many different contexts, so you'll get a much better feel for how they
are used in actual programming.

Test Your Understanding

32

1. How are comments encoded in Rexx? Can they span more than one line?
2. How does Rexx recognize a function call in your code?

3. Must variables be declared in Rexx as in languages like C++, Pascal, or Java? How are variables
established, and how can they be tested to see if they have been defined?

4. What are the two instructions for basic screen input and output?

5. What is the difference between a comparison and strict comparison? When do you use one versus
the other? Does one apply strict comparisons to numeric values?

6. How do you define a numeric variable in Rexx?

Control Structures

Overview

Program logic is directed by what are called control structures or constructs — statements like
if- then-else, do-while, and the like. Rexx offers a complete set of control structures in less than
a dozen instructions.

Rexx fully supports structured programming, a rigorous methodology for program development
that simplifies code and reduces programmer error. Invented and defined by such experts as
Edsger Dijkstra and Edward Yourdon, structured programming restricts control structures to a
handful that permit single points of entry and exit to code blocks. The “golden rule” of structured
programming mandates that there should be only a single entry point and a single exit point from
any code block, such as a do loop. Goto’s and unstructured entries and exits are prohibited.

Structured programming encourages modularity and reduces complex spaghetti code to short,
readable, sections of self-contained code. Small, well-documented routines mean greater clarity
and fewer programmer errors. While developer convenience sometimes leads to unstructured
code (“Well... it made sense when I wrote it!”), structured, modular code is more readable and
maintainable.

We recommend structured programming; nearly all of the examples in this book are
structured. But we note that, as a powerful programming language, Rexx includes instructions
that permit unstructured coding if desired.

This chapter discusses how to write structured programs with Rexx. We start by listing the Rexx
instructions used to implement structured constructs. Then, we describe each in turn, showing
how it is used in the language through numerous code snippets. At appropriate intervals, we pre-
sent complete sample scripts that illustrate the use of the instructions in structured coding,.

The latter part of the chapter covers the Rexx instructions for unstructured programming. While
we don’t recommend their general use, there are special situations in which these instructions are
highly convenient. Any full-power scripting language requires a full set of instructions for control-
ling logical flow, including those that are unstructured.

Chapter 3

Structured Programming in Rexx

As we’ve mentioned, structured programming consists of a set of constructs that enforce coding disci-
pline and organization. These are implemented in Rexx through its basic instructions for the control of
program logic. The basic constructs of structured programming and the Rexx instructions used to imple-
ment them are listed in this table:

Structured Construct Rexx Instruction

PROCESS Any set of instructions, executed one after another. The exit or
return instructions end the code composing a program or routine.

IF-THEN. IF-THEN-ELSE if

DO. DO-WHILE do

CASE select

CALL call

Figure 3-1 illustrates the structured constructs.

The Structured Control Constructs

Process If If-then-else

o

Do-while l l
Case
Call

subroutine

A
Figure 3-1

34

Control Structures

IF Statements

if statements express conditional logic. Depending on the evaluation of some condition, a different

branch of program logic executes. if statements are common to nearly all programming languages, and
they represent the basic structured instruction for conditional logic. The two basic formats of the Rexx if

instruction are:
IF expression THEN instruction
and
IF expression THEN instruction ELSE instruction
Rexx evaluates the expression to 1 if it is TRUE, and 0 if it is FALSE. Here are sample if statements:

/* A simple IF statement with no ELSE clause */

if input = 'YES' then
say 'You are very agreeable'

/* In this example the IF statement tests a two-part or "compound" condition. The
SAY instruction executes only if BOTH conditions are TRUE, because of the
AND (&) operator */

if input = 'YES' & second_input = 'YES' then
say 'You are doubly agreeable today'

/* This compound IF is true if EITHER of the two expressions are TRUE */

if input = 'YES' | second_input = 'YES' then
say 'You are singly agreeable today'

/* Here's a simple IF statement with an ELSE clause.
The DATATYPE function verifies whether the variable INPUT contains a NUMBER */

if datatype(input,N) then

say 'Your input was a number'
else

say 'Your input was not numeric'

/* This coding is NOT recommended in Rexx, though it is popular in languages
like C or C++ or many Unix shell languages...
Variable VAR must be exactly 1 or 0 -- or else a syntax error will occur! */

if (var) then

say 'VAR evaluated to 1'
else

say 'VAR evaluated to 0'

To execute more than a single instruction after either the then or else keywords, you must insert the
multiple instructions between the keywords do and end. Here is an example:

35

Chapter 3

if datatype(input,N) then do
say 'The input was a number'
status_record = 'VALID'

end

else do
say 'The input was NOT a number'
status_record = 'INVALID'

end

The do-end pair groups multiple instructions. This is required when you encode more than one instruc-
tion as a logic branch in an if instruction. Notice that you must use the do-end pair for either branch of
the if instruction when it executes more than a single statement. In other words, use the do-end pair to
group more than a single instruction on either the then or the else branches of the if instruction.

You can nest if statements, one inside of another. If you nest i f statements very deeply, it becomes con-
fusing as to which else clause matches which if instruction. The important rule to remember is that an else
clause is always matched to the nearest unmatched if. Rexx ignores indentation, so how you indent nested if
statements has no effect on how Rexx interprets them.

The following code includes comments that show where the programmer sees the end of each i f
instruction. He or she includes these for documentation purposes only, since Rexx ignores comments
(regardless of what the comments may say).

if age => 70 then
say 'Person MUST start taking mandatory IRA distributions'
else
if age >= 65 then
say 'Person can receive maximum Social Security benefits'
else
if age >= 62 then
say 'Person may elect reduced Social Security benefits'

else
say 'Person is a worker bee, not a beneficiary'
/* end-1if */

/* end-if */
/* end-if */

Here’s another style in which to code this example. This series of nested if statements is sometimes
referred to as an if-else-if ladder. The first logic branch that evaluates to TRUE executes:

if age => 70 then

say 'Person MUST start taking mandatory IRA distributions'
else if age >= 65 then

say 'Person can receive maximum Social Security benefits'
else if age >= 62 then

say 'Person may elect reduced Social Security benefits'

Some languages provide special keywords for this situation, but Rexx does not. (For example, some

Unix shell languages provide the elif keyword to represent Rexx’s else if pair). Remember to code a
do - end pair whenever more than one instruction executes within a branch of the i f instruction.

36

Control Structures

The if-else-if ladder embodies another structured construct often referred to the CASE construct. In a
CASE construct, a set of conditions are tested, then one logic branch is selected from among several.

Rexx provides the select instruction to create CASE logic, as will be explained later. In Rexx you can
either choose an if-else-if ladder or the select instruction to encode CASE logic.

Sometimes, you'll encounter a coding situation where you want to code a logic branch that performs no
action. In this case, code the Rexx nop instruction. “nop” is a traditional computer science abbreviation
or term that means “no operation.” The nop instruction is a placeholder that results in no action. Here
is an example. The nop instruction in this code ensures that no action is taken when the if statement
condition evaluates to TRUE:

if case_is_undetermined = 'Y' then

nop /* No action is taken here. NOP is a placeholder only. */
else do

say 'Case action completed'

status_msg = 'Case action completed'
end

DO Statements

The do instruction groups statements together and optionally executes them repetitively. It comes in sev-
eral forms, all of which we’ll explore in this chapter. do instructions permit repetitive execution of one or
more statements. They are the basic way you code program “loops” in Rexx.

You are already familiar with the simple do-end pair used to group multiple instructions. Here is the
generic representation of how this is coded:

DO
instruction_list
END

Use the do-end group when you must execute multiple instructions in a branch of the if instruction, for
example. Here’s another form of the do instruction that repetitively executes a group of instructions
while the condition in the expression is TRUE:

DO WHILE expression
instruction_list
END

This coding example shows how to use this generic format. It employs a do while to call a subroutine
exactly 10 times:

j=1

do while j <= 10
call sub_routine
j=3+1

end

37

Chapter 3

A

38

The do instruction is flexible and offers other formats for devising loops. The preceding loop could also
be coded with a simpler form of the do instruction:

do 10
call sub_routine
end

Or, the example could be coded using a controlled repetitive loop:

do j=1 to 10 by 1
call sub_routine
end

The phrase by 1 is unnecessary because Rexx automatically increases the do loop control variable by 1 if
this phrase is not coded. But the keyword by could be useful in situations where you want to increase
the loop counter by some other value:

do j =1 to 20 by 2
call sub_routine
end

In addition to the to and by keywords, for may be used establish another limit on the loop’s execution
if some other condition does not terminate it first. for is like to, in that Rexx checks it prior to each iter-
ation through the loop. to, by, and for may be coded in any order. In this example, the for keyword
limits the do loop to three executions:

do j =1 to 100 by 1 for 3
say 'Loop executed:' j 'times.' /* Ends with: 'Loop executed: 3 times.' */
end

You may alter the loop control variable yourself, directly, while inside of the do loop, but this is not a rec-
ommended programming practice. It is confusing, and there is always an alternative way to handle such
a situation from the logical standpoint. We recommend always using the loop control variable only for
controlling an individual loop, and only altering that variable’s value through the do instruction condi-
tion test.

Rexx also contains unstructured loop control instructions such as leave, iterate, and signal, which
we cover later in the section of this chapter on unstructured control constructs. At that time we also
cover the do until and do forever forms of do loops, which also fall outside the rules of structured
programming.

Sample Program

This program prompts the user to input a series of words, one at a time. The program identifies words
that are four characters long, and concatenates them into a list, which it then displays. The program
illustrates a basic do loop, using it to read input from the user. It also shows how to use the if instruc-
tion in determining the lengths of the words the user enters.

Control Structures

If you were to enter this sentence to the program (one word at a time):

now is the time for all good men to come to the aid of their country
the program’s output would be:

Four letter words: time good come

Here’s the sample program:

/* FOUR LETTER WORDS: */
/* */
JE This program identifies all four letter words in the */
JE input and places them into an output list. */
four_letter words = '' /* initialize to no 4 letter words found yet */
say "Enter a word: " /* prompt user to enter 1 word)
parse pull wordin . /* the period ensures only 1 word is read in @)
do while wordin \= "'

if length(wordin) = 4 then

four_letter_words = four_letter_words wordin

say "Enter a word: " /* read the next word in “

parse pull wordin .
end
say 'Four letter words:' four_letter_ words /* display output x/

The do while loop in this script provides the control structure for the program to prompt the user and
read one word after that prompt. The do while loop terminates when the user declines to enter a word —
after the user just presses the <ENTER> key in response to the program’s prompt to Enter a word:
When the user presses the <ENTER> key without entering a word, this statement recognizes that fact and
terminates the do while loop:

do while wordin \= "'

Recall that the pull instruction reads an input and automatically translates it to uppercase. This pro-
gram uses parse pull to read an input without the automatic translation to uppercase:

parse pull wordin .
The period ensures that only the first word is accepted should the user enter more than one. This use of
the period is a convention in Rexx, and it’s about the only example of syntax-based coding in the entire
language. You could achieve the same effect by coding:

parse pull wordin junk

The first word entered by the user is parsed into the variable wordin, while any remaining words
entered on the input line would be placed into the variable named junk.

39

Chapter 3

The program uses the length function to determine whether the word the user entered contains four
letters. If so, the next statement concatenates the four letter word into a list it builds in the variable
named four_ letter words.

if length(wordin) = 4 then
four_letter words = four_letter_words wordin

The assignment statement relies on the fact that Rexx automatically concatenates variables placed in the
same statement, with one space between each. An alternative would have been to use the explicit con-
catenation operator:

four_letter words = four_letter words || wordin
But in this case the output would have been:

Four letter words: timegoodcome
Explicit concatenation requires explicitly splicing in a blank to achieve properly spaced output:

four_letter_words = four_letter words || ' ' | wordin

After the user is done entering words, the program displays the output string through the following
statement. Since this is the last statement coded in the program, the script terminates after issuing it:

say 'Four letter words:' four_ letter_words /* display output */

SELECT Statements

40

The CASE construct tests a series of conditions and executes the set of instructions for the first condition
that is TRUE. Rexx implements the CASE construct through its select instruction. The select instruc-
tion tests expressions and executes the logic branch of the first one that evaluates to TRUE. Here is the
generic format of the select instruction:

SELECT when_list [OTHERWISE instruction_list] END

The otherwise branch of the select instruction executes if none of the prior when_1list conditions are
found to be TRUE. Note that it is possible to code a select instruction without an otherwise keyword,
but if none of the when_1ist conditions execute, an error results. We strongly recommend coding an
otherwise section on every select statement.

The Rexx select instruction provides more control than the same CASE construct in some other pro-
gramming languages because you can encode any expression in the when clause. Some languages only
permit testing the value of a specified variable.

Here’s a simple coding example using select:
select

when gender = 'M' then
say 'Gender is male'

Control Structures

when gender = 'F' then do
say 'Gender is female'
female_count = female_count + 1

end
otherwise
say 'Error -- Gender is missing or invalid'

say 'Please check input record'
end /* this END pairs with the SELECT instruction itself */

If the value in the variable gender equals the character W, the first logic branch executes. If the value is F,
the group of instructions associated with the second when clause runs. If neither case is true, then the
instructions following the otherwise keyword execute.

Notice that an instruction_list follows the otherwise keyword, so if you code more than one state-
ment here you do not need to insert them in a do-end pair. Contrast this to the when groups, which do
require a do-end pair if they contain more than a single instruction. Don’t forget to encode the final end
keyword to terminate the select statement.

CALL Statements

All programming languages provide a mechanism to invoke other scripts or routines. This allows one
script, referred to as the caller, to run another, the subroutine. Rexx’s call instruction invokes a subrou-
tine, where the subroutine may be one of three kinds:

Q Internal — Consists of Rexx code residing in the same file as the caller.
Q Built-in— One of the Rexx built-in functions.

Q External —Code residing in a different file than the invoking script. An external subroutine may
be another Rexx script, or it may be written in any language supporting Rexx’s interface.

The subroutine may optionally return one value to the caller through the Rexx special variable named
result. (Rexx has only a handful of special variables and result is one of them). Of course, you can
have the subroutine send back one or more results by changing the values of variables it has access to.
We'll explore all the ways in which caller and subroutines or functions can communicate in detail in
Chapter 8, which is on subroutines and modularity. For now, we’ll just focus our discussion on the call
instruction.

Subroutines and functions are very similar in Rexx. The one difference is that a function must return a
value to the caller by its return instruction, where a subroutine may elect do so.

The following sample program illustrates the call instruction by invoking an internal routine as a sub-
routine. The subroutine is considered internal because its code resides in the same file as that of the pro-

gram that calls it. The program subroutine squares a number and returns the result.

The main program reads one input number as a command-line argument or input parameter. To run the pro-
gram and get the square of four, for example, you enter this line to specify the command-line argument:

square.rexx 4

41

Chapter 3

42

Or, you may start the program by entering a line like this:

regina square 4
Recall that the first example given earlier implicitly invokes the Rexx interpreter, while the second exam-
ple explicitly invokes it. The command-line argument follows the name of the Rexx script you want to
run. Here it’s a single value, 4, but other programs might have either many or no command-line
arguments.
The program responds to either of the above commands with:

You entered: 4 Squared it is: 16

Here’s the program code:

/* SQUARE: */
/* */
/* Squares a number by calling an internal subroutine */
arg number_in . /* retrieve the command-line argument =)

call square_the_number number_ in

say 'You entered:' number_in ' Squared it is:' result

exit 0

/* SQUARE_THE_NUMBER: * /
/* */
/* Squares the number and RETURNs it into RESULT */

square_the_number: procedure

arg the_number
return the_number * the_number

The main program or driver uses the arg instruction to read the command-line argument into variable
number_in. As with the pull and parse pull instructions, encode a period (.) at the end of this state-
ment to eliminate any extraneous input:

arg number_in . /* retrieve the command-line argument */

The call instruction names the internal routine to invoke and passes the variable number_in to that
routine as its input. The subroutine uses the arg instruction to read this parameter (exactly as the main
routine did). Here is the encoding of the call instruction. The first parameter names the subroutine or
function to run, while each subsequent parameter is an input argument sent to the subroutine. In this
case, the call instruction passes a single argument named number_in to the subroutine named
square_the_number

call square_the_number number_in

The first line of the subroutine identifies it as the routine named square_the_number. Notice that a
colon follows its name on the first line of the subroutine — this identifies a label in Rexx. An internal

Control Structures

subroutine starts with the routine’s name in the form of a label. The procedure instruction on the first
line of the subroutine ensures that only the arguments passed to the subroutine will be accessable from
within it. No other variables of the calling routine are viewable or changeable by this subroutine. Here is
the first executable line of the subroutine:

square_the_number: procedure

The subroutine reads the number passed into it from its caller by the arg instruction. Then, the subrou-
tine returns a single result through its return instruction. Here is how this line is encoded. Notice that
Rexx evaluates the expression (squaring the number) before executing the return instruction:

return the_number * the_number

The caller picks up this returned value through the special variable named result. The main routine dis-
plays the squared result to the user through this concatenated display statement:

say 'You entered:' number_in ' Squared it is:' result
This displays an output similar to this to the user:
You entered: 2 Squared it is: 4

The driver ends with the instruction exit 0. This unconditionally ends the script with a return code, or
returned value, of 0. The last statement of the internal subroutine was a return instruction. return
passes control back to the calling routine, in this case passing back the squared number. If the subroutine
is a function, a return instruction is required to pass back a value.

There is much more to say about subroutines and modular program design. We leave that discussion to
Chapter 8. For now, this simple script illustrates the structured CALL construct and how it can be used
to invoke a subroutine or function.

Another Sample Program

Here’s a program that shows how to build menus and call subroutines based on user input. This pro-
gram is a fragment of a real production program, slimmed down and simplified for clarity. The script
illustrates several instructions, including do and select. It also provides another example of how to
invoke internal subroutines.

The basic idea of the program is that it displays a menu of transaction options to the user. The user picks
which transaction to execute. The program then executes that transaction and returns to the user with
the menu. Here is how it starts. The program clears the screen and displays a menu of options to the
user that looks like this:

Select the transaction type by abbreviation:

Insert =
Update =
Delete =

Exit =

X o aH

Your choice =>

43

Chapter 3

Based on the user’s input, the program then calls the appropriate internal subroutine to perform an
Insert, Update, or Delete transaction. (In the example, these routines are “dummied out” and all each
really does is display a message that the subroutine was entered). The menu reappears until the user
finally exits by entering the menu option “x’.

Here’s the complete program:

/* MENU: =
/* */
A This program display a menu and performs updates based &
/* on the transaction the user selects. */
'cls! /* clear the screen (Windows only) */
tran_type = "'
do while tran_type \= 'X' /* do until user enters 'X' */

say

say 'Select the transation type by abbreviation:'

say

say ' Insert = I '

say ' Update = U '

say ' Delete = D '

say ' Exit = X '

say

say 'Your choice => '
pull tran_type
select
when tran_type = 'I' then
call insert_routine

when tran_type = 'U' then
call update_routine
when tran_type = 'D' then

call delete_routine
when tran_type = 'X' then do

say
say 'Bye!l'’
end

otherwise
say

say 'You entered invalid transaction type:' tran_type
say 'Press <ENTER> to reenter the transaction type.'
pull
end
end
exit 0

/* INSERT_ROUTINE goes here &
INSERT_ROUTINE: procedure

say 'Insert Routine was executed'

return 0

/* UDPATE_ROUTINE goes here */
UPDATE_ROUTINE: procedure

44

Control Structures

say 'Update Routine was executed'
return 0

/* DELETE_ROUTINE goes here w
DELETE_ROUTINE: procedure

say 'Delete Routine was executed'

return 0

The first executable line in the program is this:
'cls! /* clear the screen (Windows only) */

When the Rexx interpreter does not recognize a statement as part of the Rexx language, it assumes that it
is an operating system command and passes it to the operating system for execution. Since there is no
such command as c1s in the Rexx language, the interpreter passes the string c1s to the operating sys-
tem for execution as an operating system command.

cls is the Windows command to “clear the screen,” so what this statement does is send a command to
Windows to clear the display screen. Of course, this statement makes this program operating-system-
dependent. To run this program under Linux or Unix, this statement should contain the equivalent com-
mand to clear the screen under these operating systems, which is clear:

'clear' /* clear the screen (Linux/Unix only) */
Passing commands to the operating system (or other external environments) is an important Rexx fea-
ture. It provides a lot of power and, as you can see, is very easy to code. Chapter 14 covers this topic in

detail.

Next in the program, a series of say commands paints the menu on the user’s screen:

say

say 'Select the transation type by abbreviation:'
say

say ' Insert = I '

say ' Update = U '

say ' Delete = D '

say ' Exit = X

say

say 'Your choice => '

A say instruction with no operand just displays a blank line and can be used for vertically spacing the
output on the user’s display screen.

The script displays the menu repeatedly until the user finally enters ‘x” or ‘X’. The pull command’s
automatic translation of user input to uppercase is handy here and eliminates the need for the program-

mer to worry about the case in which the user enters a letter.

The select construct leads to a call of the proper internal routine to handle the transaction the user
selects:

45

Chapter 3

46

select
when tran_type = 'I' then
call insert_routine
when tran_type = 'U' then
call update_routine
when tran_type = 'D' then
call delete_routine

when tran_type = 'X' then do
say
say 'Bye!!
end
otherwise
say

say 'You entered invalid transaction type:' tran_type
say 'Press <ENTER> to reenter the transaction type.'
pull

end

The when clause where the user enters ‘x” or ‘X encloses its multiple instructions within a do-end pair.
The otherwise clause handles the case where the user inputs an invalid character. The final end in the
code concludes the select instruction.

Remember that the logic of the select statement is that the first condition that evaluates to TRUE is the
branch that executes. In the preceding code, this means that the program will call the proper subroutine
based on the transaction code the user enters.

Following the select instruction, the code for the main routine or driver ends with an exit 0 statement:

exit 0

This delimits the code of the main routine from that of the routines that follow it and also sends a return
code of 0 to the environment when the script ends. An exit instruction is required to separate the code
of the main routine from the subroutines or functions that follow it.

The three update routines contain no real code. Each just displays a message that it ran. This allows the
user to verify that the script is working. These subroutines cannot access any variables within the main
routine, because they have the procedure instruction, and no variables are passed into them. Each ends
with a return 0 instruction:

return 0

While this sample script is simple, it shows how to code a menu for user selection. It also illustrates call-
ing subroutines to perform tasks. This is a nice modular structure that you can expand when coding
menus with pick lists. Of course, many programs require graphical user interfaces, or GUIs. There are a
variety of free and open-source GUI interfaces available for Rexx scripting. GUI programming is an
advanced topic we’ll get to in a bit. Chapter 16 shows how to program GUIs with Rexx scripts.

Control Structures

Unstructured Control Instructions

Rexx is a great language for structured programming. It supports all the constructs required and makes
structured programming easy. But the language is powerful and flexible, and there are times when
unstructured flow of control is necessary (or at least highly convenient). Here are the unstructured
instructions that alter program flow in Rexx:

Instruction Use

do until A form of the do instruction that implements a bottom-drive loop. Unlike do-
while, do-until will always execute the code in the loop at least one time,
because the condition test occurs at the bottom of the loop.

do forever Creates an endless loop, a loop that executes forever. This requires an unstruc-
tured exit to terminate the loop. Code the unstructured exit by either the
leave, signal or exit instruction.

iterate Causes control to be passed from the current statement in the do loop to the
bottom of the loop.

leave Causes an immediate exit from a do loop to the statement following the loop.

signal Used to trap exceptions (specific program error conditions). Can also be used to

unconditionally transfer control to a specified label, similarly to the GoToO
instruction in other programming languages.

Figure 3-2 below illustrates the unstructured control constructs.

The do until and do forever are two more forms of the do instruction. do until implements a
bottom-driven loop. Such a loop always executes at least one time. In contrast, the do while checks the
condition prior to entering the loop, so the loop may or may not be executed at least once. do until is
considered unstructured and the do while is preferred. Any logic that can be encoded using do until
can be coded using do while—you just have to think for a moment to see how to change the logic into
ado while.

Let’s look at the difference between do while and do until. This code will not enter the do loop to
display the message. The do while tests the condition prior to executing the loop, so the loop never
executes. The result in this example is that the say instruction never executes and does not display the
message:

ex = 'NO'

do while ex = 'YES'
say 'Loop 1 was entered' /* This line is never displayed. */
ex = 'YES'

end

47

Chapter 3

48

The Un-Structured Control Constructs

Do-until
Do-Forever
EE—
4 o —>
A,
y
Iterate
v A,
—>
>
; }
, |
Leave
Signal
Figure 3-2

If we replace the do while loop with a do until loop, the code will execute through the loop one time,
printing the message once. This is because the condition test is applied only at the bottom of the loop. A
do until loop will always execute one time, even if the condition test on the do until is false, because
the test is not evaluated until after the loop executes one time. The result in this example is that the say
instruction executes once and displays one output line:

ex = 'NO'

do until ex = 'YES'
say 'Loop 2 was entered' /* This line is displayed one time. */
ex = 'YES'

end

do forever creates an endless loop. You must have some unstructured exit from within the loop or your
program will never stop! This example uses the 1eave instruction to exit the endless loop when j = 4.
The 1eave instruction transfers control to the statement immediately following the end that terminates
the do loop. In this example, it breaks the endless loop and transfers control to the say statement imme-
diately following the loop:

j=1
do forever
/* do some work here */
j=3+1
if j = 4 then leave /* exits the DO FOREVER loop */

Control Structures

end
say 'The above LEAVE instruction transfers control to this statement'

Another way to terminate the endless loop is to encode the exit instruction. exit ends a program
unconditionally (even if a subroutine is executing or if execution is nested inside of a do loop). Control
returns to the environment (the operating system) with the optional string encoded on the exit state-
ment passed up.

What return code you can pass to the environment or operating system using the exit instruction
depends on what that operating system accepts. Some systems accept only return codes that are numeric
digits between 0 and 127. If your script returns any other string, it is translated into a 0. Other operating
systems will accept whatever value you encode on the exit instruction.

Here’s an example. The following code snippet is the same as the previous one, which illustrates the
leave instruction, but this time when the condition j = 4 is attained, the script unconditionally exits
and returns 0 to the environment. Since the script ends, the say instruction following the do forever
loop never executes and does not display its output:

j =1
do forever

/* do some work here */

j=3+1

if j = 4 then

exit 0 /* unconditionally exits and passes '0' back to the environment */

end
say 'this line will never be displayed' /* code EXITs, never reaches this line
*/

Another instruction for the unstructured transfer of control is signal. The signal instruction acts much
like the GOTO statement of other programming languages. It transfers control directly out of any loop,
CASE structure, or if statement directly to a Rexx label. A label is simply a symbol immediately fol-
lowed by a colon. This sample code snippet is similar to that we’ve seen earlier, except that this time the
signal instruction transfers control to a program label. So, once j = 4 and the signal instruction exe-
cute, control is transferred to the program label and the say instruction displays its output line:

j =1
do forever
/* do some work here */
j=3+1
if j = 4 then
signal my_routine /* unconditionally go to the label MY_ROUTINE */
end

/* other code here gets skipped by the SIGNAL instruction */

my_routine:
say 'SIGNAL instruction was executed, MY ROUTINE entered...'

signal differs from the GOTO of some other languages in that it terminates all active control structures in
which it is encoded. You could not transfer control to another point in a loop using it, for example.

49

Chapter 3

Duplicate labels are allowed within Rexx scripts, but control will always be transferred to the one that
occurs first. We recommend that all labels in a program be unique within a program for the sake of
readability.

In an entirely different role, the signal instruction is also used to capture or “trap” errors and
special conditions. Chapter 10 discusses this in detail. This is a special mechanism within the Rexx
language designed to capture unusual error conditions or “exceptions.”

The last unstructured instruction to discuss is the iterate instruction. The iterate instruction causes
control to be passed from the current statement in the do loop to the bottom of the loop. In this example,
the iterate instruction ensures that the say instruction never executes. The if instruction’s
condition evaluates to TRUE every time that statement is encountered, so the iterate instruction
reruns the do loop and the say instruction never runs:

3 =1
do until j = 4
/* do some work here */
j=3+1
if § > 1 then iterate
say 'This line is never displayed!' /* this line will never execute */
end

Summary

This chapter summarizes Rexx’s structured and unstructured control constructs. These include the if,
do, select, call, exit, and return instructions for structured programming, and the unstructured
iterate, leave, and signal instructions. The do until and do forever forms of the do
instruction are also unstructured.

For more background on why structured programming is beneficial -- especially for larger and more
complicated programs -- refer to the works of Edward Yourdon and Edsger Dijkstra.

Use the instructions this chapter covers to direct conditional logic as in most other programming
languages. This chapter presented many small code snippets to illustrate how to use the instructions that
control program logic. Subsequent chapters will provide many more examples of the use of these
instructions. These upcoming examples demonstrate the instructions in the more realistic context of
complete programs. They will make the use of the instructions for the control of logical flow much
clearer.

Test Your Understanding

1. Why is structured programming recommended? What Rexx instructions implement
structured programming? How do subroutines and functions support the benefits of
structured programming?

2. How does Rexx determine which if instruction each else keyword pairs with?
3. Name two ways that a script can test for the end of user input.

4, What are the differences between built-in, internal, and external subroutines? What is the
difference between a function and a subroutine?

50

Control Structures

What are the values of TRUE and FALSE in Rexx?
What is the danger in coding a do forever loop? How does one address this danger?

What are the two main functions of the signal instruction? How does the signal
instruction differ from the GOTO command of many other programming languages?

What is the difference between the do-while and do-until instructions? Why use one
versus the other? Are both allowed in structured programming?

51

Arrays

Overview

Every programming language provides for arrays. Sometimes they are referred to as tables. This
basic data structure allows you to build lists of “like elements,” which can be stored, searched,
sorted, and manipulated by other basic programming operations.

You'll sometimes hear arrays referred to as compound variables or stem variables in Rexx. We’ll
explain why in just a moment.

Rexx’s implementation of arrays is powerful but easy to use. Arrays can be of any dimensionality.
They can be a one-dimensional list, where all elements in the array are of the same kind. They can
be of two dimensions, where there exist pairs of entries. In this case, elements are manipulated by
two subscripts (such as I and J). Or, arrays can be of as many dimensions as you like. While Rexx
implementations vary, the usual constraint on the size and dimensionality of array is memory. This
contrasts with other programming languages that have specific, language-related limitations on
array size.

Rexx arrays may be sparse. That is, not every array position must have a value or even be initial-
ized. There can be empty array positions, or slots, between those that do contain data elements. Or
arrays can be dense, in which consecutive array slots all contain data elements. Figure 4-1 below
pictorially shows the difference between sparse and dense arrays. Dense arrays are also sometimes
called nonsparse arrays.

Arrays may be initialized by a single assignment statement. But just like other variables, arrays are
defined by their first use. You do not have to predefine or preallocate them. Nor must you declare
a maximum size for an array. The only limitation on array size in most Rexx implementations is
imposed by the amount of machine memory.

Chapter 4

Dense versus Sparse Arrays

Element 1 <empty>
Element 2 Element 1
Element 3 <empty>
Element 4 <empty>
<empty> Element 2
A Dense Array A Sparse Array
Figure 4-1

You can refer to individual elements within a Rexx arrray by numeric subscripts, as you do in other pro-
gramming languages. Or, you can refer to array elements by variables that contain character strings.
Rexx then uses those character strings as indexes into the array. For this reason, Rexx arrays are some-
times termed content addressable. They can be used as a form of associative memory, in that they create an
association between two values. This permits innovative use of arrays in problem solving. We’ll explain
what these terms mean and why are they important in more detail later in the chapter. We’ll even give
several examples of how content addressable memory structures are useful in resolving programming
problems. For now, remember that the subscripts you encode to access individual array elements can be
either numeric or string variables.

Like many scripting languages, Rexx lacks complex data structures such as lists, trees, records, and the
like. These are unnecessary because by understanding content-addressable arrays it is easy to build
these structures. Rexx arrays provide the foundation to build any imaginable data structure. We’ll show
you how later in this chapter. First, let’s explore the basics of how to code arrays and process their data
elements.

The Basics

54

To approach the subject of arrays, let’s review the way variable names are created. The basis for Rexx
arrays are compound variable names or symbols. So far we’ve seen several kinds of symbols within Rexx:
Q Constants — Literal strings or other values that cannot be changed.

Q Simple symbols — Variable names that do not begin with a digit and do not contain any embed-
ded period(s).

Q Compound symbols — The basis for arrays. Like simple symbols, they do not begin with a digit.
However, they contain one or more periods.

Arrays

Simple symbols are synonymous with variable names, as we have known them thus far, while compound
symbols contain one or more periods. Compound symbols are the basis for arrays.

In compound symbols, the stem is the part of the name up to and including the first period. The stem is
sometimes called a stern variable. The tail comprises one or more symbols separated by periods.

Here are a few examples:

Q 1list.j—1list is the name of an array or table.
QO 1list.j—1list. is the stem of the array. Note that the stem name includes the period.

0 books.j.k—books. is the stem, j .k is the tail. j and k are two subscripts.

In these examples, Rexx substitutes in the value of the variables j and k before referencing into the
arrays. These values can be numbers, but they do not have to be. Rexx allows indexing into an array
based on any variable value you encode, whether it is numeric or a string value.

Here is a sample series of statements that refer to an array element based on a string value in a variable.
The first line below initializes all elements in an array to the null string (represented by two back-to-back
quotation marks). The second line assigns a value to a specific array element. The last two statements
show how a character string provides a subscript into the array to retrieve that data element from the
array:

fruit. = ' /* initialize all array elements to the null string */
fruit.cherry = 'Tasty!’ /* set the value of an array element */
subscript_string = cherry /* establish an index into the array */
say fruit.subscript_string /* displays: Tasty! */

It is probably worth noting that Rexx uppercases the string cherry into CHERRY in the subscript assign-
ment statement above because that character string is not enclosed in quotation marks. Rexx also upper-
cases variable names such as fruit.cherry into FRUIT . CHERRY internally. Had we coded
subscript_string = 'cherry' as the third line in the sample code, it would not work properly. The
array tail is uppercased internally by Rexx so the subscript string used for finding the data element must
also be uppercase.

What happens if you accidentally reference an array with a subscript that is not yet initialized? Recall
that in Rexx an uninitialized variable is always its own name in uppercase. So, if my_index has not yet
been assigned a value, my_array.my_index resolves to MY_ARRAY.MY_INDEX. Oops! This is probably
not what the programmer intended.

Initialize the array as a whole by referring to its stem. The dimensionality of the array does not matter to
this operation. We saw one example of initializing an entire array in one line of the sample code. Here

are some more examples:

list. =0 /* initialize all possible entries in the array LIST to 0 */
books. = '' /* initialize all possible entries in BOOKS array to null string */

55

Chapter 4

You cannot perform other kinds of operations on entire arrays by single statements —in most Rexx
implementations. For example, these statements are invalid and result in errors:

numbers. = numbers. + 5 /* add 5 to each entry in the NUMBERS array */
lista. = listb. /* move all contents of array LISTB
into the array LISTA */

To process all the elements in an array, use a do loop. This works as long as the array is indexed or sub-
scripted by numeric values, and each position, or slot, in the array contains a value. To process all the
elements in the array, you must keep track of the maximum subscript you use. There is no Rexx function
that returns the largest numeric subscript you've used for an array. Here is an example that shows how
to process all the elements of an array. In this code, each contiguous array position contains an element,
and the array subscript is numeric:

array_name. = '' /* initialize all elements to some nonoccurring value @
number_of_elements = 5 /* initialize to the number of elements in the array Y/
/* place elements into the array here */

/* This code processes all elements in the array. */
do j =1 to number_of_elements

say "Here's an array element:" array_name.j
end

Another technique for array processing is to initialize the array to zeroes for numeric values, or to the
empty string or null string for character string entries (represented by two back-to-back quotation
marks ' '). Then process the array starting at the beginning until you encounter an entry set to the ini-
tialization value. Here’s sample code that processes all elements of an array based on this approach:

array_name. = "' /* initialize all array elements to some nonoccurring value */
/* place elements into the array here */

/* This code processes all elements in the array. */
do j =1 while array name.j <> "'

say "Here's an array element:" array_name.j
end

If you take this approach, be sure that the value used for initialization never occurs in the data you place
into the array!

This approach also assumes a nonsparse, or dense, array — one in which the positions in the array have
been filled consecutively without skipping array slots or positions. For a sparse array, we recommend
storing the largest numeric subscript you use in a variable for future reference. Obviously, you cannot
simply process a sparse array until you encounter the array initialization value because some positions
within the array may not contain data items. In processing a sparse array, your code will have to be able

56

Arrays

to distinguish between array positions that contain valid values and those that do not. For this reason, it
is useful to initialize all sparse array elements to some unused default value (such as the null string or
zeroes) prior to using the array.

In many programming languages, you must be concerned with what the subscript of the first entry in a
table is. Is the first numeric subscript 0 or 1? In Rexx, the first subscript is whatever you use! So, input
the first array element into position 0 or 1 as you prefer:

array_name.0 = 'first element'
or

array_name.l = 'first element'

Just be sure that whatever choice you make you remember and that you remain consistent in your
approach. This flexibility is a handy feature of content-addressable arrays.

As an informal convention, many Rexx programmers store the number of array elements in position 0,
then start storing data elements in position 1:

array_name.
array_name.
array_name.
array_name.

=3 /* store number of elements in the array here */
= 'first element'

'second element'

'last element'

w N - o
|

Assuming that the array is not sparse and the index is numeric, process the entire array with code like this:

do j =1 to array name.0
say "Here's an array element:" array_name.jJ
end

Placing the number of array elements into position 0 in the array is not required and is strictly an infor-
mal convention to which many Rexx programmers adhere. But it’s quite a useful one, and we recom-
mend it.

A Sample Program

This sample program illustrates basic array manipulation. The program defines two arrays. One holds
book titles along with three descriptors that describe each book. The other array contains keywords that
will be matched against the three descriptors for each book.

The user starts the program and inputs a “weight” as a command line parameter. Then the program lists
all books that have a count of descriptors that match a number of keywords at least equal to the weight.
This algorithm is called weighted retrieval, and it’s often used in library searches and by online biblio-
graphic search services.

57

Chapter 4

Here’s the entire program. The main concepts to understand in reviewing it are how the two arrays are
set up and initialized at the top of the program, and how they are processed in the body. The do loops
that process array elements are similar to the ones seen previously.

/* FIND BOOKS: =
/* */
A This program illustrates basic arrays by retrieving book)
/% titles based on keyword weightings. &/
keyword. = "' /* initialize both arrays to all null strings */
title. = "'
/* the array of keywords to search for among the book descriptors */
keyword.l = 'earth' ; keyword.2 = 'computers'
keyword.3 = 'life’ ; keyword.4 = 'environment'
/* the array of book titles, each having 3 descriptors @/
title.l = 'Saving Planet Earth'

title.1.1 = 'earth’

title.1l.2 = 'environment'

title.1.3 = 'life’
title.2 = 'Computer Lifeforms'

title.2.1 = 'life’

title.2.2 = 'computers'

title.2.3 = 'intelligence'
title.3 = 'Algorithmic Insanity'

title.3.1 = 'computers'

title.3.2 = 'algorithms'

title.3.3 = 'programming'
arg weight . /* get number keyword matches required for retrieval)
say 'For weight of' weight 'retrieved titles are:' /* output header */
do j=1 while title.j <> "' /* look at each book &y

count = 0

do k=1 while keyword.k <> '' /* inspect its keywords */

do 1=1 while title.j.l <> ''
if keyword.k = title.j.l then count = count + 1
end
end

if count >= weight then /* display titles matching the criteria */

say title.j
end

58

Arrays

The program shows that you can place more than one Rexx statement on a line by separating the state-
ments with a semicolon. We use this fact to initialize the searchable keywords. Here’s an example with
two statements on one line:

keyword.1l = 'earth' ; keyword.2 = 'computers'

To implement the weighted-retrieval algorithm, the outermost do loop in the script processes each book,
one at a time. This loop uses the variable j as its subscript:

do j=1 while title.j <> "' /* look at each book x/

The do loop could have included the phrase by 1, but this is not necessary. Rexx automatically defaults
to incrementing the loop counter by 1 for each iteration. If we were to encode this same line and explic-
itly specify the increment, it would appear like this. Either approach works just fine:

do j=1 by 1 while title.j <> '!' /* look at each book */

The loop that processes each book, one at a time, is the outermost loop in the code. The next, inner loop
uses k as its control variable and processes all the keywords for one book:

do k=1 while keyword.k <> '!' /* inspect its keywords */

The innermost loop uses 1 for loop control and inspects the three descriptors for each book title. This
code totals how many of each book’s descriptors match keywords:

do 1=1 while title.j.1l <> ''
if keyword.k = title.j.l then count = count + 1
end

If the count or weight this loop totals is at least equal to that input as the command line argument, the
book matches the retrieval criteria and its title is displayed on the user’s screen.

This script is written such that the programmer does not need to keep track of how many variables any
of the arrays contain. The while keyword processes items in each do loop until a null entry (the null
string) is encountered. This technique works fine as long as these two conditions pertain:

Q The script initializes each array to the null string.

Q Each position or slot in the arrays is filled consecutively.

Its approach to array processing makes the program code independent of the number of books and key-
words it must process. This flexibility would allow the same algorithm to process input from files, for
example. So, it would be easy to eliminate the static assignment statements in this program and replace
them with variable input read in from one or more input files. You can see that the approach this script
takes to array processing provides great flexibility.

59

Chapter 4

The script demonstrates that nested array processing and simple logic can provide sophisticated
weighted retrieval by applying search terms to item descriptors. From the standpoint of Rexx arrays, it
shows how to nest array-processing do loops and terminate those loops when all items in the arrays
have been processed.

Associative Arrays

60

The sample program indexed its tables by numeric subscripts. The script processed the arrays simply by
incrementing the numeric subscripts during do loops. But Rexx also allows subscripts to be variables
that contain character strings. Let’s discuss this approach now.

Associative arrays subscript entries by character strings. You can use them to create key-value pairs. Here’s
an example. We’ve created an array of months called the month array. In initializing this array, we've
placed multiple assignment statements per line. We accomplish this by separating individual statements
by semicolons:

month.l = january ; month.2 = february ; month.3 = march ;
month.4 = april ; month.5 = may ; month.6 = june ;
month.7 = july ; month.8 = august ; month.9 = september ;
month.10 = october ; month.l1l = november ; month.12 = december ;

This array associates months with their ordinal positions in the calendar. For example, if you want to
know what the 12th month is, referencing month. 12 returns DECEMBER. We've established a group of
keys that return specific values.

Combined with the previous array, the following code returns the calendar position of any given month:

say 'Enter the calendar position of the month you want displayed...'
pull monthly position .
say 'Month number' monthly_position 'is' month.monthly position

If you enter 4, the script returns APRIL:

Enter the calendar position of the month you want displayed...
4
Month number 4 is: APRIL

Notice that the month is returned in uppercase letters. This is because the month names were not
enclosed in quotation marks when the array values were initialized. So Rexx uppercased them. To retain
lowercase alphabetics for the month names, simply enclose the initialization strings in quotation marks
(as was done in the sample program that performed the weighted-retrieval algorithm). Here’s how to
initialize data elements to retain the lowercase month names:

month.l = 'january' ; month.2 = 'february' ; month.3 = 'march' ;

Arrays

The month array in this problem represents a set of key-value pairs. A key-value pair is a simple data
structure that can be used to resolve a wide range of programming problems. Let’s take a look at a com-

plete sample script that illustrates their use.

A Sample Associative Array Program

Here’s a simple sample script that uses an associative array. It is a telephone area code lookup program.
The user enters the name of a town in the Chicago area, and the program returns the area code of that
suburb. Here’s what interaction with the script looks like:

D:\Regina\pgms>regina code_lookup.rex
For which town do you want the area code?
Chicago

The area code for CHICAGO is 312

For which town do you want the area code?
Homewood

The area code for HOMEWOOD is 708

For which town do you want the area code?
Cincinnati

Town CINCINNATI is not in my database
For which town do you want the area code?
Zion

The area code for ZION is 847

For which town do you want the area code?

<user presses <ENTER> key and leaves the program>

Here’s the program code:

/* CODE LOOKUP:

/*
A Looks up the areacode for the town the user enters.
area. = '' /* preinitialize all entries to the null string
area.Chicago = 312 F area.Wrigleyville = 773
area.Homewood = 708 8 area.Geneva = 630
area.Zion = 847 ; area.Schaumburg = 847
do while town <> ''
say 'For which town do you want the area code?'
pull town
if town <> '' then do

if area.town = ''

then say 'Town' town 'is not in my database'

else say 'The area code for' town
end
end

'is' area.town

*/
*/
*/

*/

61

Chapter 4

62

The program first initializes the entire area array to the null string by the single assignment statement.
It sets all entries in that array to the null string (represented by two back-to-back single quotation
marks ' '):

area. = "' /* preinitialize all entries to the null string */

Next, six assignment statements set the area codes for specific towns. This will be the lookup table for the
area codes. This lookup table could be considered a list of key-value pairs:

area.Chicago = 312 ; area.Wrigleyville = 773
area.Homewood = 708 ; area.Geneva = 630
area.Zion = 847 ; area.Schaumburg = 847

The program prompts the user to enter the name of a town:

say 'For which town do you want the area code?'
pull town .

If the array element area. town is equal to the null string, then this array slot was not assigned a value -
the program tells the user that the town is not in the area code database. Otherwise, area . town repre-
sents an area code value that the script reports to the user:

if area.town = ''
then say 'Town' town 'is not in my database'
else say 'The area code for' town 'is' area.town

The program reports the desired area codes until the user enters the null string to the prompt to termi-
nate interaction. The user enters the null string simply by pressing the <ENTER> key without entering
anything.

As in the previous programming example, be sure that you understand the use of case in this sample
script. The town is returned in uppercase because the tail of each array element is uppercased by Rexx.
Rexx views variable names internally as uppercased. The comparison with the town name the user types
in works properly because the pull instruction automatically translates the city name he or she enters
into all uppercase letters.

To summarize, this script shows how arrays can be subscripted by any value (not just numeric values).
This supports content-addressable or associative arrays, a data structure concept that applies to a wide
range of programming problems. Here we’ve used it to implement a simple lookup table based on key-
value pairs. Associative memory can also be applied to a wide range of more complex programming
problems. The next section discusses some of these applications.

Arrays

Creating Data Structures Based on Arrays

The Code Lookup program creates a lookup table, a simple data structure implemented as a one-
dimensional array. By a one-dimensional array we mean that the table is accessed using only a single
subscript. An array’s dimensionality is defined by the number of subscripts coded to it.

Q array_name.l—A one-dimension array
Q array_name.l.1—A two-dimension array

QO array name.l.1.1—A three-dimension array

Arrays can have any number of dimensions to create more detailed associations. This forms the basis for
creating complex data structures. Subscript strings essentially become symbolic pointers, access points
that allow you to create content-addressable data structures. Scanning a table for a value becomes
unnecessary because content-addressability provides direct access to the desired entry. Using these prin-
ciples you can create data structures such as lists, trees, records, C-language structs, and symbolic
pointer-based data structures.

In the sample program that retrieved book titles, the array named keywords is one-dimensional (it uses
just a single subscript). The data structure it represents is a list. The script implements its algorithm
through list processing.

In that script, the array named title has elements that are referred to either by one subscript (the book
title) or by two (the descriptors associated with each title). There is a hierarchical relationship — each
book has a set of descriptors. The data structure represented here is a tree. The logic that searches the
three descriptors for a specific book performs leaf-node processing.

Each root node has the same number of leaves (descriptors), so we have a balanced tree. But Rexx does not
require developers to declare in advance the number of elements an array will hold, nor that the tree be
balanced. We could have any number of descriptors per book title, and we could have any number of
leaves per tree. The algorithm in the program easily processes a variable number of array items and han-
dles data structures composed of unknown numbers of elements. The Find Books program manages a
balanced tree, or B-tree, but could as well handled an unbalancedor skewed tree.

In the sample program that retrieved area codes, towns and their area codes were associated by means
of key-value pairs. This kind of data structure is widely used, for example, in lookup tables, “direct
access” databases, and Perl programming. It forms the conceptual basis of the popular embedded open
source database Berkeley DB. Even such a simple association can underlie high-powered application
solutions.

Figure 4-2 pictorially illustrates some of the basic data structures that can easily be created by using
arrays. That Rexx supports such a wide range of data structures, without itself requiring complex syn-
tax, shows how a “simple” language can implement sophisticated processing. This is the beauty of Rexx:
power based on simplicity.

63

Chapter 4

Element 1

Element 2

Element 3

Example Data Structures Based on Arrays

Key 1 Value 1
Key 2 Value 2
Key 3 Value 3
Key 4 Value 4

A Simple List

Key-value Pairs

or Look-up Table

b.1
b.1.1
b.1.2

b.2
b.2.1
b.2.2

b.3
b.3.1
b.3.2

Balanced Tree

Figure 4-2

Summary

Rexx supports content-addressable arrays that can be of any dimensionality. These arrays can be initial-
ized as an entity by referring to the array stem. However, other kinds of whole-array manipulation
based on the stem are not permitted in standard Rexx. Array sizes do not have to be declared or defined

b.1
b.1.1

b.2
b.2.1
b.2.2
b.2.3

b.3

b.4

b.1
b.1.1
b.1.1.1
b.1.1.2
b.2
b.2.1
b.2.2
b.2.3
b.3
b.3.1
b.3.1.1
b.3.1.1.1

Un-Balanced Tree

A Multi-level Tree
(unbalanced)

prior to use, and sizes are limited only by the size of memory in most Rexx implementations.

Arrays provide a way to build the more powerful data structures that compiled languages sometimes
offer and scripting languages like Rexx “lack.” Symbolic pointers form the basis of content-addressable
data structures. Using- content-addressable arrays, you can easily build lists, trees, records, structures,
and other variable-length and variably sized data structures. Rexx simplifies the programmer’s task
because no complicated language elements are necessary to implement advanced data structures. The
syntax remains clean and simple, even while the data structures one builds become powerful and flexible.

64

Arrays

Test Your Understanding

1.

2.

How many subscripts can be applied to an array? How many dimensions may an array have?
Must array subscripts be numeric values?

What operations can you perform on a group of variables by referring to an array stem? What
operations are not permitted on a stem?

Describe two ways to process all the elements in an array. Does Rexx keep track of the number
of elements in an array?

What kinds of data structures can be defined based on arrays? Describe three and explain how
to create each.

65

Input and Output

Overview

Input/output, or I/O, is how a program interacts with its environment. Input may come from what
a user types in, an input file, or another program. Program output might be written to the display,
to an output file, or to a communication mechanism such as a pipe. These are just a few of the
possibilities.

Rexx provides a simple-to-use, high-level I/O interface. At the same time, Rexx aims for standard-
ization and portability across platforms. Unfortunately, this latter goal is difficult to achieve —1/0O
is inherently platform-dependent, because it relies upon the file systems and drivers the operating
system provides for data management. These vary by operating system.

This chapter describes the Rexx I/O model at a conceptual level. Then it explores examples and
how to code I/O. The last part of the chapter discusses some of the problems that any program-
ming language confronts when trying to standardize I/O across platforms, some of the trade-offs
involved, and how this tension has been resolved in Rexx and its many implementations.

Rexx provides an I/O model that is easy to use and as portable as possible. Section II explores the
I/0 extensions that many versions of Rexx offer for more sophisticated (but less portable) I/O.
Chapter 15 illustrates database I/O and how to interface scripts to popular database management
systems such as SQL Server, Oracle, DB2, and MySQL.

The Conceptual I/0 Model

Rexx views both input and output as streams —a sequence of characters, or bytes. The characters in
the stream have a sequence, or order. For example, when a Rexx script reads an input stream, the
characters in that stream are presented to the script in the order in which they occur in the stream.

A stream may be either transient or persistent. A transient stream could be the characters a user
enters through the keyboard. They are read; then they are gone. A persistent stream has a degree

Chapter 5

68

of permanency. Characters in a file, for example, are stored on disk until someone deletes the file con-
taining them. Files are persistent.

For persistent streams only, Rexx maintains two separate, independent positions: a read position and a
write position. The type of access to the persistent stream or file determines which of these positions make
logical sense. For example, for a file that a script reads, the read position is important. For a file that it
writes, the write position is important.

The read and write positions for any one file may be manipulated by a script independently of one
another. They might be set or altered explicitly. Normally, they are altered implicitly as the natural result
of read or write operations.

Programs can process streams in either of two modes: character by character or line by line. Rexx pro-
vides a set of functions to perform I/O in either manner. These are typically referred to as character-
oriented I/O and line-oriented I/O. Figure 5-1 summarizes these two basic I/O modes.

The Two 1/0 Modes

Character-oriented

Process one line at a time Process one character at a time
linein charin
lineout charout
lines chars
Figure 5-1

A stream is typically processed in either one of the two I/O modes or the other. However, it is possible to
intermix character- and line- oriented processing on a single stream.

Like many programming languages, Rexx recognizes the concept of standard input and standard output.
The former is the default location from which input is read, and the latter is the default location to which
output is written. These defaults are applied when no specific name is encoded in a Rexx statement as
the target for an I/O operation. Standard input is normally the keyboard, and standard output is the dis-
play screen. Standard Rexx does not include the concept of a standard error stream.

As with variables, Rexx files are defined by their first use. They are not normally predefined or
“declared.” In standard Rexx, one does not explicitly “open” files for use as in most programming lan-
guages. Files do not normally need to be closed; they are closed automatically when a script ends. For
most situations, this high level of automation makes Rexx I/O easy to use and convenient. For complex

Input and Output

programs with many files, a situation in which memory is limited, or when a file needs to be closed and
reopened, Rexx provides a way to explicitly close files.

Line-Oriented Standard 1/0

With this conceptual background on how input/output works in Rexx, we can describe standard Rexx
I/0. Let’s start with I/O that considers the stream to consist of lines, or line-oriented 1/O. Here the three
basic functions for standard line I/O:

Q linein—Reads one line from an input stream. By default this reads the line from default stan-
dard input (usually the keyboard).

0 lineout—Writes a line to an output stream. By default this writes to standard output (usually
the display screen). Returns 0 if the line was successfully written or 1 otherwise.

0 lines—Returns either 1 or the number of lines left to read in an input stream (which could be
0).

This sample script reads all lines in an input file, and writes those containing the phrase PAYMENT
OVERDUE to an output file. (A form of this simple script actually found a number of lost invoices
and saved a small construction company tens of thousands of dollars!):

/* FIND PAYMENTS: Y
/* */
/* Reads accounts lines one by one, writes overdue payments */
/* (containing the phrase PAYMENT OVERDUE) to an output file. &
parse arg filein fileout /* get 2 filenames */
do while lines(filein) > 0 /* do while a line to read */
input_line = linein(filein) /* read an input line */
if pos('PAYMENT OVERDUE', input_line) >= 1 then /* $ Due? */
call lineout fileout, input_line /* write line if $ overdue */

end

To run this program, enter the names of its two arguments (the input and output files) on the command
line:

regina find_payments.rexx invoices_in.txt lost_payments_list_out.txt
In this code, the parse arg instruction is to arg as parse pull is to pull. In other words, it performs
the exact same function as its counterpart but does not translate input to uppercase. arg and parse arg
both read input arguments, but arg automatically translates the input string to uppercase, whereas

parse arg does not. This statement reads the two input arguments without automatically translating
them to uppercase:

parse arg filein fileout /* get 2 filenames */

69

Chapter 5

70

This statement:

do while lines(filein) > 0
shows how Rexx programmers often perform a read loop. The 1ines function returns a positive number
if there are lines to read in the input file referred to. It returns 0 if there are none, so this is an easy way to

test for the end of file. The do loop, then, executes repeatedly until the end of the input file is encountered.

The next program statement reads the next input line into the variable input_1line. It reads one line or
record, however the operating system defines a line:

input_line = linein(filein) /* read an input line */
The if statement uses the string function pos, which returns the position of the given string if it exists
in the string input_line. Otherwise, it returns 0. So, if the character string PAYMENT OVERDUE occurs in

the line read in, the next line invokes the 1ineout function to write a line to the output file:

if pos('PAYMENT OVERDUE', input_line) >= 1 then /* $ Due? */
call lineout fileout, input_line /* write line if $ overdue */

There are two ways to code the 1ineout function:

call 1lineout fileout, input_line
or

feedback = lineout(fileout,input_line)
The recommended approach uses the call instruction to run the 1ineout function, which automati-
cally sets its return string in the special variable result. If the variable result is set to 0, the line was
successfully written, and if it is set to 1, a failure occurred. The sample script opts for clarity of illustra-
tion over robustness and does not check result to verify the success of the write.
The second approach codes 1ineout as a function call, which returns a result, which is then assigned to
a variable. Here we’ve assigned the function return code to the variable feedback. You'll sometimes see
programmers use the variable rc to capture the return code, because rc is the Rexx special variable that
refers to return codes:

rc = lineout(fileout, input_line)

Now, here’s something to be aware of. This coding will not work, because the return string from the
lineout function has nowhere to go:

lineout (fileout, input_line) /* Do NOT do this, it will fail! */

What happens here? Recall that the return code from a function is placed right into the code as a replace-
ment for the coding of the function. So after this function executes, it will be converted to this if successful:

0

Input and Output

A standard rule in Rexx is that whenever the interpreter encounters something that is not Rexx code
(such as instructions, expressions to resolve, or functions), Rexx passes that code to the operating system
for execution. So, Rexx passes 0 to the operating system as if it were an operating system command! This
causes an error, since 0 is not a valid operating system command.

We'll discuss this in more detail in Chapter 14, when we discuss how to issue operating system com-
mands from within Rexx scripts. For now, all you have to remember is that you should either call a
function or make sure that your code properly handles the function’s returned result.

The 1ines function works slightly differently in different Rexx implementations. It always returns 0 if
there are no more lines to read. But in some Rexx interpreters it returns 1 if there are more lines to read,
while in others it returns the actual number of lines left to read. The latter produces a more useful result
but could cause Rexx to perform heavy I/0 to determine this value.

The ANSI standard clarified this situation in 1996. Today ANSI-standard Rexx has two options:

0 lines(file_name, C) —Count. Returns the number of lines left to read.

a lines (file_name,N) — Normal. Returns 1 if there are lines left to read.

For backward compatibility, the second case is the default. A true ANSI-standard Rexx will return 1 if
you encode the 1ines function without specifying the optional parameter, and there are one or more
lines left to read in the file. However, some Rexx implementations will return the actual number of lines
left to read instead of following the ANSI specification.

Standard Rexx does not permit explicitly opening files, but how about closing them? Rexx closes files
automatically when a script ends. For most programs, this is sufficient. The exception is the case where a
program opens many files and uses an exceptional amount of memory or system resources that it needs
to free when it is done processing files. Another example is the situation in which a program needs to
close and then reopen a file. This could happen, for example, if a program needed to sequentially pro-
cess the same file twice.

How a file is closed or how its buffers are flushed is implementation-dependent. Most Rexx interpreters
close a file by encoding a 1ineout function without any parameters beyond the filename. Just perform a
write operation that writes no data:

call lineout ‘'c:\output_file' /* flushes the buffers and closes the file -
in most Rexx implementations */

The stream function is another way to close files in many implementations. stream allows you to either:
Check the state of a file
or

Issue various commands on that file

71

Chapter 5

The status check is ANSI standard, but the specific commands one can issue to control a file are left to the
choice of the various Rexx implementations. Here’s how to issue an ANSI-standard status check on a file:

status_string = stream(file_name) /* No options defaults to a STATUS check */
or
status_string = stream(file_name,'S') /* 'S' option requests return of
file STATUS */

The status values returned are those shown in the following table:

Stream Status Meaning

READY File is good for use.

NOTREADY An /0 operation attempt will fail.

ERROR File has been subjected to an invalid operation.
UNKNOWN File status is unknown.

The commands you can issue through the stream function are completely dependent on which Rexx
interpreter you use. Regina Rexx allows you to open the file for reading, writing, appending, creating, or
updating; to close or flush the file, and to get its status or other file information. Regina’s stream func-
tion also allows scripts to manually move the file pointers, as would be useful in directly accessing parts
of a file.

The file pointers may be moved in several ways. All Rexx scripts that perform input and/or output do
this implicitly, as the result of normal read and write operations. Scripts can also move the file pointers
explicitly . . . but these operations are implementation-specific. Some Rexx interpreters, such as Regina,
enable this via stream function commands, while others provide C-language-style seek and tell func-
tions that go beyond the Rexx standard. Read your Rexx’s documentation to see what your interpreter
supports. Part II goes into how specific Rexx interpreters provide this feature and offers sample scripts.

The lineout, charout, linein, and charin functions provide the most standardized way to explicitly
control file positions, but care is advised. Most scripts just perform standard read and write operations
and let Rexx itself manage the file read and write positions. Later in this chapter we discuss alternatives
for those cases where you require advanced file I/O.

Character-Oriented Standard 1/0

The previous section looked at line-oriented I/O, where Rexx reads or writes a line of data at a time.
Recall from the introduction that Rexx also supports character-oriented I/O, input and output by individ-
ual characters. Here the three basic functions for standard character I/0:

QO charin—Returns one or more characters read from an input stream. By default this reads one
character from default standard input (usually the keyboard).

72

Input and Output

Q charout — Writes zero or more characters to an output stream. By default this writes to stan-
dard output (usually the display screen). Returns 0 if all characters were successfully written.
Or, it returns the number of characters remaining after a failed write.

Q output (usually the display screen) —Returns 0 if all characters were successfully written. Or, it
returns the number of characters remaining after a failed write.

0 chars—Returns either 1 or the number of characters left to read in an input stream (which
could be 0).

This sample program demonstrates character-oriented input and output. It reads characters or bytes, one
by one, from a file. It writes them out in hexadecimal form by using the charout function. The script is a
general-purpose “character to hexadecimal” translator. Here is its code:

/* TRANSLATE CHARS: x/
7% */
/* Reads characters one by one, shows what they are in hex format */

parse arg filein fileout . /* get input & output filenames Y/
out_string = '' /* initialize output string to null */
do j=1 while chars(filein) > 0 /* do while a character to read */
out_string = ' ' c2x(charin(filein)) /* convert it to hex 2y
call charout ,out_string /* write to display @
call charout fileout,out_string /* write to a file too */
end

The script illustrates the use of the chars function to determine when the input file contains no more
data to process:

do j=1 while chars(filein) > 0 /* do while a character to read */
This character-oriented chars function is used in a manner similar to the line-oriented 1ines function

to identify the end-of-file condition. Figure 5-2 below summarizes common ways to test for the end of a
file.

Testing for End of File

Common end of file tests —
@ - The "lines" function

- The "chars" function

>

Less common end of file tests —

+ Scan for a known value
(eg, user enters a null line to the script,
\ or a value like "END" or "EXIT")
+ The "stream" function
- SIGNAL ON NOTREADY error condition trap

A

Figure 5-2

73

Chapter 5

74

The script uses the conversion function c2x to convert each input character into its hexadecimal
equivalent. This displays the byte code for these characters:

out string ="' ' c2x(charin(filein)) /* convert it to hex */

This script illustrates the charout function twice. The first time it includes a comma to replace the out-
put filename, so the character is written to the default output device (the display screen). The second
charout function includes an output filename and writes characters out to that file:

call charout ,out string /* write to display */
call charout fileout,out string /* write to a file too */

Let’s take a look at some sample output from this script. Assume that the input file to this script consists
of two lines containing this information:

linel
line2

The hexadecimal equivalent of each character in the character string 1inel is as follows:

1 i n e 1
6C 69 o6E 65 31

With this information, we can interpret the script’s output. This output appears as shown, when run
under Linux, Unix, macOS, Windows, and DOS. Linux, Unix, and macOS terminate each line with a
line feed character (x'0A"). This character is also referred to as the newline character or sometimes as
the linefeed. Windows and DOS end each line with the pair of characters for carriage return and line
feed (x'0DOA'):

Linux: 6C 69 6E 65 31 0A 6C 69 6E 65 32 O0A

Unix: 6C 69 6E 65 31 0A 6C 69 6E 65 32 O0A
Windows: 6C 69 6E 65 31 0D OA 6C 69 6E 65 32 0D OA
DOS: 6C 69 6E 65 31 OD OA 6C 69 6E 65 32 0D 0A 1A

macOS: 6C 69 6E 65 31 0A 6C 69 6E 65 32 O0A

You'll often see "linefeed" abbreviated as LF, and "carriage return” as CR. So Linux, Unix, and macOS
terminate lines with LF, while Windows uses CR LEF.

A few operating systems mark the end of the file by a special end-of-file character. This byte occurs once at
the very end of the file. DOS is an example. It writes its end-of-file character Control-Z or x'1A" at the
very end of the file.

This example shows two things. First, what Rexx calls character 1/O is really “byte-oriented” I/O. Bytes
are read one by one, regardless of their meaning to underlying operating system and how it may use
special characters in its concept of a file system. Rexx character I/O reads every byte in the file, including
the end-of-line or other special characters.

Input and Output

Second, character 1/0 yields platform-dependent results. This is because different operating systems
manage their files in different ways. Some embed special characters to denote line end, others don’t, and
the characters they use vary. Character I/O reads these special characters without interpreting their
meanings. Line-oriented I/O strips them out. If you want only to read lines of data or I/O records in
your script, use line-oriented I/O. If you need to read all the bytes in the file, use character I/O.

Character I/0O is easy to understand and to use. But it is often platform-dependent. If you're concerned
about code portability, be sure to reference the operating system manuals and code to handle all situa-
tions. Or, stick to line-oriented I/O, which is inherently more portable.

Conversational 1/0

A user interaction with a script is termed a conversation or dialogue. The interactive process is called con-
versational I/O. When writing a Rexx script that interacts with a user, one normally assumes that the user
sees program output on a display screen and enters input through the keyboard. These are the default
input and output streams for Rexx.

To output information to the user, code the say instruction. As we’ve seen, the operand on say can be
any expression (such as a list of literals and variables to concatenate). say is equivalent to this call to
lineout, except that say does not set the special variable result:

call 1lineout , [expression]
The comma indicates that the instruction targets standard output, normally the user’s display screen.

Use pull to read a string from the user and automatically translate it to uppercase, or use parse pull
to read a string without the uppercase translation. Both instructions read user input into a template, or
list of variables. Discard any unwanted input beyond the variable list by encoding a period (sometimes
referred to as the placeholder variable).

This statement reads a single input string and assigns the first three words of that string to the three
variables. If the user enters anything more than three words, Rexx discards it because we’ve encoded the
period placeholder variable at the end of the line:

parse pull dinput_1 input_2 input_3

Redirected |/0

1/ O redirection means you can write a program using conversational I/O, but then redirect the input
and/or output to other sources. Without changing your program, you could alter its input from the key-
board to an input file. The pull or parse instructions in the program would not have to be changed to
make this work. Similarly, you could redirect a script’s say instructions to write output to a file instead
of the display screen, without changing your program code.

75

Chapter 5

l/

76

Here is how to redirect I/O. Just run the script using the redirection symbols shown in this table:

Redirection Symbol Meaning

> Redirects output to a new file. Creates a new file or overwrites an
existing file if one exists with that filename.

>> Appends (adds on to) an existing file. Creates a new output file if one
does not already exist having the filename.

< Redirects input from the specified file

How’s how to invoke the Four-Letter Words program of Chapter 3 with input from a file instead of the
keyboard:

regina four_ letter words.rexx <four_letter words.input

The file four_letter_words.input consists of one word per line (so it conforms to the program’s
expectation that it will read one word in response to each prompt it gives). Here’s how to give the script
input from a file and redirect its output to a file named output. txt as well:

regina four_ letter words.rexx <four_ letter words.input >output.txt

Redirected I/O is a very powerful concept and a useful testing tool. You can write programs and change
their input source or output destination without changing the script!

But redirection is operating-system-specific. Operating systems that support redirected I/O include
those in the Linux, Unix, BSD, Windows, and DOS families.

A warning about Windows — members in the Windows family of operating systems do not handle I/O
redirection consistently. Different versions of Windows handle I/O redirection in slightly different ways.
This has long been an issue for programmers who want their programs to run across many Windows
versions. This is not a Rexx issue, but rather an inconsistency in the behavior of Windows operating sys-
tems. If you rely on redirection under Windows, you will have to test your scripts on each version of the
operating system they run on to ferret out any Windows inconsistencies.

O Issues

I/0 is operating system dependent and thus presents a difficult issue for any programming language.
The reason is the inherent tension between an I/O model that is easy to use, easy to understand, and
portable —versus the desire to take advantage of operating-system-specific features for file system
manipulation.

Rexx always promotes ease of use and portability. Fitting with this philosophy, simplicity trumps OS-
specific features and maximizing I/O performance. So, the ANSI standard Rexx I/O model is simple
and portable. It does not take advantage of OS-specific I/O features or optimize I/O by platform.

Input and Output

Standard Rexx recognizes the trade-off between I/O portability and OS-specific I/O features by includ-
ing functions such as stream and the options instruction, which are open ended and permit operands
beyond the ANSI standard. This allows Rexx interpreters to add I/O extensions within the context of the
ANSI standard that go beyond the standard to leverage OS-specific features.

The second section of the book describes the I/O extensions that different Rexx interpreters provide to
leverage OS- specific I/O features. For example, in the mainframe environment, it's not uncommon to
see all file I/O handled exclusively with the mainframe-unique EXECIO instruction. Appendix N
shows how to code and use EXECIO.

This chapter assumes the user interface to consist of a screen display and keyboard, and that disk I/O
means manipulating data residing in files. Of course, many programs require more advanced I/O and
different forms of user interfaces. Upcoming chapters cover these topics. Chapters 15 and 16, for exam-
ple, describe and illustrate both database I/O and screen I/O using various GUI packages. Chapter 17
discusses Web interfaces for Rexx scripts. Section II illustrates the I/O extensions in many Rexx inter-
preters that provide more sophisticated file processing.

Summary

This chapter provides an overview of the Rexx I/O model and how it is implemented in standard func-
tions for line- and character-oriented I/O. We discussed conversational I/O and how to redirect I/O
under operating systems that support it. Redirection is a powerful debugging tool and provides great
flexibility, because the source of input and target for output for scripts can be altered without changing the
scripts themselves. The flexibility that redirection provides is very useful during script testing and
debugging.

Two I/O related topics will be covered in upcoming chapters. The external data queue or stack is an area of
memory that can be used to support I/O operations. The second important topic is I/O error
handling. Both are covered in future chapters.

Upcoming chapters also cover I/O through interface packages, such as databases, GUI screen handlers,
Web server interfaces, and similar tools.

Test Your Understanding

1. What are the two basic kinds of standard Rexx input/output? Why would you use one
approach versus the other? Which is most portable across various operating systems?

2. What kinds of file control commands can you issue through the stream function? Do these
vary by Rexx implementation? What file statuses does the stream function return?

3. Describe the two ways in which you can invoke an I/O function like 1inein or charout. How
do you capture the return code from I/O functions? What happens if you fail to?

4. Do you need to close a file after using it? Under what conditions might this be appropriate?
How is it done?

5. If you require very powerful or sophisticated I/O, what options does Rexx offer?

77

String Manipulation

Overview

String manipulation means parsing, splicing, and pasting together character strings, sets of consecu-
tive characters. Rexx excels at string manipulation. This is important for a wider variety of reasons
than may be apparent at first. Many programming problems are readily conceived of as operations
on strings. For example, building commands to issue to the operating system is a really a string-
concatenation exercise. Analyzing the feedback from those commands once they are issued means
text analysis and pattern matching. Much of the data formatting and reporting that IT organiza-
tions perform requires string processing. Data validation and cleansing require text analysis.

In a broad sense, many programming problems are essentially exercises in “symbol manipula-
tion.” String processing is a means to achieve generic symbol manipulation.

List processing is another example. Entire programming languages (such as LISP) have been built
on the paradigm of processing lists. A list can be considered simply a group of values strung
together. Manipulating character strings thus becomes a vehicle for list processing.

The applications that these techniques underlie are endless. Everything from report writing, to
printing mailing labels, to editing documents, to creating scripts for systems administration, to
scripts that configure the environment, rely on string manipulation.

This chapter introduces Rexx’s outermost operators, functions, and pattern-matching capabilities.
We show you the features by which Rexx supports string processing so that you will combine
them in new ways to address the programming problems you face.

Concatenation and Parsing

Concatenation is the joining together of strings into larger strings. Bifurcation refers to splitting a
string into two parts. Parsing is the inspection of character strings, to analyze them, extract pieces,
or break them into components. For example, parsing a U.S. telephone number could separate it

Chapter 6

into its constituent parts —a country code, an area code, the prefix and suffix. Pattern matching is the
scanning of strings for certain patterns. Together, these operations constitute string manipulation or text
processing. Figure 6-1 summarizes the major string operations.

Basic String Operations

abc + abc — abcabc
Joins two or more strings

Splits a string

R e O

Parse Count = 2 Scans and analyzes a string, may split it into
its constituent components

abcabc

abc abc

ab Pattern Matching

Find "def" Identifies patterns in strings
Figure 6-1
We've already seen that Rexx supports three ways of concatenating strings. These are:

Q Implicit concatenation with one blank between the symbols
Q Abuttal, in which immediately adjacent symbols are concatenated without an intervening blank

Q Explicit concatenation via the concatenation operator, | |

The three styles of concatenation can be intermixed within statements. Concatenation may occur wher-
ever expressions can be coded. Here are some sample statements run in sequence:

apple='-Apple’

say ‘'Candy' || " ' || apple || ' ' || 'Rodeo'

/* displays: 'Candy -Apple Rodeo' */
say 'Candy'apple /* displays: 'Candy-Apple' */
say 'Candy' apple /* displays: 'Candy -Apple' */
say 'Candy'apple apple 'Rodeo' /* displays: 'Candy-Apple -Apple Rodeo */

80

String Manipulation

We’ve also seen several simple examples of string parsing. The arg instruction retrieves the arguments
sent in to a program or internal function and places them into a list of variables. Its general format is:

arg [template]

The template is a list of symbols separated by blanks and/or patterns. The pull instruction operates in
the same manner as arg, reading and parsing a string input by the user into a list of variables. The input
string is parsed (separated) into the variables in the list, positionally from leftmost to rightmost, as sepa-
rated by one or more spaces. The spaces delimiting the strings are stripped out, and the variables do not
contain any leading or trailing blanks.

There are two special cases to consider when a script reads and parses input by the arg or pull instruc-
tions. The first is the situation in which more arguments are passed in to the routine than the routine
expects. Look at this case:

user input: one 2 three '4'
program: pull a b ¢

a contains: ONE
b contains: 2
c contains: THREE '4°'

The last (rightmost) variable c in the variable list contains all remaining (unparsed) information. The
rule is: If you code too few input variables to hold all those that are input, the final variable in the input list con-
tains the extra information. Remember that you could just ignore this extra information by coding a
period:

program: pull a b c .
Now the variables will contain:
a contains: ONE

b contains: 2
¢ contains: THREE

The '4' is simply eliminated from the input by the placeholder variable, the period at the end of the pull
instruction input list or template.

The second situation to consider is if too few arguments are passed in to the receiving routine. Say that
the script issues a pull instruction to read input from the user. If too few elements are input by the user,
any variables in the list that cannot be assigned values are set to null:

user input: one 2
program: pull a b ¢

a contains: ONE

b contains: 2
¢ contains: '' /* ¢ 1is set to the null string */

81

Chapter 6

Variable c is set to the null string (represented by back-to-back quotation marks, ' '). This is different
from saying that the variable is uninitialized, which would mean its value is its own name in uppercase.
If the last variable were uninitialized, it would be set to ‘c’.
pull is short for the instruction:

parse upper pull [template]
The template is a list of symbols separated by blanks and/or patterns. upper means uppercase transla-
tion occurs. Its presence is optional on the parse instruction. To avoid uppercase translation, just leave
the upper keyword out of the parse instruction.
Let’s look at the parse instruction in more detail. This form of the instruction parses an expression:

parse [upper] value [expression] with [template]

The expression evaluates to some string that is parsed according to the template. The template provides
for three basic kinds of parsing;:

Q By words (character strings delimited by blanks or spaces)

0 By pattern (one character or a string other than blanks by which the expression string will be
analyzed and separated)

Q By numeric pattern (numbers that specify column starting positions for each substring within
the expression)

Figure 6-2 below illustrates these three parsing methods.

Parsing by Template

By Words |Separate| |words|

By Pattern Separate |:| using D commas
By Numeric

Pattern abc abc abc

Columns: 1 5 9
Figure 6-2

You are already familiar with parsing by words. This is where we use parse to separate a list of ele-
ments into individual components based on intervening blanks. Let’s parse an international telephone
number as an example.

82

String Manipulation

phone = '011-311-458-3758"
parse value phone with a b

This is a parse by words or blank separators. Since there are no blank separators anywhere within the
input string, the results of the parse instruction are:

a = 011-311-458-3758
b=1"" /* b is assigned the null string. */

Obviously, the dash (-) here is the separator, not the blank. Let’s try parsing by pattern, using the dash
(-) as the separator or delimiter:

parse value phone with country code '-' area_code '-' prefix '-' gsuffix
The results are:

country_code = 011
area_code = 311
prefix = 458
suffix = 3758

If there were more information in the input variable, regardless of whether or not it contained more dash
delimiters, it all would have been placed into the last variable in the list, suf £ix. If there are too few
strings in the input variable list, according to the parsing delimiter, then extra variables in the variable
list are assigned null string(s).

The pattern can be supplied in a variable. This yields greater programmability and flexibility. In this case,
enclose it in parentheses when specifying it in the template:

sep = '-' /* the dash will be the delimiter ... */
parse value phone with country_code (sep) area_code (sep) prefix (sep) suffix

This parse instruction gives the same results as the previous one with the hardcoded delimiter dashes.
The advantage to placing the separator pattern in a variable is that we can now parse a different, inter-
national designation for this phone number using the same parse instruction, just by changing the sepa-
rator inside the pattern variable:

phone = '011.311.458.3758"

sep = '.' /* The period is the Swiss delimiter for phone numbers ... */
parse value phone with country_code (sep) area_code (sep) prefix (sep) suffix

The same parse instruction properly separates the constituent pieces of the phone number with this
different delimiter. So, supplying the separator pattern in a variable gives scripts flexibility in parsing
operations.

Now parse by numbers. These represent column positions in the input. Run:

phone = '011-311-458-3758"
parse value phone with country code 5 area_code 9 prefix 13 suffix

83

Chapter 6

84

Here are the results from this statement:

country_code = 011-
area_code = 311-
prefix = 458-
suffix = 3758

Oops! You can see that parsing by numbers goes strictly by column positions. Delimiters don’t count.
Add these extra columns positions to eliminate the unwanted separators:

parse value phone with country code 4 5 area_code 8 9 prefix 12 13 suffix
This gives the intended results because it parses out the unwanted separators by column positions:

country_code = 011
area_code = 311
prefix = 458
suffix = 3758

These are absolute column positions. Each refers to an absolute column position, counting from the
beginning of the string.

Placing a plus (+) or minus (-) sign before any number makes its position relative to the previously
specified number in the list (or 1 for the first number). You can mix absolute and relative positions
together in the same template, and even use negative numbers (which move the relative position back-
wards to the left) but be careful. Unless you have a situation that really requires it, jamming all the pars-
ing into one complex statement is rarely worth it. Just code a series of two or three simpler statements
instead. Then others will be able to read and understand your code.

This example properly parses the phone number with both absolute and relative column numbers. The
plus signs (+) indicate relative numbers. In this case, each advances the column position one character
beyond the previous absolute column indicator:

parse value phone with country code 4 +1 area_code 8 +1 prefix 12 +1 suffix
This statement produces the desired result:

country_code = 011

area_code = 311

prefix = 458

suffix = 3758
With this background, you can see that the parse instruction provides real string-processing power.
This example assigns the entire telephone number in the variable phone to three new variables (kind of

like a three-part assignment statement):

parse value phone with phone_1 1 phone_ 2 1 phone_3

String Manipulation

Now the variables phone_1, phone_2, and phone_3 all contain the same value as phone:
phone = '011.311.458.3758"
phone_1 '011.311.458.3758"

phone_2 '011.311.458.3758"
phone_3 = '011.311.458.3758"

In all the examples thus far, the input string was not changed. But it can be if encoded as part of the vari-
able list. Here’s an example. Say that we have this variable:

employee_name = 'Deanna Troy'

This statement simply translates the employee’s name into uppercase and places it back into the same
variable:

parse upper value employee_name with employee_name

This statement strips off the employee’s first name and places it into the variable first_name. Then it
puts the remainder of the name back into the employee_name variable:

parse value employee_name with first_name employee_name

The value keyword refers to any expression. You may also see the keyword var encoded when refer-
ring specifically to a variable. In this case, you should not code the with keyword. This statement using
var gives the exact same results as the previous example with value and with:

parse var employee_name first_name employee_name

A Sample Program

With this introduction to parsing, here’s a sample program to illustrate parsing techniques. This script
preprocesses the “load file” used to load data into a relational database such as DB2, Oracle, SQL Server,
or MySQL. The script performs some simple data verification on the input file prior to loading that data
into the database. This “data-cleansing” script ensures the data we load into the database is clean before
we run the database load utility. A script like this is useful because the data cleansing that database utili-
ties typically perform is limited.

Here’s how the data will look after it’s loaded into the relational table:

EMP_NO FNAME LNAME DEPT_NO
10001 George Bakartt 307
10002 Bill Wall 204
10003 Beverly Crusher 305

85

Chapter 6

Databases like DB2, Oracle, and SQL Server accept input data in several different file formats. Two of the
most popular are comma-delimited files and record-oriented or column-position files. Here’s an example of a
comma-delimited file:

10001, "George", "Bakartt", "307"
10002, "Bill", "wWwall", "204"
10003, "Beverly", "Crusher", "305"
1x004, "joe", "Zip", "305"

10005, "Sue", "stans", "3x5"

Commas separate the four input fields. In this example, all character strings are enclosed in double quo-
tation marks. Under operating systems that employ a file type, the file type for comma-delimited ASCII
files is typically *.del. This input file is named database_input.del.

Here is the other kind of file, a record file. Data fields start in specific columns. Fields are padded with
blanks, as necessary, so that the next field starts in its required column. Where file types are used this file
is typically of extension * . asc, so we’ve named this file database_input.asc:

10001George Bakartt307
10002Bill Wall 204
10003BeverlyCrusher305
1x004joe Zip 305
10005Sue stans 3x5

The program reads either of these two input file types. It determines which kind of file it is processing
by scanning the input text for commas. If the data contains commas, the program assumes it is dealing
with a comma-delimited ASCII file.

Then the program performs some simple data verification. It ensures that the EMP_NO and DEPT_NO data
items are numeric, and that the first and last names both begin with capital letters. The script writes any
errors it finds to the display. Here’s the program:

/* DATABASE INPUT VERIFICATION:)
/* */
/& Determines type of database input file (*.del or *.asc).)
A Reads the input data as appropriate to that file type. &
7= Verifies EMP_NO and DEPT_NO are numeric, names are cap alpha. */
arg input_file . /* read input filename from user */
c="," /* variable C contains one comma &

do while lines (input_file) > 0

input_line = linein(input_file) /* read a line from input file 5 /)
/* get EMP_NO, FNAME, LNAME, DEPT_NO from *.DEL or *.ASC file &
if pos(c,input_line) > 0 then do /* File is delimited ASCII. */
parse value input_line with emp_no (c) fname (c) lname (c) dept_no
fname = strip(fname,B,'""')
Iname = strip(lname,B,'""') /* remove quote " marks =/
dept_no = strip(dept_no,,'"")

end

86

String Manipulation

else do
parse value input_line with emp_no 6 fname 13 lname 20 dept_no
fname = strip (fname)
Iname = strip(lname) /* remove trailing blanks */
end

say 'Input line:' emp_no fname lname dept_no
/* Ensure EMP_NO & DEPT_NO are numeric */

if datatype(emp_no) \= 'NUM' | datatype(dept_no) \= 'NUM' then
say 'EMP_NO or DEPT_NO are not numeric:' emp_no dept_no

/* Ensure the two names start with a capital letter */

if verify(substr(fname,1,1), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ') > 0 then
say "First name doesn't start with a capital letter:" fname

if verify(substr(lname,1,1), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ') > 0 then
say "Last name doesn't start with a capital letter:" lname

end

So that we can easily feed it either kind of file to process, the script accepts the filename as an input
parameter. This technique of reading the name of the file to process from the command line is common.
It offers more flexibility than “hardcoding” the filename into the script.

To start off, the script reads the first line of input data and determines whether it is processing a
comma-delimited input file or a record-oriented file by this code:

if pos(c,input_line) > 0 then do /* file is delimited ascii */

The pos built-in function returns the character position of the comma (represented by the variable c)
within the target string. If the returned value is greater than 0, a comma is present in the input line, and
the program assumes that it is dealing with comma-delimited input. If the script finds no comma in the
input line, it assumes that it is dealing with a record-oriented input file.

If the program determines that it is working with a comma-delimited input file, it issues this parse
instruction to split the four fields from the input line into their respective variables:

parse value input_line with emp_no (c) fname (c) lname (c) dept_no
This parse statement strips data elements out of the input string according to comma delimiters. But there
is a problem. The second, third, and fourth data elements were enclosed in double quotation marks in the
input file. To remove these leading and trailing quotation marks, we use the built-in strip function:

fname = strip(fname,B,'""')

lname = strip(lname,B,'"") /* remove quote " marks */

dept_no = strip(dept_no,,'"")

The B operand stands for Both — strip out both leading and trailing double quotation marks. Other
strip function options are L for leading only and T for trailing only. Both is the default, so as the third

87

Chapter 6

88

line in the previous example shows, we don’t need to explicitly code it. Instead, we just show that
parameter is missing by coding two commas back-to-back. The final parameter in the strip function
encloses the character to remove within quotation marks. Here we enclosed the double quotation marks
(") within two single quotation marks, so that strip will remove double quotation marks from the
variable’s contents.

If the script does not find a comma in the input line, it assumes that it is dealing with a file whose data
elements are located starting in specific columns. So, the script employs a parse by number statement,
where the numbers specify column starting positions:

parse value input_line with emp_no 6 fname 13 lname 20 dept_no

If you program in languages like COBOL or Pascal, you might recognize this as what is often referred to
as record I/O. Languages like C, C++, and C# call this an I/O structure, or struct. Chapter 5 showed that
Rexx’s stream I/O model is simple, yet you can see that it is powerful enough to easily perform record
I/0 by parsing the input in this manner. Part of the beauty of Rexx is that it is so easy to perform such
operations, without needing special syntax or hard-to-code features in the language to accomplish them.

After the parsing by number, the record input may contain trailing blanks for the two names, so these
statements remove them:

fname
Iname

strip(fname)
strip(lname) /* remove trailing blanks */

Now that it has decoded the file and normalized the data elements, the program can get to work and
verify the data contents. This statement uses the datatype built-in function to verify that the EMP_NO
and DEPT_NO fields (the first and last data elements in each input record) are numeric. If datatype does
not return the character string NUM, then one of these fields is not numeric and an error message is
displayed:

if datatype(emp_no) \= 'NUM' | datatype(dept_no) \= 'NUM' then
say 'EMP_NO or DEPT_NO are not numeric:' emp_no dept_no

The logical or (|)is used to test both data elements in one if instruction. If either is not numeric,
the error message is displayed.

Finally, the script uses the veri fy built-in function to ensure that the two names both start with a capital
letter. First, this nested use of the substr built-in function returns the first letter of the name:

substr (fname, 1,1)

Then the verify function tests this letter to ensure that it's a member of the string consisting of all capi-
tal letters:

if verify(substr(fname,1,1), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ') > 0 then
say "First name doesn't start with a capital letter:" fname

The nesting of the substr function means that we have coded one function (substr) within another
(verify). Rexx resolves the innermost function first. The result of the innermost function is then
plunked right into the code at the position formerly occupied by that function. So, the substr function

String Manipulation

returns the first letter of the variable £fname, which then becomes the first parameter within the paren-
theses for the verify function.

Pretty nifty, eh? Rexx allows you to nest functions to an arbitrary depth. We do not recommend nesting
beyond a single level or else the code can become too complicated. We’ll provide an example of deeper
nesting (and how it becomes complicated!) later in this chapter.

It’s easy to code for intermediate results by breaking up the nesting into two (or more) statements. This
example shows how to eliminate the nested function to simplify the code. It produces the exact same
result as our nested example:

first_letter = substr(fname,1,1)
if verify(first_letter, 'ABCDEFGHIJKLMNOPQRSTUVWXYZ') > 0 then

After the script runs, here is its output for the sample data we viewed earlier:

D:\Regina\hf>regina database_input.rexx database_input.asc
Input line: 10001 George Baklarz 307

Input line: 10002 Bill Wong 304

Input line: 10003 Beverly Crusher 305

Input line: 1x004 joe Zip 305

EMP_NO or DEPT NO are not numeric: 1x004 305

First name doesn't start with a capital letter: joe

Input line: 10005 Sue stans 3x5

EMP_NO or DEPT NO are not numeric: 10005 3x5

Last name doesn't start with a capital letter: stans

The last two lines of the input data contained several errors. Parsing techniques and string functions
together enabled the program to identify these errors.

String Functions

The parse instruction provides syntactically simple, but operationally sophisticated parsing. You can
resolve many string-processing problems with it. Rexx also includes over 30 string-manipulation func-
tions, a few of which the sample script above illustrates.

This section describes more of the string functions. A later section in this chapter discusses the eight out-
ermost functions that are word-oriented. The word-oriented functions process strings on the basis of words,
where a word is defined as a character string delimited by blanks or spaces. For example, this string con-
sists of a list of 16 words:

now is the time for all good men to come to the aid of their country

Before we proceed, here is a quick summary of Rexx’s string functions (see Appendix C for full coding
details of these and all other Rexx functions):

O abbrev—Tells if one string is equal to the first characters of another

0 center —Centers a string within blanks or other pad characters

89

Chapter 6

changestr — Changes all occurrences of one string within another to a specified string
compare — Tells if two strings are equal (like using the = operator)

copies —Returns a string concatenated to itself n times

countstr —Counts how many times one string appears within another

datatype — Verifies string contents based on a variety of “data type” tests

delstr —Deletes a substring from within a string

insert —Inserts one string into another

lastpos — Returns the last occurrence of one string within another

left —Returns the first n characters of a string, or it can left-justify a string
length—Returns the length of a string

overlay —Overlays one string onto another starting at a specified position in the target
pos —Returns the position of one string within another

reverse — Reverses the characters of a string

right —Returns the last n characters of a string, or it can right-justify a string
strip—Strips leading and/or trailing blanks (or other characters) from a string

substr —Returns a substring from within a string

I 0 0 T I I T T I I N

translate —Transforms characters of a string to another set of characters,
as directed by two “translation strings”

o

verify—verifies that all characters in a string are part of some defined set

QO xrange—Returns a string of all valid character encodings

The changestr and countstr functions were added by the ANSI-1996 standard. Rexx implementations
that meet the TRL-2 standard of 1990 but not the ANSI-1996 standard may not have these two functions.

This is one of the few differences between the TRL-2 and ANSI-1996 standards (which are fully enumer-

ated in Chapter 13). Regina Rexx fully meets the ANSI-1996 standard and includes these two functions.

Here’s a simple program that demonstrates the use of the abbrev, datatype, length, pos, translate,
and veri fy string functions. The script reads in four command-line arguments and applies data verifi-
cation tests to them. The script displays any inaccurate parameters.

/* VERIFY ARGUMENTS: */
/* */
/% This program verifies 4 input arguments by several criteria. */
parse arg first second third fourth . /* get the arguments)
/* First parm must be a valid abbreviation for TESTSTRING */
if abbrev('TESTSTRING', first,4) = 0 then

90

String Manipulation

say 'First parm must be a valid abbreviation for TESTSTRING:' first
/* Second parm must consist only of digits and be under 5 bytes long */
if datatype(second) \= 'NUM' then

say 'Second parm must be numeric:' second
if length(second) > 4 then

say 'Second parm must be under 5 bytes in length:' second

/* Third parm must occur as a substring somewhere in the first parm */

if pos(third, first) = 0 then
say 'Third parm must occur within the first:' third first

/* Fourth parm translated to uppercase must contain only letters ABC */

if fourth = '' then
say 'You must enter a fourth parameter, none was entered'
uppercase = translate(fourth) /* translate 4th parm to uppercase */

if verify (uppercase, 'ABC') > 0 then
say 'Fourth parm in uppercase contains letters other than ABC:' fourth

Here’s an example of running this program with parameters it considers correct:
c:\Regina\pgms> regina verify_ arguments TEST 1234 TEST abc
Here’s an example where incorrect parameters were input:

c:\Regina\pgms>regina verify_arguments TEXT 12345 TEST abcdef
First parm must be a valid abbreviation for TESTSTRING: TEXT
Second parm must be under 5 bytes in length: 12345

Third parm must occur within the first: TEST TEXT

Fourth parm in uppercase contains letters other than ABC: abcdef

Let’s discuss the string functions this code illustrates.

The first parameter must be a valid abbreviation for a longer term. Where would you use this function?
An example would be a program that processes the commands that a user enters on a command line.
The system must determine that the abbreviation entered is both valid and that it uniquely specifies
which command is intended. The abbrev function allows you to specify how many characters the user
must enter that match the beginning of the target string. Here, the user must enter at least the four letters
TEST for a valid match:

if abbrev('TESTSTRING', first,4) = 0 then
say 'First parm must be a valid abbreviation for TESTSTRING:' first

The second parameter the user enters must be numeric (it must be a valid Rexx number). The datatype
function returns the string NUM if this is the case, otherwise it returns the string CHAR:

if datatype(second) \= 'NUM' then
say 'Second parm must be numeric:' second

921

Chapter 6

datatype can also be used to check for many other conditions, for example, if a string is alphanumeric,
binary, lowercase, mixed case, uppercase, a whole number, a hexadecimal number, or a valid symbol.

Using the 1ength function allows the program to determine if the second parameter contains more than
four characters:

if length(second) > 4 then
say 'Second parm must be under 5 bytes in length:' second

The third parameter must be a substring of the first parameter. The pos function returns the starting posi-
tion of a substring within a string. If the substring does not occur within the target string, it returns 0:

if pos(third, first) = 0 then
say 'Third parm must occur within the first:' third first

This code ensures that the user entered a fourth parameter. If a fourth parameter was not entered, the
argument will have been set to the null string (represented by the two immediately adjacent single quo-
tation marks):

if fourth = '' then
say 'You must enter a fourth parameter, none was entered'’

Finally, when translated to uppercase, the fourth parameter must not contain any letters other than 2, B, or
C. Using the translate function with a single parameter translates the fourth argument to uppercase:

uppercase = translate(fourth) /* translate 4th parm to uppercase */

Use the verify function to ensure that all characters in a string are members of some set of characters.
This verify statement ensures that all the characters in the string named uppercase are members of its
second parameter, hardcoded here as the literal string ABC. If this is not the case, the verify function
returns the position of the first character violating the rule:

if verify(uppercase, 'ABC') > 0 then
say 'Fourth parm in uppercase contains letters other than ABC:' fourth

The Rexx string functions are pretty straightforward. This script shows how easy it is to use them to per-
form data verification and for basic string processing.

The Word-Oriented Functions

92

A word is a group of printable characters surrounded by blanks or spaces. A word is a blank-delimited
string. Rexx offers a group of word-oriented functions:

QO delword— Deletes the nth word(s) from a string

0O space—Formats words in a string such that they are separated by one or more occurrences of a
specified pad character

String Manipulation

subword — Returns a phrase (substring) of a string that starts with the nth word
word— Returns the nth word in a string

wordindex — Returns the character position of the nth word in a string
wordlength —Returns the length of the nth word in a string

wordpos — Returns the word position of the first word of a phrase (substring) within a string

U 00 uUJuou o

words — Returns the number of words in a string

These functions can be coupled with the outermost functions to address any number of programming
problems in which symbols are considered as strings of words. One such area is textual analysis or natural
language processing. An example of a classic text analysis problem is to confirm the identity of the great
English playwright Shakespeare. Were all his works written by one person? Could they have been writ-
ten by one his better-known contemporaries?

One way to answer these questions is to analyze Shakespeare’s works and look for word-usage patterns.
Humans tend to use words in consistent ways. (Some experts claim they can analyze word usage to the
degree that individuals’ linguistic profiles are unique as their fingerprints). Analyzing Shakespeare’s texts
and comparing them to those of contemporaries indicates whether Shakespeare’s works were actually
written by him or someone else.

Special-purpose languages such as SNOBOL are particularly adept at natural language processing. But
SNOBOL is premodern; it lacks good control constructs and robust I/O. Better to use a more main-
stream, portable, general-purpose language like Rexx that offers strong string manipulation in the con-
text of good structure.

Text analysis is a complex topic outside the scope of this book. But we can present a simple program that
suggests how Rexx can be applied to textual analysis. The script named Poetry Scanner reads modern
poetry and counts the number of articles and prepositions in the input. It produces a primitive form of
“sophistication rating” or lexical density. In our example, this rating comprises two ratios: the ratio of the
number of longer words to the number of shorter words, and the ratio of prepositional words to the total
number of words in the text.

To perform these operations, the script translates the input text to all uppercase and removes punctua-
tion, because punctuation represents extraneous characters that are irrelevant to the analysis.

For this input poem:

"The night was the darkest,
for the byrds of love were flying. And lo!
I saw them with the eyes of the eagle.
above

the cows flew in the cloud pasture.
below

the earthworms were multiplying ...
god grant that they all find their ways home."

93

Chapter 6

... the program produces this output:

THE NIGHT WAS THE DARKEST

FOR THE BYRDS OF LOVE WERE FLYING AND LO

I SAW THEM WITH THE EYES OF THE EAGLE

ABOVE

THE COWS FLEW IN THE CLOUD PASTURE

BELOW

THE EARTHWORMS WERE MULTIPLYING

GOD GRANT THAT THEY ALL FIND THEIR WAYS HOME

Ratio long/short words: 0.40625
Number of articles: 8

Number of prepositions: 5

Ratio of preps/total words: 0.111111111

Press ENTER key to exit...

Here is the program:

/* POETRY SCANNER: */
/* */
VA This program scans text to perform primitive text analysis. ¥

list_of_articles = 'A AN THE'
list_of_preps 'AT BY FOR FROM IN OF TO WITH'

big_words =0 ; small_words = 0
number_articles = 0 9 number_preps = 0
do while lines('poetry.txt') > 0
line_str = linein('poetry.txt') /* read a line of poetry ¥
line_str = translate(line_str) /* translate to uppercase x/
line_str = translate(line_str,' Y,t., ;") /% remove punc. ¥/
call lineout ,space(line_str) /* display converted input line */
do j=1 to words(line_str) /* do while a word to process &/
if wordlength(line_str,j) >= 5 then
big words = big words + 1 /* count big words */
else
small _words = small_words + 1 /* count small words */
word_to_analyze = word(line_str, Jj) /* get the word */

if wordpos (word_to_analyze,list_of_articles) > 0 then
number_articles = number_ articles + 1 /* count the articles*/
if wordpos (word_to_analyze,list_of_preps) > 0 then

number_preps = number_preps + 1 /* count prep phrases*/
end
end
say
say 'Ratio long/short words: ' (big words/small_ words)
say 'Number of articles: ' number_articles
say 'Number of prepositions:' number_preps
say 'Ratio of preps/total words:' (number_preps/(big_words+small_words))

94

String Manipulation

The program demonstrates several of the word-oriented functions, including words, word, wordlength,
and wordpos. It also uses the translate function in two different contexts.

After it reads a line of input, the program shows how the translate function can be used with only the
input string as a parameter to translate the contents of the string to all uppercase letters:

line_str = translate(line_str) /* translate to uppercase */
Then translate is used again, this time to replace various punctuation characters with blanks. In this
call, the third parameter to translate contains the characters to translate, and the second parameter
tells what characters to translate them to. This example translates a various punctuation characters into
blanks:

line_str = translate(line_str,"' L | /* remove punc. */

The do loop processes the individual words in each input line. It executes while there is a word to pro-
cess in the current input line:

do j=1 to words(line_str) /* do while a word to process */
The words function returns the number of blank-delimited words in the input line, 1ine_str.

The wordlength function tells the length of the word. The script uses it to determine whether the word
is longer than 4 bytes:

if wordlength(line_str,j) >= 5 then
big words = big words + 1 /* count big words */

The script needs to get an individual word in order to determine if that word is an article or preposition.
To parse out one word from the input string, the script invokes the word function:

word_to_analyze = word(line_str, Jj) /* get the word */
To identify articles in the text, the program initializes a string containing the articles:
list_of_articles = 'A AN THE'
Then it uses the wordpos function to see if the word being inspected occurs in this list of articles. word-
pos returns the starting position of the word in a string if it occurs in the string. If it returns 0, we know

that the word is not an article:

if wordpos (word_to_analyze,list_of_articles) > 0 then
number_articles = number_articles + 1 /* count the articles*/

What this line of code really does is list processing. It determines if a given element occurs in a list. String
processing is easily used to emulate other kinds of processing techniques and various data structures,
such as the list. As mentioned in the chapter introduction, string manipulation is powerful because it is a
generic tool that can easily be used to implement other processing paradigms.

95

Chapter 6

The program ends with several say instructions that show how output can be dynamically concatenated
from the results of expressions. The last line of the program calculates a ratio and displays it with an
appropriate label:
say 'Ratio of preps/total words:' (number_preps/(big_words+small_words))
Rexx evaluates the expression in parentheses prior to executing the say instruction and displaying the
output line. Remember that in evaluating expressions, Rexx always works from the innermost set of
parentheses on out. The script uses the parentheses to ensure that this expression is resolved first:
(big_words+small_words)
The result of this expression feeds into the division:
(number_preps/ (big_words+small_words))
To summarize, this simple program illustrates a number of the word and string functions. More impor-

tantly, it demonstrates that these features can be combined to create powerful string-processing scripts.
Rexx offers excellent string-processing facilities.

The Bit String Functions and Conversions

96

The TRL-2 standard added support for bit strings, strings that represent binary values. Bit strings are
composed solely of Os and 1s. They are represented as a string of 0s and 1s immediately followed by the
letter b or B:

'11110000'b /* represents one character (or "byte") as a bit string */
This encoding parallels that used to represent hexadecimal (or hex) strings. Hex is the base-16 arithmetic sys-
tem by which computer bits are represented. Each character or byte is represented by two hex digits. Hex
strings are composed of the digits 0 thru 9 and letters A thru F, immediately followed by the letter x or x:

"0DOA'x /* the two byte end-of-line indicator in Windows and DOS */
Binary strings find several uses. For example, use them to specify characters explicitly, bit by bit. This
helps you store and manipulate unprintable characters, for example. The relationship of bit strings to
characters is described by the table called a character map. Sometimes this is referred to as the character
encoding scheme.
Want to see your system’s entire character map? Just enter the xrange function:

say xrange() /* displays the character map */

Or display some portion of the character map by specifying a range of starting and ending points. The

range can be expressed in binary, hex, or character. You'll see the entire map, just as shown earlier, if you
enter the entire range of the map explicitly:

String Manipulation

say xrange('00'x, 'FF'x) /* displays the character map */

This statement also displays the entire character range:
say xrange('00000000'b, '11111111'b) /* displays the character map */

Display the same character map in hex (base-16) by using the c2x (character-to-hex) conversion function:
say c2x(xrange()) /* displays the character map in hex */

Want to see it as a bit string? You’'ll have to do two conversions: character to hex, then hex to binary. Nest
the character-to-hex (c2x) function within the hex-to-binary (x2b) function to do this. Remember, Rexx
always evaluates the expression nested in the innermost parentheses first and works its way outward
from there. In this example, Rexx first performs the xrange function; then it executes c2x, and finally it
runs x2b, giving us the binary map in the end:

say x2b(c2x(xrange())) /* displays the character map in binary */

Bit strings have many applications. For example, database management systems manipulate bit map
indexes to provide quick access to data having a low variety of possible values (low cardinality) by
ANDing bit strings representing the data values. Another use for bit strings is in the technique called key
folding. This develops a key for direct (random) data access based on character string key fields. A logical
or bit operation is applied to the character field(s) to develop a key that is evenly distributed across
direct access slots or positions in the database or on disk. A similar technique called character folding is
used to map similar characters to a common target, for example, to eliminate certain distinctions
between strings. This would be useful when you want similar strings to be compared as equal.

Rexx provides three binary string functions that perform logical operations on binary strings:

0 bitand—Returns the string result of two strings logically AND’d together, bit by bit

Q bitor —Returns the string result of two strings logically OR’d together, bit by bit

0 bitxor —Returns the string result of two strings logically EXCLUSIVE OR’d, bit by bit
Here are examples that apply these binary operations on bit strings. The binary string functions return
their results in the form of a character string (comprising one character, since 8 bits make a character and

the input strings we supply are one character long). Therefore, we use the character-to-hex (c2x) and
hex-to-binary (x2b) functions to interpret the result back to a displayable bit string:

say x2b(c2x(bitand('11110000'b,'11001100'b))) /* displays: 11000000 */
say x2b(c2x(bitor('11110000'b,'11001100'b))) /* displays: 11111100 */
say x2b(c2x(bitxor('11110000'b,'11001100'b))) /* displays: 00111100 */

The bitand operation sets bits to TRUE (1) in the result, only if they are TRUE in both strings. bitor sets
bits to TRUE (1) if they are TRUE in either string. The bitxor function sets bits to TRUE only if they are
TRUE in exactly one input string or the other.

The next chapter covers data conversions in further detail and includes an sample program that demon-

strates folding a two-part character key. It illustrates the bitand function and the c2x (character-to-
hexadecimal) and x2b (hexadecimal-to-binary) conversion functions.

97

Chapter 6

Summary

This chapter introduces string processing. It describes the basic techniques for concatenation and pars-
ing in Rexx and lists the many built-in functions for string and word processing. The sample programs
demonstrate some of these techniques and functions.

The techniques we explored included concatenation, or the joining together of strings, and parsing, the
analysis and splitting of strings into their constituent substrings. We looked at a sample script that per-
formed input data validation and saw how string analysis and parsing applied to this problem. Then we
looked at string functions, including those that analyze words, or discrete groups of letters surrounded
by spaces or blanks. Finally, we discussed bit strings. These can be used in a wide variety of applications,
such as database bit indexes and key folding. We discussed the major bit manipulation functions and
how bit strings are converted to and from other forms by using conversion functions.

Chapter 8 illustrates more string manipulation. It includes a script that can tell whether parentheses are
balanced (for example, as they might be coded within a Rexx statement). There is also a function called

Reverse, which reverses the characters in an input string, just like the Rexx built-in reverse function.

This new Reverse script does its work in an interesting way — it calls itself as its own subroutine. Stay
tuned!

Test Your Understanding

What is string processing, and why are outermost features important in a scripting language?
What are the three methods of string concatenation? How is each different?

What are the three methods of parsing with the parse instruction, and how does each operate?

A

Which built-in function would you use for each of the following tasks:
Checking that all characters in one string occur as members in another
Verifying the data type of a user-input data item

Finding the position of a substring with a string

Removing all occurrences of a specified character from a string

Right- and left- justifying a string for printing in a report

U 0O 0O 0 0 O

Removing leading and/or trailing pad characters from a string
5. What is the difference between the wordindex and wordpos functions?

6. How are printable characters, hex characters, and bit strings related? What are some of the con-
version functions used to convert values between them?

7. What are some of the uses of bit strings in applications?

98

Numbers, Calculations, and
Conversions

Overview

The second chapter gives the barest definition of what numbers are and how they are used. Rexx is
designed to handle arithmetic in as natural as manner as possible. It conforms to the basic rules of
computation that people absorb in high school or college. For most programs, you'll need no spe-
cial knowledge of how Rexx handles numbers. Rely on its automatic numeric conversions and
rounding, and your scripts will work just fine.

Rexx differs from languages that place the burden of cross-system consistency on the developer.
Its language definition ensures that calculations provide the same outputs, regardless of language implemen-
tation or the platform on which it is run.

Rexx achieves this cross-platform consistency by employing decimal arithmetic internally. This
contrasts with the floating-point or binary arithmetic used by most other programming languages,
which produce calculation results that can vary by platform. Rexx’s natural or human-oriented
approach to computation is part of its appeal as an easy-to-use, portable scripting language.

Even with this high level of automation, there will be situations where you require some knowl-
edge of how Rexx handles calculations and how you can affect them. This chapter probes a little
more deeply so that you'll be able to handle these situations appropriately. More specifically, we'll
look at the ways in which you can express numeric values within scripts. We'll discuss the
numeric functions for manipulating numbers, as well as the conversion functions that transpose
numbers to other forms. We’ll also look at how to manage precision in calculations, and ways to
print or display numbers in the appropriately. The last part of the chapter focuses on the conver-
sion functions that convert between numbers, character strings, bit strings, and hexadecimal val-
ues. A sample script demonstrates several conversion functions in illustrating a programming
technique called key folding.

Chapter 7

The Basics

All Rexx variables are character strings. Numbers are just character strings whose contents are consid-
ered numeric. Numbers are strings of one or more digits, optionally preceded by plus or minus sign (+
or -), and optionally containing a single period to represent a decimal point. Extending Rexx’s flexible
treatment of numbers, numbers may optionally have preceding or trailing blanks (which Rexx ignores
when calculating).

Numbers may also be expressed in two forms of exponential notation: scientific and engineering. Scientific
notation has one digit to the left of the decimal place, followed by fractional and exponential compo-
nents. Engineering notation expresses the integer component by a number between 1 and 999. The E that
precedes the exponential portion of the number in either notation can be either uppercase or lowercase.
Spaces may not be embedded within the exponential portion of a number.

Here are some valid Rexx numbers:

3 /* a WHOLE number - often called an INTEGER in other languages */
'3 ' /* the same number- leading and trailing blanks don't matter */
-33 /* a negative number */

' -33" /* the same numeric value- leading blanks are inconsequential */
12.000 /* a decimal number - the internal period represents a decimal point*/
.33 /* another decimal number */
o+ 3.3 ! /* valid - the blanks are ignored */
5.22e+22 /* scientific exponential number */
5.22E+22 /* the same number - either 'E' or 'e' is fine */
14.23E+7 /* engineering notation */

Here are a few invalid numbers:

'3 3 /* Internal spaces are not allowed. */
3.3.3 /* More than one period is not allowed. */
'333b! /* This contains the letter b. Alphanumeric strings are not numeric. */
333(33 /* contains an invalid internal character, the left parenthesis */

A string containing one of these forms of valid numbers will be recognized by Rexx as a number when
appropriate. For example, when two values are compared, Rexx implements a numeric comparison if both
values are numeric. Otherwise, it employs a character comparison. The way Rexx performs the numeric
comparison internally is to subtract one number from the other. A result of 0 means that the two num-
bers are the same; any other value indicates their difference.

The basic rules of calculation in Rexx are:

0 Results are determined up to the number of significant digits (which defaults to 9).
Q Trailing zeroes are retained (except when using the power and division operators).
Q Aresult of 0 is represented as a single-digit 0.
Q

Results are expressed in scientific exponential notation if either the number of digits prior to the
decimal point exceeds the setting for significant digits or the number of digits following the dec-
imal point exceeds twice the number of significant digits.

100

Numbers, Calculations, and Conversions

The term significant digits refers to how many digits are retained during a calculation. This is often
termed the precision to which results are carried. Beyond this number of significant digits, or precision,
Rexx rounds off the number.

The default number of significant digits is 9. Remember the Poetry Scanner program in the previous
chapter? This is why it printed this output:

Ratio of preps/total words: 0.111111111
in response to this calculation:
say 'Ratio of preps/total words:' (number_of_preps/ (big_words/small_words))

The nine digits to the right of the decimal point are the default number of significant digits (the default
precision). Use this simple command to alter the number of significant digits:

numeric digits [expression]
For example, set the precision to four digits:
numeric digits 4

If you placed this statement prior to the calculations in the Poetry Scanner script, that same say instruc-
tion would display:

Ratio of preps/total words: 0.1111

This shows the power of the numeric digits instruction. With it you can alter or carry out accuracy to
any desired point.

numeric digits also determines whether your output appears in exponential notation. If you expect a
nonexponential result but Rexx gives you an exponential one, increasing the precision is one way to
change this.

The numeric instruction also has the fuzz keyword to indicate how many significant digits less than
that set by numeric digits will be involved during numeric comparisons. numeric fuzz only applies
to comparisons. It has the effect of temporarily altering the number of significant digits for comparisons
only. Its value must be less than the setting of numeric digits. Its default is 0.

fuzz essentially controls the amount by which two numbers may differ before being considered equal.
For example, if numeric digits = 5and numeric fuzz = 1, then numeric comparisons are carried
out to four significant digits.

Here’s a series of statements to demonstrate the effects of numeric digits and numeric fuzz. You
can see how their settings determine the precision of comparisons:

numeric digits 4 /* set down to 4 from the default of 9 */
numeric fuzz 0 /* leave at its default of 0 */
say 2.998 = 2.999 /* Displays: 0 */
say 2.998 < 2.999 /* Displays: 1 */

101

Chapter 7

numeric fuzz 1 /* set up to 1 from 0 to alter comparisons */
say 2.998 = 2.999 /* Displays: 1 */
say 2.998 < 2.999 /* Displays: 0 */

numeric formallows you to dictate which form of exponential notation is used. The default is scien-
tific. To change this to engineering notation, enter:

numeric form engineering
Use the built-in functions digits, fuzz, and form to retrieve or display the current settings of numeric

digits, numeric fuzz,and numeric form, respectively. For example, assuming that you haven’t
changed the defaults, here’s what these functions return:

say digits() /* displays setting for NUMERIC DIGITS: 9 */
say fuzz() /* displays setting for NUMERIC FUZZ: 0 */
say form() /* displays setting for NUMERIC FORM: SCIENTIFIC */

The only two errors Rexx gives from calculations are overflow/underflow and insufficient storage. The first
occurs when the exponential part of a number becomes too large or too small for the language inter-
preter, while the second means Rexx ran out of memory.

Chapter 10 discusses and illustrates how to set up error or exception routines to handle or “trap” certain
kinds of error situations. One error you can manage by exception routines is the unintended loss of sig-
nificant digits. This is achieved through the LOSTDIGITS condition, a feature added to Rexx by the
ANSI-1996 standard. Chapter 10 gives full details on the LOSTDIGITS condition and how to use it.

To control the display style of numbers, use the format built-in function:

format (number_string,before,after)

format rounds and formats a number. before indicates how many characters appear in the integer part
and after indicates how many characters appear in the decimal part.

If before is too small to contain the number, an error results. If after is too small, the number is
rounded to fit.

If before is larger than the integer requires, blanks precede the number. If after is larger than the deci-
mal part requires, extra zeroes are added on the right.

With this information, another option in the Poetry Scanner script would have been to leave numeric
digits alone (letting it default it to 9 for all calculations), then format the output to reduce the number

of digits to the right of the decimal point:

outratio = number_preps/ (big_words+small_words)
say 'Ratio of preps/total words:' format (outratio,l1,4)

This yields the same result we got earlier from changing the value of numeric digits to4:

Ratio of preps/total words: 0.1111

102

Numbers, Calculations, and Conversions

Here are a few more examples of the format function:

say format (13, 8) /* displays: ' 13"
-- use to right-justify a number */

say format(1.11,4,0) /* displays: ' 1
-- rounded and right-justified */

say format(1.1,4,4) /* displays: ' 1.1000"
-- extended with zeroes x/
say format(1l.1,4) /* displays: ' 1.1
-- right-justified */
say format (1234,2) /* error - not enough room for the integer part */

format can also be used to control the display of exponential numbers. This is the template for this ver-
sion of format:

format (number [, [beforel [, [after] [, [expp] [,exptl]l]])
expp and expt control the formatting of the exponential part of the result. expp is the number of digits

used for the exponential part, while expt sets the trigger for the use of exponential notation. Here are a
few examples:

format ('12345.67',,,2,3) == '1.234567E+04"
format ('12345.67"',,,4,4) == '1.234567E+0004"
format ('12345.67"',,2,,0) == '1.23E+4"

format ('12345.67',,3,,0) == '1.235E+4"

The format function is useful for generating reports with numbers nicely aligned in columns. Use it to
right-justify numbers and ensure that a consistent number of decimal places appear. Also use it to round
off numbers to any point of precision.

More Numeric Functions

To this point, we’ve discussed functions that determine precision in calculations and comparisons, and
we’ve demonstrated how to format numbers for printing and display. Beyond digits, form, format,
and fuzz, Rexx offers several other built-in functions designed to manipulate numbers. Here are these
additional numeric functions:

Q abs—Returns the absolute value of a number

QO max—Returns the largest number from a list of numbers

O min—Returns the smallest number from a list of numbers

QO random—Returns a random number within the range given (inclusive)

Q sign—Returns 1 if number is greater than 0, or 0 if the number is 0, or -1 if the number is less
than 0

a trunc — Truncates a number

103

Chapter 7

Appendix C contains complete coding information for all these functions. Here, we will cover some of
their common uses.

Here are a few examples of the functions:

say abs(-4.1) /* displays: 4.1 */
say abs(4.1) /* displays: 4.1 */
say abs(-0.11) /* displays: 0.11 */
say abs(-0) /* displays: 0 */
say max(3,2,88) /* displays: 88 */
say max(0,-1,-17) /* displays: 0 */

say max(-7.0000,-8) /* displays: -7.0000 */

say min(-1,14,-7.0000) /* displays: -7.0000 */

say min(50,13) /* displays: 13 */
say sign(-12) /* displays: -1 */
say sign(1) /* displays: 1 */
say sign(0) /* displays: 0 */
say trunc(11.11) /* displays: 11 -Returns whole number after truncation */

say trunc(11.11,2) /* displays: 11.11

-Returns number truncated to 2 decimal places */
say trunc(11.11,1) /* displays: 11.1

-Returns number truncated to 1 decimal place */

The random function takes this form:
random (min, max, seed)

It generates a random number between min and max (inclusive), based on the seed value. If you don’t
provide a seed, Rexx generates its own random number (usually based on the system time-of-day
clock). If min and/or max are not specified, they default to 0 and 999, respectively. Here are a couple
examples:

random(1,2) /* simulate a coin toss, returns Heads or Tails */
random(1l,6) /* simulate rolling a single die,
result is between 1 and 6 inclusive */

Many Rexx implementations offer extensions for transcendental mathematical functions. These include
tangent, sine, cosine, and the like. Section II covers these implementation-specific extensions to standard
Rexx when it discusses the features of the various open-source Rexx interpreters. Also, Appendix H lists
a few dozen of the many free and open-source Rexx tools and interfaces that are available. Among them
are several external function libraries that support advanced mathematics.

104

Numbers, Calculations, and Conversions

Conversions

Rexx variables contain values representing character, decimal, hexadecimal, and binary strings.
Obviously, there will be occasions when you need to convert variables from one of these representations
to another. Rexx provides a set of conversion functions that allow you to convert data between the differ-
ent formats. Here is a list of these conversion functions:

Function Converts

b2x Binary to hexadecimal
c2d Character to decimal

c2x Character to hexadecimal
d2c Decimal to character

d2x Decimal to hexadecimal
x2b Hexadecimal to binary
x2¢ Hexadecimal to character
x2d Hexadecimal to decimal

The datatype function is useful in testing variables to see what kind of data they contain. datatype
without an option returns either the character string NUM or CHAR to indicate whether the operand is
numeric or character:

say datatype('12345"') /* displays: NUM */
say datatype('abc') /* displays: CHAR */
say datatype('abcl23'") /* displays: CHAR */

Or, you can specify an option or “type” of test to perform:
say datatype('12','W") /* displays: 1 -the string contains a Whole number */

As always, options to functions can be specified in either uppercase or lowercase. Here is the complete
set of options or tests for the datatype function:

datatype Option Use

A Alphanumeric —returns 1 if the string contains only characters in the ranges
Ia,—,Z,, IA/_IZI, and 101_191.
Binary —returns 1 if the string contains only Os and 1s.

/T a—

Lowercase —returns 1 if string contains characters only in the range ‘a’~'z’.

—

M Mixed case —returns 1 if string contains characters only in the ranges
laf_/ZI and IA/_IZV.

Table continued on following page

105

Chapter 7

datatype Option Use

N Number —returns 1 if string is a valid Rexx number.

S Symbol —returns 1 if string comprises a valid Rexx symbol.

U Uppercase —returns 1 if string contains only characters in range ‘A’'~Z’.
W Whole number —returns 1 if string represents a whole number under the

current setting for numeric digits. In many programming languages, a
whole number is referred to as an integer.

X Hexadecimal —returns 1 if string represents a valid hex number (consists
only of letters ‘a’~’f’, “A’~'F’, and digits ‘0'='9").

The string that datatype inspects can be of any representation: character, hex, or binary. The sample
program Verify Arguments in Chapter 6 showed how to use datatype in testing the values of user-
input parameters.

A Sample Program

Here’s a sample program that uses the data conversion functions and the bitand bit string function.
This script takes two character fields and folds (logically ANDs) the bit representation of these character
fields together to create a direct access key. As mentioned in Chapter 6, this technique is called key folding
and can be used in developing a file manager or database system. It permits direct access to records
based on randomizing character keys. Here’s the program:

106

/* FOLDED KEY: =
/* */
/* This program folds a character key from two input fields. &
char_keyl 'key field 1° /* the original string */
char_key_hexl = c2x(char_keyl) /* the string in hex */
char_key_binl = x2b(char_key hexl) /* the string in binary*/
char_key2 'key_field 2' /* the original string */
char_key_ hex2 c2x (char_key?2) /* the string in hex */
char_key bin2 x2b (char_key_hex2) /* the string in binary*/
folded_key = bitand(char_key binl, char_key bin2) /* fold keys */
say 'First key char_keyl /* display all results */

say 'In hex
say 'In binary

say 'Second key

say 'In hex
say 'In binary

say 'Folded key

char_key_ hexl
char_key binl

char_key2
char_key_hex2
char_key_bin2

folded_key

Numbers, Calculations, and Conversions

The program output looks like this:

First key : key_field 1
In hex : 6B65795F6669656C645F31
In binary : 0110101101100101011110010101112110110011001101001011001010110110001

1001000101111100110001

Second key : key field_2

In hex : 6B65795F6669656C645F32

In binary : 011010110110010101111001010111110110011001101001011001010110110001
1001000101111100110010

Folded key : 011010110110010101111001010111110110011001101001011001010110110001
1001000101111100110000

The program shows how to use built-in functions for conversions between data types. This statement
converts the original character string key to its hexadecimal equivalent through the c2x function:

char_key_hex1 = c2x(char_keyl) /* the string in hex *x/
Then, the x2b function converts that hex string to a binary string:
char_key_binl = x2b(char_key_hexl) /* the string in binary*/

After both original character strings have been converted to binary, this statement logically ANDs the
two bit strings together to produce the folded key:

folded_key = bitand(char_key binl, char_key_bin2) /* fold keys */

The original input fields the script folded contained the character strings key_field_1 and
key_ field_2.

The last line in the output shows that ANDing these values together on the bit level only changes the
few bits at the end of the folded key string. These two key values require more differentiation than just a
single different final character! (We’ve used similar input values here to make the operation of the script
more clear.) In a real environment, we would expect the key fields to hold more diverse data to make
this algorithm useful. Nevertheless, the program shows how simple it is to perform useful operations
with the bit manipulation and conversion functions. We’ve implemented a simple algorithm to create
keys out of arbitrary character strings with just a few lines of code.

Summary

Rexx guarantees that the results of arithmetic operations will be the same regardless of the platform or
the Rexx interpreter. This is an important advantage over many other programming languages, which
place this burden on the developer. It makes Rexx code more reliable and portable with little effort on

the programmer’s part.

The only differences in calculations come in where implementations support different maximums (for

example, different maximum precision) or when they have differing amounts of total memory with
which to work.

107

Chapter 7

One downside to Rexx’s approach to numeric computations is its relatively slow speed. All variables
contain strings values that must be converted internally prior to computation. The result is that compu-
tations are slower than they are in languages that carry numeric values in internal formats optimized to
perform calculations. Given modern computer hardware, this downside only matters when programs
are computationally bound. For the typical program, this “downside” matters not at all.

Rexx transparently handles issues with numeric conversions as necessary to perform numeric opera-
tions. Nevertheless, there are times when knowing a little more about how Rexx handles numbers is use-
ful; this chapter provides that detail. We discussed ways to represent numbers in Rexx variables, how to
control the precision to which calculations are carried out, techniques to format numbers for display, the
use of exponential notation, and the built-in functions that manipulate numbers.

The datatype function is the basic means by which the kinds of data held within variables may be
ascertained. Rexx provides a full set of functions for converting strings between data types. These are
usually referred to as the conversion functions. Appendix C provides a full coding reference for all Rexx
functions, including the conversion functions.

Test Your Understanding

1. Describe the relationship between numeric digits and numeric fuzz. How do their settings
affect precision and numeric comparisons? Why would you set fuzz rather than just altering
digits?

2. What's the difference between scientific and engineering exponential notations? To which does
Rexx default? How do you display and/or change the default?

3. What functions are used to right-justify numeric output in reports?
4. What kinds of data conditions does the datatype function help identify?

5. Which of the following are valid numbers?

-22

[_22 1
2.2.

2.2.2

222b2
2.34e+13
123.E -2
123.2 E + 7

108

Subroutines, Functions, and
Modularity

Overview

Rexx fully supports structured programming. It encourages modularity —breaking up large, com-
plex programs into a set of small, simple, interacting components or pieces. These components fea-
ture well-defined interfaces that render their interaction clear. Modularity underlies good program
structure. Modularity means more easily understood and maintained programs than ill-designed
“spaghetti” code, which can quickly become unmaintainable on large programming projects.
Structured programming practices and modularity together reduce error rates and produce more
reliable code.

Rexx provides the full range of techniques to invoke other programs and to create subroutines and
functions. The basic concept is that there should be ways to link together any code you create, buy,
or reuse. This is one of the fundamental advantages to using a “glue” language like Rexx.

With Rexx, you can develop large, modular programs that invoke routines written in Rexx or other
languages, which issue operating system commands and utilize functions packaged in external func-
tion libraries. This chapter describes the basic ways in which one writes modular Rexx programs.

This chapter investigates how to write internal subroutines and functions, and how to call them
from within the main program. Passing arguments or values into subroutines is an important
issue, as is the ability to pass changed values back to the calling program. Variable scoping refers to
the span of code from within which variables can be changed. This chapter explores the rules of
scoping and how they affect the manner in which scripts are coded. Finally, we introduce the idea
of recursion, a routine that calls itself as its own subroutine. While this may at first seem confusing,
in fact it is a simple technique that clearly expresses certain kinds of algorithms. Not all program-
ming languages support recursion; Rexx does. The chapter includes a brief script that illustrates
how recursion operates.

Chapter 8
The Building Blocks

As Figure 8-1 shows, any Rexx script can invoke either internal or external routines. Internal means that
the code resides in the same file as the script that calls or invokes the routines. Those routines that are
external reside in some file other than that of the invoking script.

How Rexx Supports Modularity

Modularity
Internal External
Routines Resources
— Built-in Functions — Extensions and Function Libraries
— Functions you develop — Operating System Commands
— Subroutines — Commands to other environments

— External Programs
— API Interfaces to external features

— APl into Rexx
Figure 8-1

Internal routines are classified as either functions or subroutines. Functions include those that are pro-
vided as part of the Rexx language (the built-in functions) and those that you write yourself (user-defined
functions). Functions are distinct from subroutines in that functions must return a single result string to
the caller through the return instruction with which they end. Rexx replaces the function code in any
statement with the returned value from the function. Subroutines may or may not send back a value to
their caller via their return instruction. The returned value from a subroutine, if there is one, is placed
into the special variable named result.

External routines can be functions, too. Often, these come in the form of a package designed to support a
particular functionality and are called extensions or function libraries. External routines might also be the
equivalent of internal subroutines, written in Rexx, except that they reside in a different file than that of
the caller.

Rexx makes it easy to invoke external programs from your script, regardless of the language in which
they are written. If the Rexx interpreter encounters a string in a script that does not correspond to its
instruction set, it evaluates that expression and then passes it to the operating system for execution. So, it
is simple to run operating system commands or other programs from a Rexx script. Chapter 14 illus-
trates how to do this. One of Rexx’s great strengths is its role in issuing, controlling, and coordinating
operating system commands. It is also easy to direct commands to other outside “environments” such as

110

Subroutines, Functions, and Modularity

text editors or other tools. Rexx is called a macro language because it is often used to provide programma-
bility for various tools. For example, on mainframes Rexx is used as the macro language to program the
widely used editors, XEDIT and the ISPF Editor.

There are a large variety of Rexx extensions and packages. For example, the open-source Rexx/SQL pack-
age provides an interface to a variety of relational databases from within Rexx scripts. Other examples
include interfaces to curses, the text-screen control package; to RexxXML, for XML programming; to
ISAM, the indexed sequential access method; to TK and DW, for easy GUI programming; to gd, for
graphics images; RxSock, for TCP/IP sockets, and many other interfaces. Chapters 15 through 18 discuss
and demonstrate some of these free and open-source packages. Chapter 29 discusses a few of the many
interfaces to mainframe Rexx and how Rexx offers a high-level macro and interface language for main-
frame interfaces and facilities. Appendix H lists several dozen of the many free and open-source inter-
faces that are available and tells how to locate them for downloading.

Internal Functions and Subroutines

Functions must always return exactly one result to the caller. Use the return instruction to do this.
Subroutines may or may not send a result back to the caller via return, but they, too, end with the
return instruction.

Functions may be invoked in either of two ways. One method codes the function name, immediately fol-
lowed by arguments, wherever one might encode an expression:

returned_string = function_name (parameter_1, parameter_2)

The function is resolved and the string it returns is plunked right into the expression where it was
coded. In this case, the assignment statement then moves that value to the variable returned_string.
Since you can code a function anywhere you can code an expression, nesting the function within an i £
or do instruction is common:

if (balanced_parentheses(string_in)) = 'YES' then

Here the call to the function balanced_parentheses is nested within an i f instruction to provide a
result for the comparison. After the function balanced_parentheses has been run, its result is plunked
right where it was encoded in the if instruction.

You can nest functions within functions, as shown in this return instruction from one of the sample
scripts we discuss later in this chapter:

return substr(string, length(string),1) ||
reverse (substr(string, 1, length(string)-1))

r

Recall that the comma is the line continuation character. So, both of these lines constitute a single statement.

This return instruction features a complex expression that returns a single character string result to the
caller. The first part of the expression nests the 1ength function within the substr function; the second
part nests length within substr within reverse. Yikes! Nesting is very powerful, but for the sake of
clarity we don’t recommend getting too fancy with it. Deeply nested expressions may show cleverness

111

Chapter 8

but they become unintelligible if too complex. When complex code is developed for corporate, govern-
mental, or educational institutions, the value of that code drops the moment the programmer who wrote
it leaves the organization.

The second basic way to invoke a function is through the call instruction:
call function_name parameter_1, parameter_2

For example, to duplicate the code we looked at earlier where the invocation of the balanced_paren-
theses routine was nested within an i f statement, we could have alternatively coded:

call balanced_parentheses string_in
if result = 'YES' then /* inspect the result returned from the function call */

The result string from the function is automatically placed into the special variable named result and
may be accessed from there.

Special variable result will be set to uninitialized if not set by a subroutine. In this case its value will be
its own name in capitals: RESULT.

Subroutines may only be invoked by the call instruction. Encode this in the exact same manner as the
second method for invoking functions:

call subroutine_name parameter_ 1, parameter_2

The special variable result contains a value if the subroutine passed back a value on its return instruc-
tion. Otherwise result will be set to uninitialized (the value RESULT). All uninitialized variables are
their own names set to uppercase, so use this test to see if result was not set:

if result = 'RESULT' then say 'RESULT was not set by the subroutine.'

The built-in function symbol can also be used to see if any variable is uninitialized or whether it has
been assigned a value. It returns the character string VAR if a variable has a value or the string LIT other-
wise. We can apply it to see if result was assigned a value:

if symbol ('RESULT') == 'VAR' then say 'A result was returned'
if symbol ('RESULT') == 'LIT' then say 'No result was returned'

To summarize, here’s a code snippet that shows how to organize a main routine (or driver) and its sub-
routine. The code shows that the call to the internal subroutine did not set special variable result:

/* Show whether RESULT was set by the CALL */
call subroutine_name
if result = 'RESULT'

then say 'No RESULT was returned'

else say 'A RESULT was returned'

if symbol ('RESULT') == 'VAR'
then say 'A RESULT was returned'

112

Subroutines, Functions, and Modularity

if symbol ('RESULT') == 'LIT'
then say 'No RESULT was returned'

exit 0

subroutine_name:
return

The return instruction ends the subroutine, but does not include an operand or string to send back to
the calling routine. The code snippet displays these messages when it returns from the subroutine:

No RESULT was returned
No RESULT was returned

Now change the last statement in the code, the return instruction in the subroutine, to something like
this:

return 'result_string'
Or, change it to this:
return 0

Either encoding means that the special variable result is set to the string returned. After invoking the
internal routine, the code snippet now displays:

A RESULT was returned
A RESULT was returned

When encoding subroutine(s) and/or functions after the main routine or driver, code an exit instruc-
tion at the end of the code for the main routine. This prevents the flow of control from rolling right off
the end of the main routine and going into the subroutines.

Here is another example that is the exact same as that seen in the preceding example. However, we have
coded it incorrectly by commenting out the exit instruction that follows the main routine. We have also
added a statement inside the subroutine that displays the message: Subroutine has been entered.

Here’s the code:
/* Show whether RESULT was set by the CALL */
call subroutine_name
if result = 'RESULT'

then say 'No RESULT was returned'
else say 'A RESULT was returned'

if symbol ('RESULT') == 'VAR'
then say 'A RESULT was returned'
if symbol ('RESULT') == 'LIT'

then say 'No RESULT was returned'

113

Chapter 8

/* exit 0 */ /* now commented out */

subroutine_name:
say 'Subroutine has been entered' /* new line of code */
return 0

This script displays this output:

Subroutine has been entered

A RESULT was returned

A RESULT was returned

Subroutine has been entered <= this line results from no EXIT instruction!

This shows you must code an exit instruction at the end of the main routine if it is followed by one or
more subroutines or functions. The last line in the sample output shows that the subroutine was entered
incorrectly because an exit instruction was not coded at the end of the main routine. As with the sub-
routine’s return instruction, it is optional whether or not to code a return string on the exit statement.
In the preceding example, the exit instruction passed a return code of 0 to the environment.

What if we place the code of subroutines prior to that of the main routine? Here we located the code of
the subroutine prior to the driver:

/* Shows why subroutines should FOLLOW the main routine */
subroutine_name:
say 'Subroutine has been entered'
return 0
call subroutine_name
if result = 'RESULT'

then say 'No RESULT was returned'
else say 'A RESULT was returned'’

if symbol ('RESULT') == 'VAR'

then say 'A RESULT was returned'
if symbol ('RESULT') == 'LIT'

then say 'No RESULT was returned'
exit 0

Running this script displays just one line:

Subroutine has been entered
What happened was that Rexx starts at the top of the file and proceeds to interpret and execute the code,
line by line. Since the subroutine is first in the file, it executes first. Its instruction return 0 caused exit

from the program before we ever got to the main routine! Oops. Always place the code for any internal
subroutines or functions after the main routine or driver.

114

Subroutines, Functions, and Modularity

We'll cover program structure in more detail later. For now, here are some basic rules of thumb:

Q End each subroutine or function with the return instruction.
Every function must have an operand on its return instruction.
Subroutines may optionally have a result on their return instruction.

a
a
Q0 Encode the exit instruction at the end of the code of the main routine or driver.
Q Place subroutines and functions after the main routine or driver.

We saw that Rexx uninitializes special variable result when a called subroutine does not pass back a
result string. If you ever need to uninitialized a Rexx variable yourself, code the drop instruction:

drop my_variable

This sets a variable you may have used back to its uninitialized state. It is now equal to its own name in
all uppercase.

You can drop multiple variables in one instruction:

drop my_variable_1 my_variable_2 my_variable_3

Passing Parameters into a Script from the
Command Line

Passing data into a script is important because this provides programs with flexibility. For example, a
script that processes a file can retrieve the name of the file to process from the user. You can pass data
elements into scripts by coding them on the same command line by which you run the script. Let’s
explore how this is accomplished.

Data passed into a script when it is invoked are called command-line arguments or input parameters. To
invoke a Rexx script and pass it command-line arguments or parameters, enter something like this:

c:\Regina\pgms> script_name parameter_1 2 parameter_ 3
The script reads these three input strings parameter_1, 2, and parameter_3 with the arg instruction.
arg automatically translates the input parms to uppercase. It is the equivalent of the instruction parse
upper arg. If no uppercase translation is desired, use parse arg. Remember that a period following
either of these instructions discards any more variables than are encoded on the arg or parse arg
instruction. This example discards any arguments beyond the third one, if any are entered:

arg input_1 input_2 input_3 . /* read 3 arguments, translate to capitals)

Here is the same example coded with the parse arg instruction:

parse arg input_1 input_2 input_3 . /* read 3 arguments, no upper translation */

115

Chapter 8

By default, the arg and parse arg instructions splice the input parameters into pieces based on their
separation by one or more intervening spaces. If you ran the program like this:

c:\Regina\pgms> script_name parameter_1 2 parameter _3
You'd want to code this statement in the script to pick up the input arguments:
parse arg input_1 dinput_2 input_3 input_4

The resulting variable values would be:

input_1 = parameter_1
input_2 = 2

input_3 = parameter
input_4 = _3

As per the basic rules of parsing, encoding too many input parameters puts all the overflow either into
the placeholder variable (the period) or into the last specified input variable on the parse arg instruction.

Entering too few input parameters to match the parse arg statement means that the extra variables on

the parse arg will be set to uninitialized. As always, an uninitialized variable is equal to its own name
in uppercase.

Passing Parameters into Subroutines and
Functions

Say that our sample script needs to run a subroutine or function, passing it the same three input parame-
ters. Code the subroutine or function call as:

call sub_routine input_1, input_2, input_3

Code a comma between each of the parameters in the call instruction. The string (if any) sent back
from the call will be available in the special variable named result.

Code a function call just like the call to the previous subroutine. Or encode it wherever you would an
expression, as illustrated earlier, in the form:

result_string = function_name (input_1, input_2, input_3)
Inside the function or subroutine, use either arg or parse arg to retrieve the arguments. The function
or subroutine picking up the input parameters should encode commas that parallel those of the call in
its arg or parse arg instruction:

arg input_1, input_2, input_3

or

parse arg input_1, input_2, input_3

116

Subroutines, Functions, and Modularity

The period or placeholder variable is optional. Presumably, the subroutine or function knows how many
input parameters to expect and does not need it.

These examples illustrate the arg instruction retrieving the argument string passed to a script and splic-
ing it apart into its individual pieces. There is also an arg built-in function. The arg function returns
information about input arguments to the routine. For scripts called as functions or subroutines, the arg

function either:

Q Tells how many argument strings were passed in
Q Tells whether a specific-numbered argument was supplied

QO Supplies a specified argument
Let’s look at a few examples. To learn how many arguments were passed in, code:
number_of_arguments = arg()
To retrieve a specific argument, say the third one, code:
get_third _argument = arg(3)
To see if the third argument exists (was passed or encoded in the call), write:
if (arg(3) == '') then say 'No third argument was passed'
or
if arg(3,'0') then say 'No third argument was passed'
The first of the two sample lines show that an input argument read by an internal routine will be the null
string if it is not supplied to the routine. This differs from a command-line input argument that is read
but not supplied, which is set to uninitialized (its own name in uppercase).

The second sample line shows one of the two options that can be used with the arg function:

Q E (Exists)—Returns 1 if the nth argument exists. Otherwise returns 0.

QO 0 (Omitted) —Returns 1 if the nth argument was Omitted. Otherwise returns 0.

The arg function only supplies this information for scripts that are called as functions or subroutines. For
scripts invoked from the operating system’s command line, the arg function will always show only 0 or
1 argument strings. In this respect Rexx scripts invoked as commands from the operating system behave
differently than scripts invoked as internal routines (functions or subroutines). This is one of the very
few Rexx inconsistencies you'll have to remember: the arg function tells how many arguments are
passed into an internal routine, but applied to the command-line arguments coming into a script, it
always returns either 0 or 1.

117

Chapter 8

A Sample Program

To see how parameters are passed into programs, and how code can be modularized, let’s look at a cou-
ple sample programs. The first sample program consists of a brief script that reads information from the
command line. This main routine or “driver” then turns around and calls a subroutine that performs the
real work of the program. Then the driver displays the result from the subroutine on the user’s screen.

Of course, the driver could actually be part of a larger application. For example, it might be a “service
routine” shared among programs in the application. Whatever its use, the important principles to grasp
are how code can be modularized and how information can be passed between modules.

The first sample program tells whether parentheses in a string are balanced. A string is said to be bal-
anced if:

Q Every left parenthesis has a corresponding closing right parenthesis

Q No right parenthesis occurs in the string prior to a corresponding left parenthesis
Here are some examples. These input strings meet the two criteria and so are considered balanced:

)
0 O 0
return (
(O«
(subs

iu(slk) ())
))))
(

(
()
length(string,1,2)))

e a
())
if tr
These are unbalanced strings. Either the numbers of left and right parentheses are unequal, or a right
parenthesis occurs prior to its corresponding left parenthesis:

yalkjdsfkl (/* right paren occurs before its left paren */
((akljlk£fd) /* 2 left parens, only 1 right paren */
if (substr(length(string,1,2)) /* 3 left parens, only 2 right parens */

The last example shows that a script like this could be useful as a syntax-checker, or as a module in a
language interpreter. You can actually use it to verify that your scripts possess properly encoded, bal-
anced sets of parentheses.

To run the program, enter the string to verify as a command-line argument. Results appear on the next
line:

C:\Regina\pgms> call_bal.rexx if (substr (length(string,1,2))
Parentheses are NOT balanced

Try again, this time adding one last right parenthesis to the input string:

C:\Regina\pgms> call_bal.rexx if (substr(length(string,1,2)))
Parentheses are balanced!

Here’s the code for the caller. All it does is read the user’s command-line input parameter and pass that

character string to a function named balanced_parens that does the work. The function
balanced_parens may be either internal or external —no change is required to its coding regardless of

118

Subroutines, Functions, and Modularity

where you place it. (However, you must be sure the operating system knows where to locate external
functions. This often requires setting an environmental variable or the operating system’s search path for
called routines. We'll discuss this in detail later.)

/* get answer from function

/* write GOOD message ..or..

/* write INVALID message

/* CALL BAL:
/*
/% Determines i1f the parentheses in a string are balanced.
arg string . /* the string to inspect
if balanced_parens(string) = 'Y' then
say 'Parentheses are balanced!'
else
say 'Parentheses are NOT balanced'
exit 0

*/
*/
*/
*/

*/
*/

*/

Here’s the internal or external function that figures out if the parentheses are balanced. The algorithm
keeps track of the parentheses simply by adding 1 to a counter for any left parenthesis it encounters, and
subtracting 1 from that counter for any right parenthesis it reads. A final counter (ctr) equal to 0 means
the parentheses are balanced — that there are an equal number of left and right parentheses in the input
string. If at any time the counter goes negative, this indicates that a right parenthesis was found prior to
any possible matching left parenthesis. This represents another case in which the input string is invalid.

/*
/*
/*
/*
bal
arg
ctr
val

end.

do

end

if

BALANCED PARENS:
Returns Y if parentheses in input string are balanced,
N if they are not balanced.
anced_parens:
string . /* the string to inspect
=0 /* identifies right paren BEFORE a left one
id = 1
string = length(string) /* get length of input string

j=1 to endstring while (valid)
char = substr(string,j, 1)

if char = '(' then ctr = ctr + 1
if char = ")' then ctr = ctr - 1

if ctr < 0 then valid = 0

ctr = 0 then return 'Y'
else return 'N'

/* inspect each character

*/
*/
*/
*/

*/

*/

*/

*/

Another way to code this problem is for the subroutine to return 1 for a string with balanced parenthe-
ses, and 0 if they are unbalanced. Then you could code this in the caller:

if

els

balanced_parens(string) then

say 'Parentheses are balanced!'

e

say 'Parentheses are NOT balanced'

119

Chapter 8

This allows coding the function as an operatorless condition test in a manner popular in programming in
languages like C, C++, or C#. But remember that the expression in an i f instruction must evaluate to 1
(TRUE) or 0 (FALSE) in Rexx, so the function must return one of these two values. A nonzero, positive
integer other than 1 will not work in Rexx, unlike languages in the C family. A positive value other than
1 results in a syntax error in Rexx (we note, though, that there are a few Rexx interpreters that are
extended to allow safe coding of operatorless condition tests).

Coding operatorless condition tests also runs counter to the general principle that a function or subrou-
tine returns 0 for success and 1 for failure. Wouldn’t balanced parentheses be considered “success”? This
coding works fine but contravenes the informal coding convention.

The Function Search Order

Given that Rexx supports built-in functions, internal functions, and external functions, an important
issue is how Rexx locates functions referred to by scripts. For example, if you write an internal function
with the same name as a built-in function, it is vital to understand which of the two functions Rexx
invokes when some other routine refers to that function name.

This issue is common to many programming languages and is called the function search order. In Rexx the
function search order is:

1. Internal function — The label exists in the current script file.
2. Built-in function— Rexx sees if the function is one of its own built-in functions.

3. External function — Rexx seeks an external function with the name. It may be written in Rexx or
any language conforming to the system-dependent interface that Rexx uses to invoke it and
pass the parameter(s).

Where Rexx looks for external functions is operating-system-dependent. You can normally place exter-
nal functions in the same directory as the caller and Rexx will find them. On many platforms, you must
set an environmental variable or a search path parameter to tell the operating system where to look for
external functions and subroutines.

The function search order means that you could code an internal function with the same name as a Rexx
built-in function and Rexx will use your function. You can thus replace, or override, Rexx’s built-in
functions.

If you want to avoid this, code the function reference as an uppercase string in quotation marks. The
quotation marks mean Rexx skips Step 1 and only looks for built-in or external functions. Uppercase is

important because built-in functions have uppercase names.

With this knowledge, you can override Rexx functions with your own, while still invoking the built-in
functions when you like. You can manage Rexx’s search order to get the best of both worlds.

120

Subroutines, Functions, and Modularity

Recursion

A recursive function or routine is one that calls itself. Any recursive function could be coded in traditional
nonrecursive fashion (or iteratively), but sometimes recursion offers a better problem solution. Not all
programming languages support recursion; Rexx does.

Since a recursive function invokes itself, there must be some end test by which the routine knows to stop
recursing (invoking itself). If there is no such end test, the program recurses forever, and you have effec-

tively coded an “endless loop!”

Figure 8-2 pictorially represents recursion.

How Recursion Works

End Test
Fufilled ?

No

Call
Script X

Figure 8-2

This sample recursive function reverses the characters within a given string —just like Rexx’s reverse
built-in function. If you feed it the character string abc, it returns the string cba.

The function calls itself to process each character in the input string and finds its “end test” when there
are no more characters left in the string to process. Each time the function is entered, it returns the last
character in the string and recurses to process the remaining string.

/* REVERSE: Y/
/* */
JE Recursive routine that reverses the characters in a string. @

reverse: procedure
parse arg string /* read the string to reverse Y/

if string == "' /* here's the 'end recursion' condition @/

121

Chapter 8

then return ''
else
return substr (string,length(string),1) || ,
reverse (substr (string, 1, length(string)-1))

The reverse function uses the strictly equal operator (==). This is required because the regular “equals”
operator pads item with blanks for comparisons, something that might not work in this function. The
line that uses the strictly equal operator compares the input string to the null string, the string that con-
tains no characters, represented by two back-to-back quotation marks (' *). This is the “end test” that
tells the function to return, because it has processed all the characters in the original input string:

if string == "' /* here's the 'end recursion' condition */
then return ''

The last two lines of the function show how to continue a statement across lines. Just code a comma ()
and the return instruction’s expression spans into the next line. The comma is Rexx’s line continuation
character. Code it at any natural breakpoint in the statement. Between parts of a statement is fine; within
the middle of a character string literal would not work. This is valid:

say 'Hi ' ,
"there!" /* wvalid line continuation */

But this will fail with a syntax error, because the line continuation character appears in the middle of a
quoted literal:

say 'Hi ,
there!' /* invalid line continuation, syntax error! */

Of course, the trick to this program to reverse character strings is this one, heavily nested line of code:

return substr(string, length(string),1) || ,
reverse (substr (string,1, length(string)-1))

The first portion of this statement always returns the last character in the substring being inspected:
substr (string, length(string), 1)
An alternative way to code this is to use the right function, as in: right (string, 1).
The second portion of the return statement recursively invokes the reverse function with the remain-
ing substring to process. This is the original string passed in, minus the last character (which was just
returned to the caller):
reverse (substr (string, 1, length(string)-1))
To test a program like this, you need a simple driver or some “scaffolding” to initially invoke the new

reverse function. Fortunately, the rapid development that Rexx enables makes this easy. Coding a
driver to test the new reverse function is as simple as coding these few lines:

122

Subroutines, Functions, and Modularity

/% Simple "test driver" for the REVERSE function. =Y

parse arg string .

call reverse string /* call the REVERSE function =Y
say 'The reversed string is:' result /* display the RESULT @/
exit 0

This code reads an input string from the user as an input command-line argument. It invokes the recur-
sive, user-written reverse function and displays the result to the user.

The say instruction in this code uses the special variable result to display the string returned from the
reverse function on the user’s display screen:

say 'The reversed string is:' result /* display the RESULT */
Our new reverse function has the same name and functionality as Rexx’s own, built-in reverse func-
tion. Which will Rexx run? The function search order tells us. Assuming that the reverse function we
coded is internal, Rexx invokes it, because user-written internal functions have priority over Rexx’s
built-in functions in the function search order. If we want to use the built-in Rexx reverse function
instead, we would code the name of the function in quoted uppercase letters. These two lines show the
difference. This line invokes our own reverse function:

call reverse string /* call our own REVERSE function */

In contrast, this statement runs Rexx’s built-in reverse function:

call 'REVERSE' string /* use the Rexx built-in REVERSE function */

More on Scoping

Developers place internal functions and subroutines after the main routine or driver in the script file.
Here’s the basic prototype for script structure where the main script has subroutines and/or functions:

main_routine:

call my_function parameter_in
call my_subroutine parameter_in
exit 0

my_function: procedure
return result_string

my_subroutine: procedure
return

Rexx does not require any label for the main routine or driving portion of the script, but we recommend
it as a good programming practice. A Rexx label is simply a name terminated with a colon. In this script,
we’ve identified the driver routine with the label main_routine: . This is good programming practice
in very large programs because it may not always be obvious where the logic of the driver really starts.
In other words, if there is a long list of variable declarations or lots of initialization at the top of a script,
identifying where the “real” work of the main routine begins can sometimes be helpful.

123

Chapter 8

A key issue in any large program is scoping — which of the caller’s variables are available for reading
and/or updating by a called function or subroutine. In Rexx, the procedure instruction is the basic tool
for managing variable scoping. procedure is encoded as the first instruction following the label in any
function or subroutine for which it’s used.

The procedure instruction protects all existing variables by making them unknown to any instructions
that follow. It ensures that the subroutine or function for which it is encoded cannot access or change
any of its caller’s variables. For example, in the reverse function, we coded this first line:

reverse: procedure
This means the reverse routine cannot read or update any variables from its caller — they are protected
by the procedure instruction. This is a good start on proper modularity, but of course, we need a way to
give the reverse routine access to those variables it does need to access. One approach is to pass them in

as arguments or parameters, as we did in calling the reverse function, with this general structure:

calling routine:

parse arg parm_ 1 parm 2 . /* get command-line arguments from the user */
call function_name parm_1, parm_2 /* pass them to the internal routine */
say 'The function result is:' result /* retrieve RESULT from the routine @)
exit 0

function_name: procedure
parse arg parm_1, parm_2 /* get parameters from the caller */
return result_string /* return result to caller Y/

The procedure instruction protects all variables from the function or subroutine. This function cannot
even read any of the caller’s variables. It knows only about those passed in as input parameters, parm_1
and parm_2. It can read the variables that are passed in via arg, and it sends back one result string via
the return instruction. It cannot change the value of any of the arg variables in the caller. These are passed in
on a read-only basis to the function or subroutine, which can only pass back one string value by a
return instruction.

Another approach to passing data items between routines is to specify exposed variables on the proce-
dure instruction. These variables are available for both reading and updating by the invoked routine:

function_name: procedure expose variable_1 array element.l
In this case the function or subroutine can read and manipulate the variable variable_1 and the spe-
cific array element array_element. 1. The function or subroutine has full read and update access to

these two expose'd variables.

With this knowledge, here’s an alternative way to structure the relationship between caller and called
routine:

calling routine:

parse arg parm_1 parm 2 . /* get command-line arguments from the user */
call subroutine_name /* call the subroutine (or function) */
say 'The function result is:' result /* retrieve RESULT from the routine */

say 'The changed variables are:' parm_ 1 parm 2 /* see if variables changed */

124

Subroutines, Functions, and Modularity

exit 0

subroutine_name: procedure expose parm_ 1 parm_2

/* refer to and update the variables parm 1 and parm 2 as desired &l
parm_1 = 'New value set by Sub. '

parm_2 = '2nd new value set by Sub.'

return result_string /* return result to caller 5

The output from this code demonstrates that the subroutine changed the values the caller originally set
for variables parm_1 and parm_2:

The function result is: RESULT_STRING
The changed variables are: New value set by Sub. 2nd new value set by Sub.

The procedure instruction limits variable access in the called function or subroutine. Only those vari-
ables specifically named on the procedure expose instruction will be available to the called routine.

To summarize, there are two basic approaches to making caller variables available to the called routine.
Either pass them in as input arguments, or code the procedure expose instruction followed by a vari-
able list. The called function or subroutine cannot change input arguments — these are read-only values
passed by the caller. In contrast, any variables listed on the procedure expose statement can be both
read and updated by the called function or subroutine. The calling routine will, of course, “see” those
updated variable values.

Two brief scripts illustrate these principles. This first demonstrates that the called routine is unable to
change any variables owned by its caller because of the procedure instruction coded on the first line of
the called routine:

/* This code shows that a PROCEDURE instruction (without an EXPOSE @
/* keyword) prevents a called function or subroutine from reading */
/* or updating any of the caller's variables. =
/* */
/* Argument-passing and the ARG instruction gives the called */
/* function or subroutine READ-ONLY access to parameters. &Y

calling routine:

variable_1 = 'main'
variable_2 = 'main'

call my subrtn(variable_1)

say 'main:' variable_1 variable_2 /* NOT changed by my_subrtn */
exit 0

my_subrtn: procedure

arg variable_1 /* provides read-only access */
say 'my_subrtn:' variable_1 variable_2 /* variable_2 is not set */
variable_1 = 'my_subrtn'

125

Chapter 8

variable_2 = 'my_subrtn'

say 'my_subrtn:' variable_ 1 variable_2
return

This is the output from this script:

my_subrtn: MAIN VARIABLE_2
my_subrtn: my_subrtn my_subrtn
main: main main

The first output line shows that the subroutine was passed a value for variable_1, but variable_2
was not passed in to it. The subroutine accessed the single value passed in to it by its arg instruction.
The second line of the output shows that the called routine locally changed the values of variables
variable_1 and variable_2 to the string value my_subrtn—but the last line shows that these assign-
ments did not affect the variables of the same names in the caller. The subroutine could not change the
caller’s values for these two variables. This is so because the procedure instruction was encoded on the
subroutine but it did not list any variables as expose'd.

This next script is similar but illustrates coding the procedure expose instruction to allow a called rou-
tine to manipulate the enumerated variables of its caller:
/* This code shows that ONLY those variables listed after EXPOSE */

/* may be read and updated by the called function or subroutine. */

calling routine:

variable_1 = 'main'

array_name. = 'main' /* The called routine can update &Y/
array_element.l = 'main’ /* array elements if desired. “
not_exposed = 'main'

call my_ subrtn /* don't pass parms, use EXPOSE */
say 'main:' variable_ 1 array name.4 array_element.l not_exposed
exit 0

my_subrtn: procedure expose variable_ 1 array name. array_element.l

say 'my_subrtn:' variable_ 1 array name.4 array_element.l not_exposed

variable_ 1 = 'my_subrtn' /* These will be set back in the */
array_name.4 = 'my_subrtn' /* caller, since they were w
array_element.l = 'my_subrtn' /* on the PROCEDURE EXPOSE. wY

say 'my_subrtn:' variable_ 1 array name.4 array_element.l not_exposed
return

The output from this script is:

my_subrtn: main main main NOT_EXPOSED
my_subrtn: my_subrtn my_ subrtn my_subrtn NOT_EXPOSED
main: my_subrtn my_subrtn my subrtn main

126

Subroutines, Functions, and Modularity

The first output line shows that the subroutine accessed the three caller’s variables listed on the proce-
dure expose instruction. This shows the three variables set to the string value main. The fourth vari-
able shows up as NOT_EXPOSED because the subroutine did not list it in its procedure expose
statement and cannot access it.

The second output line shows that the subroutine set the value of the three variables it can change to the
value my_subrtn. This line was displayed from within the subroutine.

The last output line confirms that the three variables set by the subroutine were successfully passed back
to and picked up by the caller. Since only three variables were passed to the subroutine, the fourth vari-
able, originally set to the string value main by the caller, still retains that same value.

What about external routines? Invoke them just like internal routines, but the Rexx interpreter always
assigns them an implicit procedure instruction so that all the caller’s variables are hidden. You cannot
code a procedure expose instruction at the start of the external routine. Pass information into the exter-
nal routine through input arguments. Code a return instruction to return a string from the external rou-
tine. Or, you can code an exit instruction with a return value.

For internal routines, if you code them without the procedure instruction, all the caller’s variables are
available to the internal routines. All the caller’s variables are effectively global variables. Global variables
are values that can be changed from any internal routine. Global variables present an alternative to pass-
ing updatable values into subroutines and functions via the procedure expose instruction.

Developers sometimes like using global variables because coding can be faster and more convenient.
One does not have to take the time to consider and encode the correct procedure expose instructions.
But global variables are not considered a good programming practice because they violate one of the key
principles of modularity — that variables are explicitly assigned for use in specific modules. So that you
recognize this scenario when you have to maintain someone else’s code, here is the general script structure
for using global variables:

/* TIllustrate that Global Variables are accessible to ALL internal routines */
main_routine:

a = 'this is a global variable!'

call my_subroutine

say 'Prove subroutine changed the value:' a

feedback = my_function ()

say 'Prove the function changed the value:' a

exit 0

my_subroutine:
/* all variables from MAIN_ROUTINE are available to this routine for
read and or update */
a = 'this setting will be seen by the caller'
return

my_function:
/* all variables from MAIN_ROUTINE are available to this routine for read
and or update */
a = 'this new value will be seen by the caller'
return 0

127

Chapter 8

The program output shows that the two internal routines are able to change any variable values in the
calling routine at will. The two output lines are displayed by the driver. The latter portion of each line
shows that the subroutine and function were able to change the value of the global variable named a:

Prove subroutine changed the value: this setting will be seen by the caller
Prove the function changed the value: this new value will be seen by the caller

All you have to do to use global variables is neglect to code the procedure instruction on subroutines
on functions. This is convenient for the developer. But in large programs, it can be extremely difficult to
track all the places in which variables are altered. Side effects are a real possibility, unexpected problems
resulting from maintenance to code that does not follow the principles of structured programming and
modularity.

To this point, we’ve discussed several ways to pass variables into and back from functions and subrou-
tines. This chart summarizes the ways to pass information to and from called internal subroutines and

functions:
Technique Internal Routine’s Variable Access Comments
Pass arguments as Read-only access to the passed Standard for passing in
input parameters variables only read-only values
procedure expose Read and update access to expose’d Standard for updating
variables only some variables while
hiding others
procedure Hides all the caller’s variables Standard for hiding all
(without expose) caller’s variables
Global variables Read and update access to all the Violates principles of
caller’s variables modularity; works fine
but not recommended
return expression Send back one string to the caller Standard for passing
back one item of
information

Whichever approach(es) you use, consistency is a virtue. This is especially the case for larger or more
complex programming applications.

Another Sample Program

This next sample script illustrates a couple of the different ways to pass information into subroutines.
One data element is passed in as an input argument to the routine, while the other data item is passed in
via the procedure expose instruction.

128

Subroutines, Functions, and Modularity

This program searches a string and returns the rightmost occurrence of a specified character. It is a recur-
sive function that duplicates functionality found in the built-in 1astpos function. It shows how to pass
data items to a called internal routine as input parameters and how to use the procedure expose
instruction to pass in updateable items.

/* RINDEX: 2y
/% Y
A Returns the rightmost position of a byte within a string. “y

rindex: procedure expose search_byte
parse arg string /* read the string */
say string search_byte /* show recursive trace for fun */

length (string) /* determine string length */
length(string) -1 /* determined string length - 1 */

string_length
string_length_1

if string == '' /* here's the 'end recursion' condition Y/
then return 0
else do
if substr(string, string length,1l) == search_byte then
return string_length
else

new_string_to_search = substr(string,l,string length_1)
return rindex (new_string_ to_search)
end

This script requires two inputs: a character string to inspect for the rightmost occurrence of a character,
and the character or “search byte” to look for.

When invoked, the function looks to see if the last character in the string to search is the search character.
If yes, it returns that position:

if substr(string, string length,1l) == search_byte then
return string_length

If the search character is not found, the routine calls itself with the remaining characters to search as the
new string to search:

new_string_to_search = substr(string,l,string_length_1)
return rindex(new_string_to_search)

The end condition for recursion occurs when either the character has been found, or there are no more
characters in the original string to search.

129

Chapter 8

The function requires two pieces of input information: the string to inspect, and the character to find
within that string. It reads the string to inspect as an input parameter, from the parse arg instruction:

parse arg string /* read the string */
The first line in the function gives the program access to the character to locate in the string:
rindex: procedure expose search_byte

The two pieces of information are coming into this program in two different ways. In a way this makes
sense, because the character to locate never changes (it is a global constant), but the string that the func-
tion searches is reduced by one character in each recursive invocation of this function. While this pro-
gram works fine, it suggests that passing in information through different mechanisms could be
confusing. This is especially the case when a large number of variables are involved.

For large programs, consistency in parameter passing is beneficial. Large programs become complicated
when programmers mix internal routines that have procedure expose instructions with routines that
do not include this instruction. Rexx allows this but we do not recommend it. Consistency underlies
readable, maintainable code. Coding a procedure or procedure expose instruction for every internal
routine conforms to best programming practice.

Summary

This chapter describes the basic mechanisms by which Rexx scripts are modularized. Modularity is a
fundamental means by which large programs are rendered readable, reliable, and maintainable.
Modularity means breaking up large, complex tasks into a series of smaller, discrete modules. The inter-
faces between modules (the variables passed between them) should be well defined and controlled to
reduce complexity and error.

We covered the various ways to pass information into internal routines and how to pass information
from those routines back to the caller. These included passing data elements as input arguments, the
procedure instruction and its expose keyword, and using global variables. We discussed some of the
advantages and disadvantages of the methods, and offered sample scripts to illustrate each approach.
The first sample script read a command-line argument from its environment and passed this string as an
input argument to its subroutine. The subroutine passed a single value back up to its caller by using the
return instruction. The last sample script was recursive. It invoked itself as a subroutine and illustrated
how the procedure expose instruction could be used to pass values in recursive code. This latter
example also suggests that consistently encoding the procedure expose instruction on every routine is
a good approach for large programming projects. This consistent approach reduces errors, especially
those that might otherwise result from maintenance on large programs that use global variables.

130

Subroutines, Functions, and Modularity

Test Your Understanding

1. Whyis modularity important? How does Rexx support it?

2. What's the difference between a subroutine and function? When should you use one versus the
other?

3. What is the difference between internal and external subroutines? How is the procedure
instruction used differently for each?

4. What is the function search order, and how do you override it?

5. What are the basic ways in which information is passed to/from a caller and its internal
routines?

6. What happens if you code a procedure instruction without an expose keyword? What's the
difference between parameters passed in to an internal subroutine and read by the arg instruc-
tion versus those that are exposed by the procedure expose instruction?

7. In condition testing, TRUE is 1 and FALSE is 0. What happens when you write an if instruction
with a condition that evaluates to some nonzero integer other than 1?

131

Debugging and the
Trace Facility

Overview

Where scripting languages really shine is in the fast, easy program development they make possi-
ble. Their interpretive nature leads to built-in tools that make debugging much easier.

Rexx offers tremendous power in its tracing facility. Implemented by its trace instruction, the
trace built-in function, and a variety of supporting functions and features, the tracing facility
enables you to quickly and easily step through your code as it executes. Rexx will display the
results of expression evaluation, variable contents, lines of code as they are translated and run,
program position . . . indeed, almost anything going on in the script. You can single-step through
your code, allowing Rexx to pause before or after each line of the source code. You can execute
Rexx statements while your script is paused, for example, to inspect or alter the values of vari-
ables. At anytime, you can easily turn tracing on, off or to some different level of granularity. The
trace facility makes debugging even the most complex logic a simple affair. This chapter describes
the trace facility and how to use it in detail.

The say Instruction

Figure 9-1 shows three basic approaches to debugging Rexx scripts.

Chapter 9

Debugging Options

TRACE Instruction

in batch mode Interactive TRACE

SAY Instruction

+ Quick, informal + Batch script trace + Resolves challenging problems
+ Great for simple problems + Can set trace level based on + Allows real-time code tests
+ Requires changing code user input + Programmer-directed
(adding SAY instructions) + Many trace settings available interaction resolves problems
+ Good for "paper analysis" of + Quick & easy, but powerful
a problem
Figure 9-1

Let’s start with the most basic approach to debugging. This simple technique temporarily adds extra say
statements to the code to display variable values. Rexx makes this easy because of the manner in which
the say instruction automatically concatenates expressions.

Take as an example the rindex program in the previous chapter. Recall that this script returns the right-
most position of a given character within a string. When first written and run, this program displayed
this output as its answer regardless of the input search string:

The rightmost byte position is: 0

Clearly, something was wrong. Simply adding one line with a say instruction at the start of the routine
made the problem evident:

say string search_byte
When the program ran with this debugging aid, here were the results from the say instruction:

D:\Regina\pgms>regina rindex.rexx abc b
abc SEARCH_BYTE

ab SEARCH_BYTE

a SEARCH_BYTE

SEARCH_BYTE

The rightmost byte position is: 0

The value of the byte to search for, entered in the command line as the character b, was not being picked

up by the routine. Instead of the character string SEARCH_BYTE, we should have seen the input parame-
ter string b repeated on each output line.

134

Debugging and the Trace Facility

After adding the expose search_byte keywords to the procedure instruction, the program result
was what we would expect:

D:\Regina\hf>regina rindex.rexx abc b
abc b

ab b

The rightmost byte position is: 2

So, the problem was improperly passing a value to a subroutine. The say instruction is ideal for this
quick debugging because it automatically concatenates operands for instant output.

The trace Instruction

While quickly adding a say instruction to display some variable values or to trace execution of a pro-
gram works well, many debugging situations require more powerful techniques. The trace instruction
provides information at any level of detail and fulfills the need for both power and flexibility.

Typical encoding of the trace instruction is simple:

trace [setting]

where the setting is any one of the following values:

Trace Setting Name Function
A All Traces all clauses before execution.
C Commands Traces all host commands before execution. This allows you

to ensure that the command you’re sending to the operating
system (or other external environment) is correct. It's espe-
cially useful if the script dynamically creates or prepares
those commands. If the command causes error or failure, its
return code also appears.

E Error Traces any host command that results in error or failure
after it executes.

F Failure Traces any host command that fails along with its return code.

I Intermediates Traces all clauses before their execution, including interme-
diate results during expression evaluation.

L Labels Traces labels as execution runs through them.

N Normal Nothing is traced except that host commands that fail are
traced after their execution, along with their return codes.

o Off Nothing is traced.

R Results Traces clauses before their execution along with the final

results of expression evaluation. Displays values assigned
from pull, arg,and parse instructions.

135

Chapter 9

When is each of these trace settings most useful? This setting is the default:
trace n

It traces nothing except failed host commands. It is minimally intrusive and is a good default value for
working programs.

trace r is recommended for general-purpose debugging. It traces clauses before they execute and the
final results of expression evaluation. It also shows when values change by pull, arg, and parse
instructions. When you need to run a trace, trace r is usually where to start. If problems persist, trace
i gives fuller detail. It gives everything that trace r does plus includes the details of intermediate
expression evaluation.

If you're unsure about what routines are being entered and executed, try trace 1. This lists all labels pro-
gram execution passes through and shows which internal routines are entered and run. It’s an easy way
to determine if a subroutine or function you coded is being entered and executed at the proper time.

If the problem is that commands to the host operating system are failing, trace c will trace all host
commands before their execution. For any that cause an error or fail, it also shows the return code from
the command. trace e and trace f are weaker forms of trace c that trace host command errors and
failures, respectively. We recommend trace c as simplest and most complete if problems are occurring
in executing host commands.

Where does one code the trace instruction? Anywhere in the code you like. A simple approach is to
code one trace instruction near the very top of the program. It can be set to trace n (the default), and
then changed to any other value desired during debugging. Just remember to set it back to trace n
once debugging is completed. This approach is simple and consistent but does require changing the
code to change the trace setting.

Another approach is to code a trace instruction at the start of the program, then have the program read
the trace option dynamically, from the outside environment. For example, the program could prompt
the user to enter the trace setting. Or, it might accept it as an optionally coded command-line argument
to the program. Or, the program could even read this information from a “control file” or configuration
file that dictates program behavior. For example, under Windows you could use an . ini file to config-
ure tracing. Under Unix or Linux, you might use a config file.

However you set the trace option, you can code as many trace instructions as you like in a single script.
These can flip the trace off or on, or set different levels of trace detail appropriate to different routines or
sections of code. Scripts can dynamically control their trace levels themselves.
The trace instruction accepts the setting as a constant (a string literal or symbol), or it can be encoded
as a variable or even as an expression to evaluate with the optional value keyword. These are the two
basic formats for the trace instruction:

trace [setting]

or

trace value [expression]

136

Debugging and the Trace Facility

Here’s how to set the trace level by using a variable:

trace_variable = 'r'
trace value trace_variable

The trace instruction can be coded multiple times in a program, and you can turn tracing on or off (by
trace o) as desired. This is mainly of use in very large programs, where you really want to zero in only
on problems occurring in a newly added routine or better understand the effects of newly changed or
problem code.

Let’s look at some examples. Here is the output that results from placing a trace r instruction in the
rindex function immediately after the 1st line of code (after the procedure instruction):

D:\Regina\hf>regina rindex.rexx ab b

16 *-* parse arg string /* read the string @
>>> "ab"

18 *-* say string search_byte /* show recursive trace for fun */
>V> "ab"
>V> "o

ab b

20 *-* string_length = length(string) /* determine string length &Y/
>V> "ab"

21 *-* string_length 1 = length(string) -1 /* determined string length - 1 */
>V> "ab"

23 *-* if gstring == "' /* Here's the 'end recursion' condition. */
>V> "ab"

25 *-* do

26 *-* if substr(string,string length,l) == search_byte then
>V> "ab"
>V> w20
>V> "o

27 *-* return string_ length
>V> w0

The rightmost byte position is: 2

With trace r,line 16 shows how the parse arg instruction assigns values on entry to this function.
Every expression appears prior to execution, then the result to which it evaluates. The listing shows that
this trace setting resolves most debugging needs handily.

If you continue to have trouble, change the trace rto trace i and see the intermediate results of
expression evaluation as well. This makes for longer, more complex output that you'll want to see only if
you're having real trouble in debugging.

Let’s take out the trace instruction in the rindex function, and instead place a single trace 1 at the
top of the driver program. This traces all the labels the script execution passes. In this case, it verifies that

the driver routine invokes the rindex function:

D:\Regina\hf>regina rindex abc a
14 *-* rindex:

137

Chapter 9

The trace 1 label trace is great for automatically displaying which internal routines are called during a
large program. It gives more concise output than trace r when you're just worried about which rou-
tines are being called and when. Use it for those situations in which you’re not sure if a routine is being
called or if it is not clear how often a routine is invoked.

To debug scripts that issue operating system commands, trace c is a good choice. It traces host com-
mands prior to execution, and it gives the return code from any command that results in error or failure.
To check its output, here’s a simple test program that we ran under Windows. This program intends to
issue the dir (list directory) command to Windows, but the command was misspelled as dri:

/* Script to test tracing output for a failed operating system command */
trace ¢
'dri’ /* Mistake - this should have been coded as: dir)

Running this script gives this output:

3 w=i gl "
'dri' is not recognized as an internal or external command,
operable program or batch file.
+++ RC=1 +++

The output clearly shows the problem with the operating system command that was issued.

trace e shows any host command that results in error or failure and its return code, while trace £
shows host commands that result in failure and their return code. We recommend trace c because it
always lists the command that caused the problem.

Reading Trace Output

Trace output is designed to be easy to read. The preceding example shows that lines are numbered for
easy identification. Right after the line number is the identifier *-* and the source line of code from the
program. The symbol >>> identifies the value assigned to variables as a result of parsing or a value
returned from an internal routine. For example, look at these two lines from the trace of the preceding
rindex function:

16 *-* parse arg string /* read the string */
>>> "ab"

The trace output on the second line shows that this string was assigned to the variable string as a
result of the parse arg instruction.

When the trace shows the contents of a variable, it precedes with this symbol >V>. These two statements
show that the string sent back via the return instruction is “2”:

27 *-* return string_length
>V> L

Notice how the trace is indented to convey more information. The strings displayed on the screen by the
say instruction start on the left, while program statements and variable contents are indented. This

138

Debugging and the Trace Facility

sample code is pretty linear, but where nesting is more involved, indentation makes the trace output
much easier to follow.

For many programs, just these simple rules are all that is required to interpret trace output. Here are the
trace output identifiers you might encounter:

Trace Output Identifier Meaning
> A source line or clause
et A trace message
>>> The result of an expression (for trace r), a value assigned to a

variable from parsing, or the string returned by an internal
function or subroutine

>.> Identifies a what is assigned to a placeholder(the period) dur-
ing parsing

These output prefixes appear only if trace intermediates (trace i) is in effect:

Trace Output Identifier Meaning
>V> Identifies variable contents
>L> Identifies a literal string
>F> The result of a function call
>P> The result of a prefix operation
>0> The result of an operation on two items
>C> Contents of a compound (array) variable after substitution and
before use

The trace Function

The trace instruction enables scripts to dynamically turn the trace facility off and on, and to specify the
level of detail provided by the trace. In addition to the trace instruction, there is also a trace built-in
function. The trace function returns the current value of the trace, and optionally sets the trace level to
anew value.
When coded without an input parameter, the trace function returns the current trace setting:

say trace() /* display current trace setting */

An input argument can be coded to set the trace:

current_trace = trace('0") /* turns the trace setting off Y/

139

Chapter 9

The allowable values for the trace function are the exact same as those for the trace instruction. The
following table lists the possible trace function values. Since these values are the same as those for the
trace instruction, you can review the trace instruction table near the beginning of this chapter for a
full explanation of each setting. This table lists the one-word meanings of the options for easy recall:

Trace Setting Meaning

All
Commands

Errors

moE oA >

Failure
Intermediates

Labels

b

Normal
Off

Results

~ O Z =

When the trace function includes an operand, it returns the current trace setting; then it alters the
trace level to the new setting. Look at these three instructions run in sequence:

say trace() == N /* displays the default setting */
say trace('C') == N /* returns current trace setting, then alters it */
say trace() == C /* displays the current trace setting */

Interactive Tracing

So far we have discussed the trace setting as if it is something one turns on or off (multiple times if
desired). Then you read its output after the script executes. This is a “batch” approach to debugging. In
fact, one of the biggest benefits of tracing is the potential to pause the script at desired points and per-
form real-time operations, called interactive tracing.

To start interactive tracing, code the trace instruction with a question mark (?) preceding its argu-
ment. For example, this statement starts interactive tracing for results:

trace °?r /* turn on interactive tracing for Results */
Here’s another example. This statement turns interactive tracing on for commands:
trace ?c /* turn on interactive Command trace */
The ? is a toggle switch. If tracing is off, this it turns on; if tracing is on, this turns it off. The first trace

instruction or function you execute with ? encoded turns tracing on. The next one that executes with the
question mark will turn it off.

140

Debugging and the Trace Facility

When in interactive mode, the Rexx interpreter pauses after each statement or clause. Or, to be more pre-
cise, the Rexx interpreter pauses after executing each statement and displays the next statement to exe-
cute. At this point, you can perform any one of three actions listed in the following table:

Your Action Result

Press the <ENTER> key (also referred The interpreter continues until the next
to as entering a null line) point at which it should pause.

Enter an equals sign = The interpreter reexecutes the last

clause. This allows you to “go back” one
clause, make changes, and allow it to be
rerun. For example, you could alter the
value of a variable or change how an 1 £
instruction might be evaluated.

Enter any Rexx clause or expression or statement Rexx immediately executes what you've
entered.

The last option listed in this table bears some explanation. When the interpreter pauses, you can enter
any valid Rexx clause, expression, or statement. The interpreter then immediately executes what you've
entered. This allows you to change the value of variables to see how the program will respond. For
example, you could enter an executable statement like this to alter a variable’s value and see how this
alters the script’s execution:

my_variable = '123"

As another example, you could enter statements to display the contents of an array. This would allow
you to verify that the array contains what you think it should at that point in your program:

do j =1 to 5; say array name.j ; end ;

You can even enter a statement to change the level of detail in the trace output, or you can run any other
valid Rexx statement.

Interactive tracing lets you single-step through a script, inspecting and then running that code one clause
at a time. You can inspect or change variables at will, see how code changes would affect execution,

change various aspects of the environment, and alter the trace level itself.

Settings for the trace instruction are saved and restored across internal routines. If you enter an internal
routine of no interest, merely turn off the trace:

trace o /* turn trace off */
The original trace setting will be restored when the caller is reentered.
Trace options are one of the few places in which Rexx uses abbreviations. Normally, the language uses
full words for enhanced readability. The reason the trace instruction is an exception is that interactive

tracing allows terse input from the keyboard so that the developer does not have to type so much and
can work with simple mnemonic abbreviations when debugging.

141

Chapter 9

Sometimes during a trace, its useful to be able to “skip ahead” a number of clauses with the interactive
trace temporarily turned off. To do this, code a negative number on the trace instruction. This tells the
interpreter to skip tracing a certain number of clauses, and then to resume as before. For example, this
statement skips tracing the next 50 clauses, after which tracing resumes:

trace -50

You can also code a positive number on the trace instruction to skip a specified number of interactive
pauses. For example, this instruction skips the next five interactive pauses, then resumes tracing as
before:

trace 5

Some Rexx implementations allow turning on the trace externally, so you do not have to alter your script
to trace it. An example is mainframe Rexx, described in detail in Chapter 29. Mainframe Rexx under
operating systems such as VM and OS permits immediate commands, which can alter the trace level from
outside the script while the script executes. All standard Rexx interpreters support internally changing
the trace through the trace instruction and trace function.

Summary

As an interpreted scripting language, Rexx offers superior debugging facilities. Chief among them is
interactive tracing, by which you can dynamically inspect and even alter your script’s variables and its
execution.

In most cases a simple batch approach to turning on the trace quickly resolves any programming prob-
lem. But when called for the full power of a completely interactive tracing facility is available. Using it,
there are very few logic and programming errors you cannot quickly rectify. The trace facility is a big
advantage of Rexx scripting versus programming in traditional compiled programming languages.
Interacting tracing can dramatically reduce the time spent in debugging and resolving logic errors.

Test Your Understanding
1. Whatis the default setting for the trace instruction? What settings are recommended for:
Q General-purpose debugging
Q Seeing which subroutines and internal functions are being entered and executed
Q Viewing intermediate results of all clauses
2. Your script issues commands to the operating system, but they are failing. What do you do?
3. How do you turn interactive tracing on? Off?

4. How do you single-step through the code of a script as it executes?

142

10

Errors and Condition
Trapping

Overview

Full-featured programming languages require a mechanism through which programmers can
catch, or trap, exceptions or errors. In Rexx, this is often referred to as exception handling or condition

trapping.

Rexx offers a simple, but serviceable, means for trapping exceptional conditions. When an exception
occurs, control is transferred to a routine to address the error. After the error routine handles the
condition, execution of the primary script can resume.

This chapter explores Rexx’s exception-trapping mechanism and the way in which you can use it
in scripts to identify, capture, and manage errors. First, we’ll discuss the specific kinds of errors
that Rexx can trap. We'll discuss how to set up, or enable, error trapping. Then we'll take a look at
a program that illustrates the exception-trapping mechanism. We’ll progressively improve this
program to expand its error-trapping capabilities and demonstrate different approaches to manag-
ing errors. We conclude by mentioning some of the limitations of exception conditions in standard
Rexx, and how some Rexx interpreters extend beyond the ANSI standards to provide more gener-
alized error trapping.

Error Trapping

When an error condition occurs, it is considered to be raised. Rexx interpreters that adhere to the
TRL-2 standard allow the raising of six different error conditions, while the ANSI-1996 standard
adds a seventh error condition. The table below lists all the error conditions:

Chapter 10

Error Condition Use

ERROR Raised when a host command indicates an error upon return.
FAILURE Raised when a host command indicates failure.

HALT Raised by an external interrupt to a program. Example: the user

presses Control-C (aka Ctrl-C).

NOVALUE Raised when a variable that is to be used has not been assigned a
value. The invalid variable reference could occur in an expression, in a
parse template, or in a procedure or drop instruction.

NOTREADY Raised by an input/output (I/O) error on a device unable to handle
the I/O request.

SYNTAX Raised by a syntax or runtime error in the script.

LOSTDIGITS Raised when an arithmetic operation would cause the loss of digits.

Significant digits in the result exceed the number of significant digits
currently set by numeric digits or the system default of nine signifi-
cant digits. (This trap was added in the ANSI-1996 standard and may
not be present in Rexx implementations that adhere to the earlier TRL-2
standard.)

How to Trap Errors

The procedure to manually trap errors is simple. First, code either a signal or call statement in your
script to identify the error you wish to intercept. This instruction can optionally specify the name of the
routine to transfer control to when the error occurs. Second, code the routine to handle the error. Rexx
transfers control to this trap routine based on the label encoded in the signal or call statement that
refers to that error condition.

If the signal or call statement does not the specify the name of the error routine to which to transfer
control, by default Rexx transfers control to a routine with the same name as that of the error. For exam-
ple, say you code:

signal on novalue

This statement enables the NOVALUE error condition without specifically naming the error routine to han-
dle it, so Rexx assumes that it will find an error routine named NOVALUE to handle the condition.

Here’s the basic coding template for how to enable and code for error conditions:
main_routine:
signal on novalue name novalue_handler

/* main_routine's code goes here. */

144

Errors and Condition Trapping

exit
novalue_handler:
/* Code to handle the NOVALUE error goes here. */

signal main_routine /* go back to the main_routine after error-handling */

Figure 10-1 shows the basic logic of conditions or error handling diagrammatically.

Condition Trapping

signal on condition name label_name

.code of the main routine...

label_name:

.code of the error handling routine...

Figure 10-1

Remember that we previously saw the signal instruction used in a manner similar to an unconditional
GOTO statement. This is a new form of the signal statement that sets up and enables a condition trap.

In the sample code, this line enables the trap for the NOVALUE condition and names the routine that will
handle this error:

signal on novalue name novalue_handler

This line does not immediately transfer control to the routine to which it refers; it only enables the trap so
that the error routine will be invoked when and if the exception condition named on the signal state-
ment (the NOVALUE condition) occurs.

The name keyword is followed by the name of the error routine for that condition. In this example,

the name of the routine that will be run when the NOVALUE condition occurs is novalue_handler.
Somewhere later in the code there must be a label that identifies the routine that handles the error condi-
tion. This error-handling code performs any appropriate processing for the specified condition. In most
cases, error routines return control to the point of invocation after printing an error message or perform-
ing other corrective action. But they could end the script or take any other action desired.

145

Chapter 10

The signal or call instructions can be coded without explicitly specifying the name of the trap routine. In
this case, the label of the error routine must be the same as the condition that is raised. Here are examples:

signal on error /* enables ERROR trap to be handled by routine named ERROR: */
signal on novalue /* NOVALUE condition requires a routine labeled NOVALUE: */
call on failure /* FAILURE errors are handled by a routine labeled FAILURE: */

We'll get into the differences between signal onand call on later. For now, note that signal can
be coded with all seven conditions but that call cannot be coded with the SYNTAX, NOVALUE, and
LOSTDIGITS errors. call enables a smaller set of error-condition routines.

A Sample Program

Here’s a simple script that illustrates how to trap syntax or runtime errors. The program prompts the user
to enter a Rexx expression or statement. Then it executes the interpret instruction to evaluate that
expression and execute it. The prompt/interpret loop continues indefinitely until the user enters the let-
ters exit. At that point the interpret instruction executes the exit instruction the user entered, which
terminates the program.

Besides showing how to trap an error condition, this is a useful script because it allows you to interac-
tively test various Rexx statements. You can purposely enter a statement with invalid syntax and read
the error message with which Rexx responds. The script provides a handy “statement tester.” It also
shows how the interpret instruction can be used to dynamically interpret and execute Rexx state-
ments. Here’s the script:

/* REXX TRY1 */
/* */
A Reads user-input Rexx statements and interprets them. */

say "Type: 'exit' to end this program"

start_loop:
signal on syntax /* establish error trap */

do forever

call charout ,"==> " /* prompt/read on 1 line */

parse pull expression$

interpret expression$ /* INTERPRET user's input */
end

end_start_loop: exit 0

SYNTAX :
say 'SYNTAX:' errortext(rc) '(error' rc')' /* write error*/
signal start_loop /* return to processing */

Here’s a sample interaction with the program:
C:\Regina\pgms>regina rexx_tryl.rexx

Type: 'exit' to end this program
==> say 3+2

146

Errors and Condition Trapping

5

==> if a=3 then

SYNTAX: Incomplete DO/SELECT/IF (error 14)
==> if a=3

SYNTAX: THEN expected (error 18)

==> exit

The sample interaction shows that the user starts the program and it prompts him or her to enter a Rexx
statement. He or she enters: say 3+2. The interpret instruction evaluates and executes this instruc-
tion, so the script displays the result: 5. Next the user enters an invalid if instruction. The interpret
instruction runs it, which raises the SYNTAX exception.

In the script, this line enabled the syntax condition trap. The error routine it enables must be labeled
SYNTAX: since no other explicit label was specified:

signal on syntax /* establish error trap */

All the error handler does in this script is write an error message and send control back to a label in the
main routine. Here is the code for the exception handler:

SYNTAX :
say 'SYNTAX:' errortext(rc) '(error' rc')' /* write error */
signal start_loop /* return to processing */

rc is one of Rexx’s special variables (others include result and sigl). rc contains the error code associated
with the syntax error. The line that displays the error message applies the built-in function errortext to
the error code in special variable rc to display the complete text of the syntax error message to the user. (In
the cases of ERROR and FAILURE conditions, rc is set to the return code from the failed host command.)

At the end of the SYNTAX error routine, the signal start_loop instruction transfers control back to
the main routine. When using signal to enable the error routine, the trap routine must explicitly direct
execution back to the main program, if desired. This return of control from the exception routine is not
automatic when the trap is invoked by the signal instruction.

Note the sample code transfers control back to a point at which it will reexecute the signal statement that
enables the ERROR trap:

start_loop:
signal on syntax /* establish error trap */
Whenever a trap is enabled by signal, then processed, it must be reenabled again to reestablish it. In
other words, processing a trap by signal turns off that trap and the condition must be reenabled if it is
to be captured again later. So, typically, the first thing a script does after processing an error condition is
reenable that condition by reexecuting the signal statement that set it up.
If we do not reexecute the signal on syntax statement to reenable the error condition, the default

action for that error condition occurs if the error condition is raised again. The default action is what
happens whenever an error condition is disabled or has not yet been enabled at all within the script.

147

Chapter 10

A signal onorcall on instruction has not been executed to enable the error trap. The default action
for a syntax error is for Rexx to write an appropriate error message and stop executing the script.

These are the default actions for all untrapped conditions:

Condition Default Action

SYNTAX and HALT Rexx writes an appropriate error message and ends the program.
ERROR, FAILURE, NOVALUE, The condition is ignored and the program continues.
NOTREADY, LOSTDIGITS

You can dynamically enable and disable trap routines from your code. To turn a condition on, code signal
onorcall on.Todisableit, use signal off or call off.Here is an example:

call on error /* enable ERROR error trap */

/* some code might go here */

call off error /* disable ERROR error trap, accept default action for error */
/* some code might go here */

call on error /* enable ERROR error trap again */

You can also code multiple routines to handle a single error condition, then dynamically determine
which one will be enabled at any time. This code first enables one error routine, then another:

signal on notready name notready routine_1 /* enable NOTREADY error handler */
/* some code might go here */

signal off notready /* enable a different NOTREADY &y
signal on notready name notready_routine 2 /* error handling routine */

Of course, only one routine should be enabled at any time. If you code statements that try to enable more
than one routine, Rexx simply uses the last one enabled. In the following code sequence, Rexx would
run the second routine when the SYNTAX error is raised:

signal on syntax name routine_1
signal on syntax name routine_2

An Improved Program

Let’s improve the preceding program to manage all the conditions Rexx can raise for traps. This version
uses signal to set traps for all seven conditions. You can enter various expressions to see which the pro-
gram identifies through its error conditions. Here’s the script:

148

Errors and Condition Trapping

/* REXX TRY2: */
/% =Y
A Reads user-input Rexx statements and interprets them. =

say "Type: 'exit' to end this program"

start_loop:
signal on syntax name syntax_rtn /* establish error traps */

signal on error name error_rtn
signal on failure name failure_rtn
signal on halt name halt_rtn

signal on notready name notready_ rtn
signal on novalue name novalue_rtn
signal on lostdigits name lostdigits_rtn

do forever

call charout ,"==> " /* prompt/read on 1 line w2/

parse pull expression$

interpret expression$ /* INTERPRET user's input */
end

end_start_loop: exit 0

SYNTAX_ RTN:
say 'SYNTAX:' errortext(rc) '(error' rc')'
signal start_loop

ERROR_RTN:
say 'ERROR: The comand entered returned an error, rc=' rc
say 'The command was:' sourceline(sigl)
signal start_loop

FATLURE_RTN:
say 'FAILURE: Uninitialized variable or failure in system service'
signal start_loop

HALT RTN:
say 'HALT: External interrupt identified and captured'
signal start_loop

NOTREADY_RTN:
say 'NOTREADY: I/O error occurred'
signal start_loop

NOVALUE_RTN:
say 'NOVALUE: Variable was not assigned a value:' expression$
signal start_loop

LOSTDIGITS_RTN:

say 'LOSTDIGITS: arithmetic operation lost significant digits'
signal start_loop

149

Chapter 10

This script operates the same as the simpler version but traps more error conditions. Here’s a sample
interaction:

D:\Regina\pgms>regina rexx_try2.rexx
Type: 'exit' to end this program

==> say 3+4

7

==> say a

NOVALUE: Variable was not assigned a value: say a

==> a=4

==> say a

4

==> /* A user entered CTRL-C on this line */
HALT: External interrupt identified and captured

== "@led" /* user incorrectly enters DIR command */

'dri' is not recognized as an internal or external command,
operable program or batch file.
19 *-* interpret expression$ /* INTERPRET user's input ¥/
+++ RC=1 +++
ERROR: The command entered returned an error, rc = 1
The command was: interpret expression$ /* INTERPRET user's input ¥/
==>

The interaction shows that the say a instruction was intercepted by the NOVALUE condition, because the
variable a had not yet been assigned a value. The blank input line is where the user entered the key com-
bination Control-C. The HALT condition routine caught this and displayed its message.

Lastly, the user tries to enter a Windows dir (list directory) command, but mistypes it as: dri. The
Error-condition trap gains control. It displays the value returned by the failed command, its condition
code, available in Rexx special variable rc. Rexx also sets the value of special variable sigl whenever
transfer of control is effected to an internal subroutine or by raising a condition. sigl is set to the line in
the source code where the transfer occurred. It can be used to identify the line that caused the problem
by a trap routine. This script uses it as an input to the sourceline built-in function, which then displays
the source code of the line that caused the condition to be raised:

say 'The command was:' sourceline(sigl)
This line in the code resulted in this display output:

The command was: interpret expression$ /* INTERPRET user's input */

This correctly identifies the interpret instruction as the line in the script from which the condition was
raised.

We should note in passing that the sourceline function also has another use. Coding sourceline
without any arguments returns the number of lines in the script:

script_line_count = sourceline() /* determine number of lines in the script */

150

Errors and Condition Trapping

In this script, the seven signal on statements enable all the trap conditions. These instructions specify
the names of the trap routines. If not explicitly named, the routine names default to the name of the con-
dition which they trap. For example, the ERROR condition would require the label ERROR: in the script if
the signal on instruction does not specifically name some other error routine.

Each trap routine ends with this statement:
signal start_loop

The label start_loop occurs before the cascade of signal on instructions, so that after any trap routine
executes, the program reenables it. If the script did not do this, then each error condition would be dis-
abled after one execution of its corresponding error routine. The default action would then apply to any
error condition that was subsequently raised.

One more word about this sample program: It is somewhat system-dependent. For example, different
operating systems handle the Control-C entry in slightly different ways. An entry of Ctrl-C on one sys-
tem was immediately trapped in the program, while in another, it was necessary to enter Ctrl-C, then
press the Enter key. Your operating system may give slightly different results. When trapping error con-
ditions, it is very important to test the script on the system on which it will run.

With this improved version of this script, we have a truly useful program. Use it to interactively test any
Rexx statement and also learn about any of Rexx’s error conditions by trapping them. The script is a
generic Rexx “statement tester and verifier.” Its exception handling allows it to display good error mes-
sages to the user when a statement does not check out.

Special Variables

In this chapter, we’ve identified two more special variables, rc and sigl. In the TRL-2 standard, Rexx
has but three special variables— variables identified by a hardcoded keyword, into which Rexx places
information at certain times. This chart summarizes the special variables:

Special Variable Meaning
rc The return code from a host command, or a Rexx SYNTAX error code.
sigl The line number that caused control to jump to a label. This could be set

by the transfer of control caused by a trapped condition, or simply by a
regular call to an internal routine or invoking an internal function.

result The string sent back to a calling routine by the return instruction.
If return is coded without an operand result is set to uninitialized.

All special variables are uninitialized until an event occurs that sets them. While we won’t go into them
here, it is probably worth noting that the ANSI-1996 standard adds several more special variables to the
language.

151

Chapter 10

signal versus call

So far, our sample code has used the signal instruction. Rexx also permits enabling error conditions
through the call instruction. Let’s discuss the differences between signal and call.

First, signal applies to all seven error conditions. call does not apply to SYNTAX, NOVALUE, and
LOSTDIGITS errors. These are invalid and cannot be coded:

call on syntax /* Invalid ! */
call on novalue /* Invalid ! */
call on lostdigits /* Invalid ! */

Second, recall that signal forces an abnormal change in the flow of control. It terminates any do, if, or
select instruction in force and unconditionally transfers control to a specified label. call provides for
normal invocation of an internal subroutine to handle an error condition. It offers a more “normal” way
to implement trap routines through the commonly used subroutine mechanism. Control is automatically
transferred from the error routine back to the main program when the return instruction in the trap
routine executes (as with any called routine).

There is one wrinkle. The result special variable is not set when returning from a called condition trap;
any value coded on the return instruction is ignored.

To illustrate the use of call, here is a script that asks the user to input an invalid operating system com-
mand. This raises the ERROR condition and starts the ERROR : routine. The trap routine puts the user into
Rexx’s interactive debugging mode, from which he or she can enter various diagnostics. When the user
turns off the trace, the script continues. Here is the code:

/* REXX TRY3: */
/* */
/= Shows how CALL traps a command ERROR. 2y
/* Places user into interactive debugging mode. */

say "Type: 'exit' to end this program"
start_loop:
call on error /* establish error trap */

do forever

call charout ,"Enter bad command ==> " /* prompt */

parse pull expression$

interpret expression$ /* INTERPRET user's input */
end

end_start_loop: exit 0

ERROR:
say 'ERROR: The line entered returned an error, rc=' rc
say 'ERROR MESSAGE:' errortext(rc)

say 'ERROR LINE:' sourceline (sigl)

trace '?' /* put user in interactive trace mode */
say 'Interactive Trace'

return

152

Errors and Condition Trapping

At the program prompt, the user should enter an operating system (OS) command. For example, under
Windows he or she could enter the directory (dir) command:

Enter bad command ==> dir

This command executes normally. The error condition is raised when the user enters an incorrect operat-
ing system command:

Enter bad command ==> dri

In this case, the user mistyped the command. When the error is raised, the trap routine displays the error
message by the built-in function errortext. It also displays the source line that caused the problem by
using the sourceline function with the sigl special variable as an input parameter. Finally, it places
the user in interactive trace mode through this instruction:

trace '?'

Once inside the interactive trace, the user could interactively enter whatever statements might be useful
to gather information and solve the problem. Since the user entered an invalid command, perhaps he or
she would ask the operating system for help by entering:

help dir

This would execute the Windows help command and display more information about the dir com-
mand to the user. Since the trace facility allows entering any valid statement, the user could also enter
any other command that he or she believes might be helpful to understand the situation.

When the user finishes with interactive debugging mode, he or she just turns off the interactive trace by
issuing this instruction, and the script resumes:

trace off

This script shows how to identify errors and place users into interactive sessions to fix them. This could
be useful during program development or in certain kinds of system administration scripts. The ability
to dynamically place the user into an interactive session with the interpreter is a feature unique to Rexx
scripting that should only be used with knowledgeable users but that is very powerful where applicable.

Recall that when Rexx encounters a command that is not part of the Rexx language, by default it passes
it to the operating system for execution. In this case, the Rexx interpret instruction ultimately passed
the OS command the user entered to the operating system for execution. This is how the dir command
got sent to Windows for execution.

This sample script is operating-system-dependent because the commands it asks the user to enter are OS-
specific. For example, the dir (list directory) command is common to all versions of Windows, while the
help dir command is only common to some versions of Windows. Both commands fail under Linux,
Unix, BSD, and other operating systems. (Since this script captures failed operating system commands,
perhaps that’s okay!)

153

Chapter 10

For the sake of completeness, we mention that there a few obsolete operating systems that always send
back a return code of 0 from all OS commands. Running this program on these systems will not
properly trap the error code. This is a defect of those operating systems, not of Rexx or its error
handling.

For example, running this program under Windows 98SE failed to trap the error and instead just
reflected back the OS error message:

Enter bad command ==> dri
Bad command or file name
Enter bad command ==> exit
D:\Regina\pgms>

Modern Windows versions have long since corrected this behavior.

The condition Function

The built-in condition function offers a trap routine another means of obtaining information about
the circumstances under which it was invoked. condition takes a single input argument, which may
be any of the following;:

Condition Argument Full Name Meaning

C Condition name Returns the name of the trapped condition (e.g.,
ERROR, FATLURE, HALT, NOVALUE, NOTREADY,
SYNTAX, or LOSTDIGITS)

D Description A system-dependent description or reason for
the condition

I Instruction Returns either CALL or SIGNAL to tell how the
condition was trapped

S State The current state of the trapped condition (not the
state at the time when the condition was trapped).
May be one of the following:
ON — the condition is enabled
OFF — the condition is disabled
DELAYED — any new occurrence of the condition
will be delaved (ignored)

What if an error condition is executing and the same condition is raised again? This is the purpose of the
DELAYED state. This state prevents a second trap from being invoked while an error-condition routine is
executing.

154

Errors and Condition Trapping

A Generic Error-Trap Routine

To this point, we have discussed error trapping by progressively refining a single program. The program
gives users the ability to discover error numbers and messages for various Rexx errors by interactively
submitting error-prone statements to the script. One version of the script, in the earlier section entitled
“An Improved Program,” trapped all seven ANSI-1996 standard error conditions. Each condition was
handled by its own separate trap routine.

Now, here’s a twist. This sample script also handles the seven ANSI-1996 standard error conditions. But
this program sends all errors to a single, consolidated, generic error-handling routine. The trap routine
obtains orientation information about the error that occurred through the condition function by issuing
that function with various parameters. Here is the code for the script:

/* REXX TRY4: =Y
/* */
A Shows how to use the CONDITION function to get Y/
VA information in the trap routine. =/

say "Type: 'exit' to end this program"

start_loop:
signal on syntax name who_am 1 /* establish all raised */

signal on error name who_am_1 /* conditions to the &Y/
signal on failure name who_am_i /* same trap routine */
signal on halt name who_am 1

signal on notready name who_am_i
signal on novalue name who_am_i
signal on lostdigits name who_am_i

do forever

call charout ,"==> " /* prompt for user input w2y

parse pull expression$

interpret expression$ /* INTERPRET user's input */
end

end_start_loop: exit 0

WHO_AM_TI:
say 'Name of trapped condition:' condition('C')
say 'Description:' condition('D")
say 'Method of invocation:' condition('I')
say 'Current state of the trapped condition:' condition('S")
signal start_loop

The trap routine named WHO_AM_I invokes the condition function several times to learn information
about its environment and invocation. Here is sample output for this script:

C:\Regina\pgms\regina rexx_tryd.rexx
Type: 'exit' to end this program

==> hi

Name of trapped condition: NOVALUE
Description: HI

Method of invocation: SIGNAL

155

Chapter 10

Current state of the trapped condition: OFF

==> if a=b then

Name of trapped condition: SYNTAX

Description: Error 14.3: THEN requires a following instruction
Method of invocation: SIGNAL

Current state of the trapped condition: OFF

==> exit

This script highlights a basic design decision when trapping errors. Do you write one trap routine to han-
dle all conditions, as in this script, or should you trap each error separately, as in the previous examples in
this chapter?

What determines your approach is likely how much you care about error trapping in the program and
how specific you want the code to be for each error condition. If generic error handling is acceptable,
one routine to manage all errors will be suitable and faster to develop. If the program needs very spe-
cific, tight control of errors, then taking the time to write a separate routine for each anticipated condi-
tion is probably justified. The trade-off is between the specificity of the error routines and the time and
effort required to develop them.

Some sites adopt sitewide standards for error handling. These sites supply a common error routine you
invoke from your code to manage errors. Sitewide standards promote standardized exception handling
and also reduce the workload because each programmer does not have to define and code his or her
own error routines.

Limitations

There are two downsides to error trapping in Rexx. First, there are seven error conditions but no provi-
sion to add or define more yourself. Unlike some programming languages, ANSI-standard Rexx does
not provide a generalized mechanism by which you can define and raise your own error conditions.
Second, standard Rexx offers no way to explicitly raise conditions. All conditions are only raised by the
interpreter when the specific condition events occur.

To handle conditions outside the scope of the seven Rexx provides you'll have to write code to identify
and invoke them yourself.

How is this done? It depends on the errors you wish to trap, but the general technique is for the script to
simply check status after attempting a task. For example, say you wish to manage error codes from a
relational database or SQL calls. Simply check the return code and status from these calls in your pro-
gram, and invoke the internal routine you've written to manage specific return codes. Other interfaces
can be controlled in much the same manner. Check the return code from any call to the interface; then
manage errors through an error-handler in your script. Chapters 15 through 18 explore interface pro-
gramming and error handling for interfaces in detail.

A few Rexx interpreters go beyond the TRL-2 and ANSI-1996 standards to support enhanced error han-
dling within the interpreter. Reginald Rexx, described in Chapter 23, allows developers to define their
own error conditions and manually raise them if desired. Open Object Rexx also provides enhanced
error-trapping features. Chapters 27 and 28 describe Open Object Rexx.

156

Errors and Condition Trapping

Summary

This chapter discussed the basic mechanism through which special errors or exceptions are captured and
addressed. Standard Rexx supports seven error conditions, two of which are specifically oriented toward
handling host command errors.

Error conditions are enabled by either the signal or call instructions. Error routines can be given unique
names or coded under the default name of each error condition. If appropriate, be sure to reenable a condi-
tion once it has been raised and its error routine executed.

Depending on how concerned you are with trapping and addressing errors, you may take the simpler,
more generic approach, and handle all errors from within one error routine, or you may wish to write a
detailed routine for each condition.

This chapter provides several generic error-handling routines. You can take them and adapt them to
your own needs. We progressively evolved the sample script to give a good idea of the different ways in
which exceptions can be handled. Two of the scripts took diametrically opposed approaches to enabling
and trapping all seven kinds of error conditions. One coded a separate routine for each exception, while
the other coded one generic routine to handle all error conditions. Take these examples as a starting
point in determining which approach works best for your own projects.

Test Your Understanding

1. Whatis the purpose of error trapping? What are the seven kinds of condition traps, and what
error does each manage? Which error condition was added by the ANSI-1996 standard?

2. How do you capture an external interrupt from within a script?

3. What are the differences between signal onand call on? Are their conditions for which
call isinvalid?

4. What instruction is used to dynamically evaluate and run expressions?

5. How do you enable an error condition? Can you have multiple error routines to handle the
same error condition in the same program?

What should you always do after executing an error-condition routine?

7. Isitbetter to write one generic error routine to handle all errors, or should you write a different
routine to manage each kind of error?

157

11

The External Data Queue,
or “Stack”

Overview

Most Rexx interpreters support an in-memory data structure called the external data queue, or stack.
It is a general-purpose mechanism for passing data—between routines, programs, scripts and the
operating system, and other entities.

A number of instructions and built-in functions manipulate the stack: pull, parse pull, push,
queue and the queued built-in function. This chapter covers those instructions.

The stack evolved from Rexx’s mainframe origins. Mainframe operating systems supported the
stack as an integral feature of the environment, so it was only natural that Rexx support this key
operating system feature. If you use mainframe Rexx you employ the stack to send commands to
the operating system, to retrieve the results from those commands, for interprogram communica-
tion, and for other purposes.

Few operating systems other than those on mainframes support a stack. Rexx interpreters, there-
fore, come with their own “stack service” that mimics how Rexx operates with the mainframe stack.

Depending on your operating system and your Rexx interpreter, you may or may not end up
using the stack. Nevertheless, it is important to know about it for several reasons. First, much Rexx
documentation mentions the stack. If you don’t know about it or understand it, understanding
Rexx documentation becomes difficult. Second, the stack is a built-in feature of Rexx interpreters
that has some good uses. For example, it’s pretty common to use the stack as a vehicle to send
input to operating systems commands and retrieve their output.

This chapter provides the necessary introduction to the stack that developers on all platforms
require.

Chapter 11

What Is the Stack?

The stack is sometimes called the external data queue, but we follow common usage and refer to it as the
stack. It is a block of memory that is logically external to Rexx. Instructions like push and queue place
data into the stack, and instructions like pull and parse pull extract data from it. The queued built-
in function reports how many items are in the stack.

The stack is a general-purpose mechanism. The manner in which it is implemented within any particular
Rexx interpreter varies. Different Rexx interpreters support the stack by different internal mechanisms. The

goal is to support a stack that mimics that of mainframe Rexx, as defined in the various Rexx standards.

Computer scientists define a stack as a particular kind of data structure, diagrammed in Figure 11-1.

Stack: a Last-In-First-Out data structure

PUSH\ P PULL

Figure 11-1

The push operation places data onto the stack; the pull operation removes data from the stack. The most-
recently pushed data is retrieved first by the pull operation. Therefore, data that was most recently
placed on the stack is retrieved first. This is referred to as a last-in, first-out (or LIFO) data structure
because of the order in which data is stored and retrieved.

Computer scientists define the data structure called a queue in a similar manner. As visualized in Figure

11-2, the queue operation puts data into the queue, and the pull operation removes it. The oldest data in
the queue is removed first, so a queue structure is a first-in, first-out (or FIFO) mechanism.

160

The External Data Queue, or “Stack”

Queue: a First-In-First-Out data structure

QUEUE—
Figure 11-2

___PULL

What we call “the stack” in Rexx actually functions as either a stack or a queue. Figure 11-3 shows that
data is placed into the Rexx stack by either push or queue operations (by the push and queue instruc-
tions, respectively). Then the pull or parse pull instructions retrieve data from the Rexx stack.

The Rexx "Stack" is both a Stack and a Queue

PUSH PULL,
T — 7 PARSE PULL
QUEUE—
Figure 11-3

161

Chapter 11

Whether the Rexx stack functions as a stack or queue data structure is dictated simply by whether one
uses the push or queue instruction to place data into the stack. (Of course, you can intermix push and
queue instructions, but then it’s up to you to keep track of how you’ve placed data on the stack.) The
Rexx stack can be used either as a stack or queue data structure (or both), depending on the instructions
you use to manipulate it.

The data in the stack is always manipulated in terms of character strings. push or queue instructions
place a string in the stack, and pull or parse pull retrieves that character string from the stack. The
strings are typically referred to as lines. Place a line onto the stack; retrieve a line of data later. Stack
access and retrieval is strictly line-oriented. There is no concept of “character-oriented” stack I/0O.

The size of the stack is implementation-dependent. Many Rexx interpreters allow the stack to grow to
the size of available memory. The stack is always implemented as an in-memory facility.

An Example — Placing Data into the Stack
and Retrieving It

This first sample script was tested under Regina Rexx, which comes with its own built-in stack. But the
program will work with almost any Rexx interpreter, because most come with built-in stack facilities.
This sample script places three lines of data into the stack and retrieves and displays them in LIFO order.
Then it places three lines into the stack and retrieves and displays them in FIFO order. The program
illustrates how to populate the stack and retrieve lines from it, as well as how to use the stack in its role
as either a stack or queue data structure.

Here is sample program output. It shows that the first three lines of data placed in the stack were
retrieved in LIFO, or reverse order. Then three more lines were placed into the stack. These were
retrieved and displayed in FIFO order.

C:\Regina\hf>regina stack.rexx
STACK: LINE #3
STACK: LINE #2
STACK: LINE #1
QUEUE: LINE #1
QUEUE: LINE #2
QUEUE: LINE #3

Here is the script:

/* STACK: */
4% =y
/% This program shows how to use the Rexx Stack as either a =
/* stack or a queue. */
do j=1 to 3

push 'Stack: line #' || 3 /* push 3 lines onto the stack */
end
do j=1 to queued() /* retrieve and display LIFO)

162

The External Data Queue, or “Stack”

pull line
say line
end

do j=1 to 3
queue 'Queue: line #' || 3 /* queue 3 lines onto the stack */
end

do queued () /* retrieve and display FIFO Y/
pull line
say line

end

exit 0

The first do loop in the program places three lines of data onto the stack. It uses the push instruction to
do this. We number the lines so that when they are retrieved in theLIFO order their order is apparent.
Items placed into the stack by the push instruction are retrieved in LIFO order:

do j=1 to 3
push 'Stack: line #' ||] /* push 3 lines onto the stack */
end

The next code block shows the use of the queued built-in function to discover the number of lines on the
stack, as well as a loop to retrieve all the lines from the stack:

do j=1 to queued() /* retrieve and display LIFO */
pull line
say line

end

Since the three items were placed on the stack via push, they are retrieved in LIFO order. Their retrieval
and display on the user’s screen appear like this:

STACK: LINE #3
STACK: LINE #2
STACK: LINE #1

After this do group, the three lines placed into the stack have all been removed. If we were to test
queued () at this point, it would return a value of 0.

The next do group uses the queue instruction to place three new lines into the stack. These three lines
will be retrieved in FIFO order, because the queue instruction placed them onto the stack:

do j=1 to 3
queue 'Queue: line #' || 3 /* queue 3 lines onto the stack */
end

This retrieval do group shows a better way of retrieving lines from the stack. It uses the queued function

to determine how many items are in the stack, and the interpreter only needs to resolve this value one
time. At the end of the loop, the stack is again empty. queued () would return 0 if run again at that time:

163

Chapter 11

do queued() /* retrieve and display FIFO */
pull line
say line

end

Since the three lines were placed on the stack by the queue instruction, they are retrieved and displayed
in FIFO order:

QUEUE: LINE #1
QUEUE: LINE #2
QUEUE: LINE #3

Thus the mechanism in Rexx we refer to as the stack really functions as either a queue or a stack data
structure, depending on which instructions are used to place data into it.

At this point you are likely to have a key question—aren’t pull and parse pull used to get data from
standard input (the keyboard)? How does Rexx know whether these two instructions should retrieve
data from the keyboard or from the stack?

The rule is this— pull and parse pull will retrieve data from the stack, if there is any data in the stack. If there
is no data in the stack, then these two instructions retrieve data from standard input (or the specified input stream).

The stack is thus the priority input for these two instructions. But for any script that does not place data
into the stack, the stack is empty and it is essentially ignored. In this case (which is what you see most
often), the pull and parse pull instructions get their data from an input stream in the standard manner.

Say we coded this:

do j=1 to 3
push 'Stack: line #' || J /* push 3 lines onto the stack */
end

do j=1 to 4 /* retrieve and display LIFO */
pull line
say line

end

We've placed three lines onto the stack, but the retrieval loop tries to pull four lines. What happens? Rexx
reads and displays the three lines from the stack. Now there are no lines on the stack. So the fourth pull
instruction reads from its default input stream, the keyboard. In other words, after displaying the three
lines in the stack on the display screen, this script suddenly falls silent and waits for the user to input one
line from the keyboard. Assuming that the user enters a line, the script then immediately displays it back
to the user by the say instruction that follows the pull instruction in the last iteration of the do loop.

If you use the stack you need to be cognizant of this behavior. Address it simply by understanding how
many lines you have on the stack at all times. Use the queued function to manage this, because it tells
you how many lines are on the stack.

If you do not use the stack, your scripts retrieve data from the input stream (standard or specified) as

they always do through the pull and parse pull instructions. Unless the program places lines into the
stack, you can generally pretend it doesn’t exist.

164

The External Data Queue, or “Stack”

If you have lines in the stack but want specifically to read the next line from default standard input, use
the instruction parse linein.parse linein is a short form of:

parse value linein() with [template]

Use this statement only if you have lines in the stack and want specifically to avoid them and read from
standard input. If there is no standard input to read (for example, from the keyboard), this instruction
pauses until a line is input.

Another Example — The Stack for
Interroutine Communication

The stack has several common uses. Here we see another one. This sample script uses the stack to pass
data to an internal routine. It allows passing a variable number of parameters to the internal routine
without worrying about how many there are or having to name them on the procedure expose
instruction. Here is the code:

/* STACK PARMS: */
/* */
Ve This program shows how pass an arbitrary list of parameters Y/
A to an internal subroutine by using the stack. =Y
number_of_parms = 5 /* define number of parms to pass */

do j=1 to number_of_parms
queue 'Parm: line #' || /* queue the parms onto the stack */
end

call get_parms number_of_parms

exit 0
get_parms: procedure /* no variables need be EXPOSE'd =Y
do j =1 to arg(1l) /* retrieve and display all the Y/
parse pull line /* input parms passed in via “ Y
say line /* the stack “y
end
return

In this script, the driver simply queues several lines of input parameters in the stack. The use of queue is
important — this ensures that parameters will be retrieved in the proper order by the subroutine. Using
push would create a FIFO structure, in which the parse pull instruction in the subroutine would
retrieve the input parameters in the reverse order by which they were placed in the stack — probably not
what is intended.

The subroutine uses the arg (1) built-in function to control the do loop which retrieves and displays all the

input parameters. Recall that arg (1) retrieves the value of the first argument to the internal subroutine. In
this case, this value will be that in the variable number_of_parms, which is 5.

165

Chapter 11

Output from this script shows that the passing and retrieval of the parameters between the two routines
and looks like this:

C:\Regina\hf>regina stack_parms.rexx
Parm: line #1
Parm: line #2
Parm: line #3
Parm: line #4
Parm: line #5

Practical Use of the Stack

As mentioned earlier, Rexx has a stack because this was a feature of the mainframe operating system
under which it was first developed, VM (also referred to as CMS or VM/CMS). The goal was to take
advantage of the operating system’s stack as a feature of the Rexx language.

Unfortunately, few operating systems beyond those on the mainframe support a stack. The upshot is
that a platform-dependency worked its way into the Rexx language definition. How does Rexx support
a stack when running on operating systems that do not offer one?

The developers of Rexx interpreters have several choices:

Q Add astack facility to the operating system
Q Create a stack “service” or “daemon” to provide this feature
Q Build the stack into the interpreter itself

The first two approaches have the advantage that the stack becomes a more generic feature with
expanded features. It could be used, for example, for communication between two programs (in a man-
ner similar to how piping is used on many operating systems). But the downside is that the Rexx inter-
preter has to include and be distributed with an external component.

The last approach, building a stack into the interpreter itself, is simpler and more self-contained but pro-
vides more limited functionality. For example, even two Rexx scripts run by the same interpreter could
not use the stack to communicate between them, because running under two invocations of the inter-
preter means that they each have their own stacks.

The ANSI-1996 standard does not resolve these internal complexities. It refers to the use of the stack as
an I/O mechanism for commands through the address instruction as an allowable extension rather
than as an integral part of the standard.

Mainframe Rexx includes commands, instructions, and functions to manipulate the stack beyond the
Rexx standards. For example, you can create your own memory area (or buffer) to provide a “private
stack” for the use of your scripts. Buffers are created by the makebuf command, and eliminated by the
dropbuf and desbuf commands. The gbuf function tells how many buffers are in the stack.

166

The External Data Queue, or “Stack”

There is even the ability to work with more than one stack. Commands such as newstack create another
stack, while delstack deletes a stack, and gstack returns the number of stacks in use. When using
multiple stacks, the idea is that, at any one time, one stack called the current stack will be used.

Figure 11-4 diagrams the relationships between buffers and stacks. Each stack can contain a number of
buffers, and each buffer can contain a number of lines.

The Relationship Between Stacks and Buffers

- Stacks —_—

\Buﬁers/
/ \

Each Stack can contain multiple Buffers,
and each Buffer can contain multiple lines.

Figure 11-4

In mainframe Rexx, the stack is a critical communication area through which commands are passed to
the operating system for execution, and through which the results of those commands are read by the
script. Chapter 29 on mainframe Rexx explores this in further detail.

Most free and open-source Rexx implementations include extensions that mimic the mainframe Rexx
stack features. Regina, for example, includes VM-like built-in functions to create a new stack buffer
(makebuf), remove a buffer from the stack (dropbuf), and remove all strings and buffers from the stack
(desbuf). Most Rexx implementations simulate IBM mainframe Rexx in that they allow the sending of
commands to the operating system and the retrieving of the results of those commands via the stack.
These extensions to standard Rexx offer greater capability in using the stack at the possible price of less
standardization and reduced code portability. The chapters in Section II on the various Rexx interpreters
describe the stack-handling features of the different interpreters.

Some Rexx interpreters on some platforms permit the stack to be used as an interprocess communication
vehicle. In other words, multiple, separate processes on one machine use the stack to communicate
among themselves. This is rather like the manner in which pipes or sockets can be used for communica-
tion between different processes on the same machine. Examples of Rexx interpreters that support this
are Regina and VM mainframe Rexx.

167

Chapter 11

Some Rexx interpreters go so far as to allow the stack to be used for communication between different
processes on different machines. Regina is one example. Its rxqueue executable and rxqueue built-in
function support this feature. The stack thus becomes a generic, machine-independent vehicle for inter-
process communications. It can even be used for communications between different processes across the
Internet. See the documentation for your specific Rexx interpreter to determine what uses it supports for
interprocess communcation using the stack or its stack service.

Summary

This chapter explains the role and function of the stack within Rexx. It shows how the stack could be
used as if it were either of two different in-memory data structures: a stack or queue. Stacks are LIFO
data structures. The last-in data is the first retrieved. Queues are FIFO data structures, where the first
item put in the queue is also the first item retrieved.

We covered the instructions and built-in functions that place data on the stack and retrieve it from the
stack. These include the push, queue, and pull instructions, and also the queued function. Two sample
programs illustrated use of the stack. The first merely demonstrated how items are placed on the stack
and retrieved from it, while the other showed how the stack could be used to pass an arbitrary list of
parameters to an internal subroutine.

Finally, we discussed how and why the stack came to be part of Rexx. We mentioned that some Rexx
interpreters on some platforms permit multiple processes on the same machine to access the same stack,
while others even support using the stack for communications across different machines. These advanced
facilities are interpreter-dependent and platform-dependent, so check your documentation to see what
features are available to you.

The goal of this chapter is to arm you with the background you need so that when you encounter docu-
mentation referring to the stack, or a Rexx implementation that relies on the stack, you’ll know what you
need to be functional.

Test Your Understanding

1. Do all Rexx implementations have a stack? Look in your specific documentation. How does
your interpreter implement the stack?

2. What's the difference between the stack and queue data structures? How do you use the Rexx
stack to mimic the behaviors of both? What is the role of the queued function?

3. How much information can you place into the stack?
4. Should you use the stack if your goal is to develop code that can be ported across platforms?

5. Can you have more than one stack? What are buffers, and how do you create and destroy them?

168

Rexx with Style

Overview

One of the primary advantages to Rexx is its ease of use. This leads to programs that are easier to
read, enhance, and maintain. But as with any programming language, whether these benefits are
truly attained depends on how scripts are written. Developers who design and build clear pro-
grams create work that has a longer life; those who develop cryptic or overly clever programs cre-
ate scripts that will prove less useful after they change jobs. For this reason, we’ve offered
recommendations throughout this book regarding Rexx best coding practices.

This chapter consolidates guidelines for writing clear, maintainable Rexx scripts. While some of
the rules of thumb it offers might be considered personal preferences, there is value in attempting
to list some of the techniques that lead to the most useful code having the greatest longevity.
Figure 12-1 lists some of the techniques we’ll discuss in this chapter.

Sometimes developers downplay readable style because it does not appeal to their desire to create
“clever” programs. But good programming style is important even to the best developers. It
directly affects the reliability of one’s code and how many mistakes are made in developing and
enhancing that code. This should convince even the advanced, hard-core developer of its value.

Readers are urged to consider how they might write Rexx in the most readable style possible.
Whatever approach one adopts, consistency is a virtue. A program that passes variables between
routines in a consistent manner, for example, is relatively easy to understand and change compared
to a program that uses different means to communicate between different routines. From this comes
the first rule of thumb for large programs — whatever stylistic or readability conventions you adopt,
apply them throughout and your program will prove much easier for others to enhance and main-
tain. With this said, here are suggested points of style for good Rexx programming:

Chapter 12

The Steps to Good Programming Style

Etcetera !

Error checking

Structured Code

Modularity

Comments

Limit Nesting

Spacing & indentation

Good variable names

Capitalization

Figure 12-1

Capitalize on Capitalization

The data that Rexx scripts manipulate is case-sensitive. As are the literal strings you code within your
Rexx program. A literal string such as This is mine differs from the string THIS IS MINE.

But the Rexx language itself — its instructions and functions — are case-insensitive. You can code the if
instruction as 1 f or IF or If.It’s all the same to Rexx. This gives programmers the flexibility to use capi-
talization as a tool for clarity. Perhaps the most readable style capitalizes Rexx instructions and leaves
everything else in lowercase. Here’s a sample code snippet that embodies this style. Notice how it lever-
ages capitalization as a vehicle for greater readability:

IF social_security_payments > maximum_yearly_ contribution THEN DO

payments = 'completed'
stop_payments = 'YES'
END

ELSE DO

call payment_routine
stop_payments = 'NO'
END

It’s not unusual to see older or mainframe scripts in all uppercase. This harkens back to the days when

all coding was uppercase (as in COBOL coding on green-bar paper) and does not take full advantage of
Rexx’s case-flexibility to enhance readability:

170

Rexx with Style

IF SOCIAL_SECURITY_PAYMENTS > MAXIMUM YEARLY CONTRIBUTION THEN DO
PAYMENTS = 'COMPLETED'
STOP_PAYMENTS = 'YES'
END
ELSE DO
CALL PAYMENT_ROUTINE
STOP_PAYMENTS = 'NO'
END

Scripting in all lowercase is often popular with those from Linux, Unix, or BSD backgrounds. The author
confesses to an all-lowercase preference (probably the result of too much C/C++ programming in his
squandered youth).

Good Variable Naming

In Rexx (or almost any programming language), taking advantage of long variable names allows the use
of much more meaningful descriptors. The preceding sample if statement uses nice long variable
names. This is far superior to cryptic abbreviations, such as those in this version of the same code:

IF ssp > mx_yrly cntrb THEN DO
p = 'completed'
stp_p = 'YES'
END
ELSE DO
call pymnt_routine
stp_p = 'NO'
END

In this example, the variable maximum_yearly_contribution is abbreviated as the much-less-memorable
variable name, mx_yrly_cntrb. Imagine the confusion as one misremembers this abbreviated variable
name as max_yrly_cntrb or mistypes it as mx_yrly_contrib. While it is easy to overlook the value

of full variable names when coding, during maintenance, enhancements or other activities the value of
good variable names becomes evident.

Most Rexx programmers string portions of the variable names together with the underscore character.
But this is not required. Sometimes you’ll see scripts written by Visual Basic or Java programmers, or
those from other object-oriented programming backgrounds, that mix case in their variable names:
SocialSecurityPayments
This variable-naming style is sometimes called upper camel case or just camel case. Another style you
might encounter strings together capitalized words with underscores to create full variable names. Here
is an example of this style:
Social_Security_ Payments
For some, the use of capitals without intervening underscores (SocialSecurityPayments) leads to

more typing errors due to the need to toggle the “shift” key while typing the variable name. But any of
these naming conventions works fine, so long as it is applied consistently throughout the program.

171

Chapter 12

Even though Rexx does not require declaring variables, it can often be useful to do so. For example, in a
large program, defining variable names and their initial values provides useful documentation. With
good spacing, it’s readable as well:

auto_list. = ' /* list of cars to process */
auto_to_find = " /* car to locate for query */
total_queries = 0 /* queries per cookie */
debug_flag = 'OFF' /* turn ON if debugging */

Predefining variables in this fashion is also useful in that you can also use the signal on novalue con-
dition to trap the use of any variable that has not been initialized.

In large programs using global variables, some developers like to distinguish their global variables from
those local to individual routines by prefacing them with a common stem. This is yet another use for
compound variables. Here is a sample code snippet from a operating system utility written in Rexx that
shows how global variables have been uniquely identified by a common stem:

global .number_of_current_block 1 /* block on the pass list x/
global.blocks_processed = 0 /* blocks processed so far */
global.split_blocks = 0 /* blocks split due to update overflow */

The use of the stem global. makes it easy to spot any global variables within the script.

Use Spacing and Indentation

The preceding sample if statement makes obvious a fundamental principle of program readability:
Make indentation parallel the logic of the program. Remember the rule that an else keyword pairs with the
nearest unmatched if instruction? Indentation that follows this rule makes the logic obvious to anyone
reading the program. But indentation that violates program logic makes it much harder to read (and
safely update) scripts.

Here’s an example. To Rexx, this is the same 1if instruction as the one encoded earlier. But to a human
this is clearly inferior to the original:

IF social_security_payments > maximum_yearly_contribution THEN DO

payments = 'completed'; stop_payments = 'YES'
END; ELSE DO

call payment_routine ; stop_payments = 'NO'
END

As well as indentation, spacing is another tool for enhancing readability. This line is generously spaced
and easily read:

if (answer = 'YES' | answer = 'Y') then
Change the spacing in this statement, and it becomes less easy to decifer:
if (answer='YES'|answer='Y') then

Take advantage of Rexx’s free format nature to add extra spaces in your code wherever it might render
the code more readable.

172

Rexx with Style

Remember that the one place Rexx will not allow a space is immediately after a function and before the
parentheses that follow it. This is correct:

feedback = function_name (argumentl, argument2)
But this incorrect coding means that Rexx will not recognize the function:

feedback = function_name (argumentl, argument2) /* Invalid ! */
The function function_name must immediately be followed by the left parenthesis. The set of paren-
theses contain its argument(s). If there are no function arguments, just code an empty set of parentheses,
like this:

feedback = function_name () /* no arguments to pass means empty parentheses */

Another aspect of readability is how statements are continued across lines. Place the line continuation
character, the comma (,), at a natural breakpoint between phrases in a statement to enhance readability.
This example:

address environment command WITH INPUT STREAM filename_1 ,
OUTPUT STREAM filename_2 ,
ERROR STREAM filename_3
reads easier than this:
address environment command WITH INPUT STREAM,
filename_1 OUTPUT STREAM filename_ 2 ERROR,

STREAM filename_3

Both work fine as far as Rexx is concerned. Placing a few spaces prior to the comma increases its visibil-
ity. Vertical alignment works wonders in enhancing readability.

Rexx permits coding more than one statement per line by encoding the line separation character, the semi-
colon (;). Generally, putting more than one statement per line is not recommended. It makes code

denser and therefore harder to read. But there are two situations in which this might make sense:

Q Initializing variables

Q Initial assignment of values to array variables

Consistent vertical spacing makes multiple statements per line much more readable. For example, in
Chapter 4 this code initialized several array elements in the sample script named Find Book:

keyword.1l = 'earth' ; keyword.2 = 'computers'
keyword.3 = 'life’ ; keyword.4 = 'environment'

This is preferable to jamming as many statements as possible on each line:
keyword.l='earth';keyword.2="'computers';keyword.3='life';keyword.4="'environment'

More than one statement per line can be readable only if done in the proper circumstances and with
appropriate spacing.

173

Chapter 12

Limit Nesting

Like most expression-based languages, Rexx allows you to nest expressions to almost any depth. This
provides great flexibility, but in practice, once expressions become too nested, they become unintelligible
to anyone other than their original author. (And even the original developer will have trouble decoding
his or her complex statements when maintaining the program after an absence!).

Functions often form part of expressions, because they can return a result string right into the point in
the expression in which they are coded. Nesting functions too deeply is tempting to many programmers.
It’s fun and it’s clever. But ultimately the downside of difficult maintenance outweighs this personal
value. Unless you know no one will ever have to enhance or change your script, it’s a real disservice to
the next developer to stick him or her with code made more complex by dense expressions or deeply
nested functions.

The way to clarity, of course, is to simplify. Break up that complex expression to a series of simpler ones.
Break apart deeply nested functions into a series of simpler statements. It makes the code a bit longer,
but much more readable.

Here’s an example. Remember the rindex program from Chapter 8? This function found the rightmost
occurrence of a search byte within a given string. Here is the code for that function:

/* RINDEX: */
/% =y
/% Returns the rightmost position of a byte within a string. &y

rindex: procedure expose search_byte
parse arg string /* read the string */
say string search_byte /* show recursive trace for fun */

length (string) /* determine string length “Y
length(string) -1 /* determined string length - 1 */

string_length
string_length_ 1

if string == '' /* here's the 'end recursion' condition &
then return 0
else do
if substr(string,string length,1l) == search_byte then
return string_ length
else

new_string_to_search = substr(string,l,string length_1)
return rindex (new_string to_search)
end

This version of the same function eliminates the statements that determine the string length and the
length of the string minus 1. It takes out these two statements and instead nests these expressions within
the body of the code:

string_length length(string) /* determine string length */
string_length_1 = length(string) -1 /* determined string length - 1 */

174

Rexx with Style

Here’s the same function with more nesting;:

/* RINDEX: Y/
/* */
Ve Returns the rightmost position of a byte within a string. Y/

rindex: procedure expose search_byte

parse arg string /* read the string */
say string search_byte /* show recursive trace for fun */
if string == "' /* here's the 'end recursion' condition Y

then return 0
else do

if substr(string, length(string),1l) == search_byte then

return length(string)
else

new_string_to_search = substr(string,l, (length(string)-1))
return rindex(new_string to_search)
end

The code works just as well but is a little harder to decipher. You could nest the functions in this script
even further, but nesting is a trend you can get carried away with. It makes for more compact code. But
for the benefit of reducing the length of this function by a few lines of code, the nested functions make
this routine tough to understand.

Comment Code

Code comments are English-language explanations interspersed among Rexx statements that provide
explanation of the script. They are valuable in describing what a program does and explaining how it
does it. While many programmers resist writing comments in their code, without comments the
longevity of their code is reduced. For example, a very clever program may look like gibberish without
comments that explain its operations.

We've seen several styles for program commentary. Comments “blocks” can look like this:

/**/

/* RINDEX: This program finds the rightmost position of a byte in a string. Y

/**/

Or, they can be coded like this, as a single long comment statement:

/***

@ RINDEX: This program finds the rightmost position of a byte in a string. @

***/

175

Chapter 12

Individual comments may appear on a line of their own:

/* This routine finds the rightmost position of a byte in a string. w
Or they can be trailing comments, appearing on the line of code they explain:

square = a_number * a_number /* find the square of the number */
The main point of comments is: that you use them! So many programmers severely minimize program
commentary that it compromises the value of what they develop. While their code was obvious to them
when they developed it, without some English explanation those who maintain that code in the future

are left clueless. Document while you program, or do it after you're done. Just be sure you do it.

For significant industrial programs, we minimally recommend a comment block with this information at
the top of the program:

/***/

/* Program: fin_1640 Date: 08/06 */
A By: H. Fosdick)
/* */
/* Purpose: Kicks off the nightly batch financial system. */
/% =Y
/* Usage: fin_1640 &
/* Parms: none */
/% =Y
/* Inputs: (1) financial scheduler track (2) previous nite txn list =/
/* Outputs: none directly, but 3 history files through called subroutines */
/% =
/* Calls: all "fin_" package programs (14 of them, see Nightly Run List) &
/* */
/* Maintenance: _ Date By Fix */
/* 08/06 HF Created. */
/* 08/14 HF Updated DB2 error processing */
/* 09/12 BC Added job fin_ 1601 on abend */

/***/

Every time a programmer changes the code he or she should be sure to add a comment on the change(s)
made, to the “Maintenance” section of this comment block.

Each internal or external function or subroutine should also have its own leading comment block. On
one hand, assuming that the subroutines are small, this may be no more than a brief statement of pur-
pose for the routine. On the other hand, if subroutines are large, or if they involve complicated interac-
tions with other routines, their documentation should be correspondingly more detailed. In this case,
documentation should detail input and output variables, file updates, and other changes the routine
makes to the environment.

Good comments carry intelligence. Poor comments do not add to the information already available in

the program. Cryptic, codelike comments offer little value. Here are a few favorites, collected verbatim
from production programs at IT sites:

176

Rexx with Style

/* Obvious to the casual observer */

/*yew, move the ting over there */

/* Add to the mess already created! */

/* Do NOT show this code to any manager !! */

/* not sure what this does, but suggest that you don't mess with it “
/* Don/t blame me I didnt write. it I just work here */

/*Think this is bad you should c my java.*/

While there is no way to scientifically assess the value of commentary, clearly some comments are more
useful than others.

Write Modular Code

Modularity is fundamental to large programming systems that are maintainable and flexible. Monolithic
code is almost always difficult to change or improve. Modularity limits the “breakage” that occurs from
an incorrect enhancement because each module is small and performs a single, limited task. The unin-
tended consequences or side effects of code changes are minimized.

Modules also lend themselves to easier, more exhaustive testing than monolithic systems. A large pro-
gram that consists of many small, well-defined routines is almost always a better program going for-
ward than one that has fewer lines of code but less clear-cut interfaces between its larger, more complex
modules.

How does one best define modules? Some favor top-down methodologies which progressively refine the
functionality of the modules. Others use any of the many automated design tools, such as AllFusion,
Oracle Designer, the Information Engineering Facility, IBM’s Rationale tools, or others. Automated tools
tend to enforce good design discipline and often embed guidelines for optimal program design or best
practices.

All internal routines (functions and subroutines) follow the main routine or driver in the source code file.
The main routine should be clearly marked as such. The internal routines should optimally appear in the
file in the same order in which they are initially referred to by the main routine. Subroutines that are
invoked from within subroutines should appear in the source code listing immediately below the subrou-
tine that invokes them. Widely shared subroutines can be collected in their own documented area.

Beyond good modular design, variable scoping across routines is a major area for good program design
that affects program reliability.

The best approach is to code the procedure expose instruction at the start of each internal routine.
This protects all variables that are not specifically listed from inadvertently being changed by the sub-
routine. It also ensures that you know exactly which variables each subroutine requires, and documents
this list for anyone maintaining the program in the future.

177

Chapter 12

Should you use any global variables? Best practice says no. The risk is not to the programmer who first
develops the code, but rather to any who must later maintain or modify it. The risk of breakage or unin-
tended side effects rises exponentially when a large program uses many global variables, especially in
languages like Rexx that allow variables to be defined by first use (rather than requiring declarations).
This is because the person doing maintenance cannot be sure what variable names have previously been
used or where.

If you must use global variables, here are some suggestions:

Q Define (declare) all of them in a single block at the top of the code.
Q These variable definitions should initialize each variable.

Q Precede all global variables with a common stem, such as global.
Q

Include a comment block to specifically identify this set of global variable declarations.

Another approach is to pass information between all routines by a global stack. Essentially the stack
becomes a control block or in-memory *. ini or configuration file that defines behavior and passes
information.

However you pass information between routines (procedure expose, input arguments, global vari-
ables, or a global stack), be consistent across all routines in the program. Mixing modes in information
passing almost guarantees future error during program maintenance. Our best recommendation is to
code procedure expose for each internal routine, listing all variables used by that routine.

Write Structured Code

Structured programming requires only one entry point and one exit from any code block. The benefit is
increased clarity and easier code enhancement and maintenance. Studies also show that structured cod-
ing results in fewer errors. Writing structured, modular code provides a big payback and really helps
you script Rexx with style.

Chapter 3 discussed the control constructs used in Rexx for structured programming. Let’s review them
here. These are the instructions you should use in your code in order to write structured programs:

Structured Control Constructs

if-then

if-then-else

do-end group

do-while

do n times

do initialize-loop-counter to limit by increment

select

178

Rexx with Style

Structured Control Constructs

call
return

exit

As a powerful general-purpose programming language, Rexx also supports unstructured control con-
structs. Their use is not recommended as they fall outside the principles of structured programming. If
you use any of the following instructions, as described in the following table, your code is unstructured:

Unstructured Control Constructs

Instruction Unstructured Use Use Instead

signal Used as an unconditional GOTO if-then-else

do-until Bottom-driven loop do-while

do forever Endless loop requiring an unstructured exit do-while

iterate By-passes statement(s) within a loop if-then-else

leave Unstructured exit from a loop if-then-else, do-while

The column on the right-hand side of this table shows the structured constructs that should be used to
replace the unstructured ones on the left side. We recommend that you replace any instances of the
unstructured instructions in the leftmost column in your code with their structured equivalents from the
right-most column.

Any unstructured control construct can be replaced by a structured one. Any pro-
gram logic that can be written as unstructured code can also be written in structured
form.

Handle Errors

Error-handling code greatly increases the robustness of an application. Scripts that omit the small
amount of code it takes to include good error checking are greatly inferior to those that include it.

Identifying and handling common errors allow an application to better adjust to its environment. It
saves application users both time and confusion when scripts, at the very least, display a descriptive
error message that explains unexpected conditions or failures.

Why don’t all scripts check for and handle errors? Quite simply, it is quicker for most developers to pro-

gram without including such “extraneous” coding. Unfortunately, developers do not often go back and
add error checking to their scripts after the initial script is up and working.

179

Chapter 12

The errors that scripts should check for fall into several categories. Here are the major categories of prob-
lems for which your scripts should check and manage:

QO Command results
Q Interpreter-raised error conditions
Q Return codes from interfaces
Q I/Oresults
Chapter 14 goes into how to issue operating system commands and verify that they worked. Scripts can

check return codes from the commands and even parse their message outputs for further information.
The condition traps for ERROR and FAILURE also capture errant commands.

Remember that there are several other exception conditions scripts can trap, including HALT, NOVALUE,
NOTREADY, SYNTAX, and LOSTDIGITS. Chapter 10 covers Rexx’s condition-trapping mechanism and how
scripts use it to manage errors.

Many scripts interface to external packages, for example, for graphical user interfaces (GUIs) or database
storage. Always check the return codes from functions or commands that control external interfaces. A
program that fails to recognize an interface error and blithely continues could cause a hard failure, a fail-
ure that stops an application and leaves no clue as to what happened.

Be sure to check the return string from the stream I/O functions. As listed in Chapter 5, some of these
functions and their return strings are:

Q charin—Returns number of characters read (0 if none were read).

Q charout —Returns number of characters not successfully written (0 means success).

O chars—Returns a nonzero value if characters remain to be read.

QO linein—Returns aline read from a file, or the null string if no line exists to read.

0O lineout—Return value varies by requested operation. For writing one line, a return value of 0
means the line was successfully written, 1 means it was not.
O lines—Returns a nonzero value if there is at least one line left to be read.

Failure during charin or linein can result in raising the NOTREADY condition if some problem occurs.
As shown in Chapter 10, this can be trapped by an appropriate error routine.

And now, a mea culpa. The scripts in this book do not include robust error checking because we limit the
size of the scripts for clarity. Including good error handling in all the scripts would be redundant and
detract from what the scripts illustrate. If you're coding in the workplace, we urge you not to take the
easy way out but to code strong error checking. Industrial-strength programming requires complete
error checking and a fail-safe coding approach.

180

Rexx with Style

Additional Suggestions

There are many other suggestions to make for producing the most readable, maintainable, error-free
code. In the sections that follow, we briefly discuss a few of the more widely accepted. Following these
suggestions will make your code much more readable, maintainable, and reliable. Good programming
practices are as much a part of the value of scripts as are the algorithms those scripts embody.

Subscripts

For looping control variables, use common subscript names like i, j, and k. These should always be set
explicitly at the start of the loop: don’t make assumptions about whether a loop control variable has
been used previously in the code or what its value is. Also, do not use these subscripts for other pur-
poses. Limit their use to subscripting and use more descriptive variable names for other purposes.

A classic scripting error is to use one of these common variables as a loop control variable, and then
assign it another value for another purpose inside the loop! While this may sound like silly mistake to
make, it indeed happens in large programs or in situations where many developers maintain a single
program. Another classic error is to use the same subscripting variable for an outer loop and for an inner
loop nested within the outer loop. This produces “interesting” results in the behavior of the outer loop!

To summarize, our recommendations for loop-control subscripts are:

Q Explicitly initialize them at the top of each do loop in which they are used.
Q Do not alter them within the loop (let the do instruction increment them).

Q Use your set of subscripting variables only for subscripting.

Quotation marks for commands

Chapter 14 explores in detail how to issue operating system commands from within scripts. That chapter
demonstrates how to issue OS commands, how to send them input and retrieve their output, how to rec-
ognize and identify commands that fail, and a host of other important related topics. This section sum-
marizes a few rules of thumb for limiting errors in scripts that issue operating system commands or
commands to other external interfaces.

Some programmers always enclose the operating system commands within their scripts within quota-
tion marks. This readily identifies where OS commands occur within scripts. Other developers prefer
not to enclose operating system commands in quotation marks, unless they must in order to avoid
Rexx’s evaluation of the expression before passing it to the operating system. This produces readable
code because it is less cluttered with quotation marks. Either approach works fine. We recommend con-
sistency with whichever you choose.

Try to avoid double-nesting quotation marks. Especially in mainframe scripting, you’ll sometimes see
complex nesting of quotation marks that is really not necessary.

It is better to build a command string through several simple statements than to dynamically concatenate

a complex command in a single statement. Also, it is easier to debug commands that are built within vari-
ables: Simply display the variable’s contents to the screen and see if it appears as a valid command.

181

Chapter 12

Here is an example. This statement builds a character string that will be an input argument to a function:

sqglstr = "insert into phonedir values('" || lname || "'",
w o |‘ phone nl)u

The string concatenated into the variable is syntactically complex. If we want to ensure that it is correct,
we could issue a simple say statement to display the value on the screen:

say sqglstr /* display string on screen to verify accuracy */

Here’s the interface command in which this character string is used. You can see that building the com-
mand component separately is way easier than if we had actually nested it within this statement:

if SQLCommand(il,sglstr) <> 0 then sglerr('During insert')
To summarize, our recommendations for building commands and function strings are:

Q Build them in several simple steps, not in one complicated statement.
Q Build them in a variable, which can easily be displayed and verified.

0 Avoid cluttering command statements with superfluous quotation marks.

Consider declaring all variables

Some developers find it clear to define or declare all variables in advance and initialize them at that
time. In large programs, it can otherwise be difficult to locate the first use of a variable or tell what it was
initialized to.

This code snippet illustrates this principle. Here we assume that we have a very large script, and the
declaration of all global variables at the top of the program helps document and explain their use.
Separating the global variable definitions from the start of program logic segments the program into
more readily understood components. Each variable in the program is initialized to some value, which
makes it easy to find the initial setting for any variable:

/**/

/* Variable Declaration and Initialization Section @
/**/
global .number_of_current_block = 1 /* block on the pass list */
global .blocks_processed = 0 /* blocks processed so far */
global.split_blocks = 0 /* blocks split due to update overflow */
7% further variable declarations appear here . . . w2

/**/

/* Main Routine: */
/**/

if global.memory_blocks_allocated >= (global.seg_count * global.block_size)

By splitting out the definition and initialization of all variables prior to the “main routine,” the program-
mer makes the entire program clearer and better modularizes program activity.

182

Rexx with Style

Rexx-aware editors

Some editors are Rexx-aware. They highlight elements of the language in different colors and assist in
indenting code. Rexx-aware editors make your job easier because they highlight the structure of scripts
by color-coding and indentation. We recommend using these editors if you have the opportunity,
because they tend to reduce error rates and make coding quicker and easier.

Examples of Rexx-aware editors include:

THE (The Hessling Editor) for Linux, Unix, Windows, and other platforms
The Rexx Text Editor (or RexxEd), which is distributed along with Reginald Rexx

Q
Q
Q The Interactive System Productivity Facility, or ISPF, on the mainframe
Q

XEDIT on the mainframe

Publish site standards for coding style

Consistency within a program is key to its readability. Consistency across all programs at a site extends
this virtue to the code asset owned by the company or organization. Many organizations consider devel-
oping, disseminating, and enforcing such standards fundamental to the value of their code base.

The keys to the viability of site coding standards are that they are easily accessed by the developers and
that management holds the developers accountable to scripting to the standards. Standards can be made
readily accessible by publishing them on a corporate intranet or placing them on a shared local area net-
work drive. Programmers should be able to access the standards in the normal course of their work with
little or no extra effort.

Developers can be held accountable to corporate standards by several means. Two of them, automated
checking tools and code reviews, are discussed in the following sections.

Consider automated tools to ensure standards compliance

Consider purchasing or developing automated tools to enforce good program documentation and style.
Simply promulgating site standards is of little value unless those standards are adhered to. Automated
tools are one means to ensure that this happens.

Here is a very simple example of “automation” in the service of standards. One site keeps a set of docu-
mentation templates on a shared departmental disk drive. Programmers copy each template, and fill in
the blanks to document their applications. This ensures developers provide all the required documenta-
tion elements, and at the same time, makes it easier on the developers because they do not have to worry
about designing the structure of the documents. By completing what is already provided, programmers
both meet the documentation standards and do so with the least effort.

Consider code reviews

In the absence of automated tools, code reviews (having one’s code looked over by a peer) can be a way
of administratively enforcing good programming practice or sitewide programming standards. Several

183

Chapter 12

formal methodologies optimize code reviews, including structured walk-throughs and joint application
development techniques. A quick Web search on either of these terms will give you good beginning infor-
mation about what they entail.

While many programmers don’t care to have their code checked in this manner, code reviews are a
proven technique to ensure conformance to site standards and more reliable code. The “egoless pro-
gramming” promoted by code reviews tends to render applications more maintainable and prolong
their life.

Avoid Common Coding Errors

Some of the most common coding errors in any programming language derive from odd or hard-to-
remember syntax and coding detail. Fortunately, using Rexx results in fewer errors of this nature than
many languages because of its spare, clean style.

Nevertheless, a few coding errors are common among Rexx programmers, especially those new to the
language. This brief section lists the more common errors you'll encounter.

Failing to end a comment

Each comment starts with the two characters /*. Be sure to code the corresponding ending characters
* /. Otherwise, the rest of your script becomes one long comment! Also, the two characters /* and */
must be immediately adjacent one another with no intervening blank.

Failing to end a literal string or parenthetical expression

For each single or double quotation mark, there must be a corresponding end quotation mark. This rule
applies to parentheses as well. For each left parenthesis, there must appear a corresponding right paren-
thesis later in the code.

Improper coding of functions

When invoking functions without the call instruction, the left parenthesis must immediately follow the
function name:

fd = function_name (argumentl, argument2) /* No space prior to first paren (*/

Forgetting that functions return a string
A function returns a value. If you code the function as the only item on a line:
function_name (argumentl) /* nowhere for the result string to go ! */
the value it returns has to go somewhere. Where Rexx will send it is to the default command environ-

ment. Thus if the function above returns a value of 1, this string will be sent to the operating system for
execution!

184

Rexx with Style

One solution is to capture the result string in a variable:
feedback = function_name (argumentl) /* result string goes into FEEDBACK */

Another approach is to invoke the function by the call instruction so that the special variable result
can capture the result string:

call function_name argumentl /* RESULT contains the result string */

Using parentheses on call

Do not enclose arguments to the call instruction in parentheses. This statement is incorrect:
call subroutine(argumentl, argument2) /* A INCORRECT ! */

Here is the correct way to code this statement:
call subroutine argumentl, argument2 /* correct =

This is an easy mistake to make because when you encode an embedded function you always immedi-
ately follow it by parentheses. A call is different in this respect.

Failure to use commas on call or in parse arg

While parentheses are not needed, commas to separate input arguments to a routine are (see the above).
Commas must also be coded between the arguments referred to in the parse arg instruction:

parse arg argumentl , argument?2

Confusing command-line arguments with internal routine
arguments

As in the preceding example, retrieve arguments passed in to internal routines by using the arg or
parse arg instruction and variables separated by commas. Contrast this to command-line arguments,
which are retrieved into a routine by the same instructions but without separating commas:

parse cmd_line_arg 1 cmd_line_arg 2

The arg () function tells how many parameters were passed into an internal routine. It only returns 0 or
1 when applied to command-line arguments.

Global variables

Global variables are convenient when first developing a large program but significantly reduce reliabil-
ity as that program undergoes enhancements and maintenance. Code procedure expose for each
internal function or subroutine.

185

Chapter 12

Forgetting return or exit

Remember to code the return instruction when a subroutine ends to send control back to the caller.
Functions must return a string to the caller; subroutines may optionally do so. Be sure to encode the
exit statement at the end of the main routine and prior to any subroutines and functions that follow it,
so that the flow of control does not inadvertently “roll off” the end of the program into the internal rou-
tines placed after it.

Forgetting about automatic uppercase conversion

Instructions pull and arg automatically convert input to uppercase. This is convenient but must be
kept in mind when later using those strings in comparisons; compare those strings to their uppercase
equivalents. If uppercase translation is not desired, code parse pull and parse arg instead.

Uppercase translation can be particularly tricky when reading in filenames. Under operating systems

like Windows or DOS, filenames are not case-sensitive. However, operating systems like Linux, Unix,
and BSD use case-sensitive names. Having the user input these filenames when running under Linux,
Unix, or BSD means that your program must use parse argor pull arg to read them. arg or pull

alone translates the filenames to uppercase, which likely produces incorrect filenames.

Another place to remember about automatic uppercase translation by the interpreter is with variable
names and values. Rexx uppercases variable names internally, and it will also uppercase character

strings that are not enclosed in quotation marks. Several sample scripts in Chapter 4 relied on these facts
to work properly.

Incorrectly continuing a statement

Rexx uses the line continuation character, the comma (,), to separate items in a list as well as for line
continuation. Rexx interprets this coding:

a =max(1l, 3, 5,
7, 9)

as:
a = max(1, 3, 57, 9)

Correct this by recognizing that you need one comma to separate every item in the list as well as an
extra comma for line continuation:

7, 9) /* correct */

We suggest surrounding commas with spaces or blanks for enhanced readability.

186

Rexx with Style

Failing to use strict comparisons

Remember that in a character string comparison, Rexx ignores leading and/or trailing blanks and blank-
pads the shorter item in the comparison as necessary. Use the strict comparison operators like strictly
equals (==) when strings must be precisely compared on a character-by-character basis, without Rexx
making assumptions concerning spaces or padding.

Incorrectly coding strict comparisons for numbers

Strict comparisons make sense only in comparing strings and should not mistakenly be coded when
comparing numeric values.

Summary

Good coding style is often a matter of preference. Nevertheless, there are a few rules of thumb that ren-
der scripts more readable and maintainable. We’ve discussed some of the generally accepted ones in this
chapter. These include the proper use of capitalization, good variable naming, proper spacing and
indentation, extensive code commentary, structuring and modularizing code, and robust error and
exception handling.

We also listed a few common coding errors and how to avoid them. Learning to avoid these errors in
your coding will quickly reduce the time you spend in debugging and testing your scripts. Some of the
most common errors include incorrectly coding the invocation or return from routines and functions,
improperly passing or reading arguments or parameters, and failing to terminate comment blocks or
encode line continuations.

While many developers style themselves as “heavy-duty techies” —and write obscure code to prove it —
the best programmers write the most readable code. Their scripts feature lower error rates, are
easier to enhance and maintain, and remain useful longer. We urge readers to take the stylistic
concerns highlighted in this chapter to heart and write code that conforms to best practice.

Test Your Understanding

1. Whatis “the virtue of consistency” when applied to programming practice?

2. Why do some programmers deeply nest functions? What is the downside of this practice?

3. What makes a “good” comment in a script? What are the three styles of commenting scripts?

4. What are the basic principles of modularity? Of structured programming?

5. What's wrong with do-until loops and the signal instruction used as a GOTO? With what
should you replace these two constructs?

6. What makes a “good” variable name? Why is good variable-naming important?

7. Should you use global variables? Why, or why not?

187

Writing Portable Rexx

Overview

One of the great advantages to Rexx is that it runs on every available platform, or hardware/oper-
ating system combination. Rexx scripts run on handheld devices, laptops, PCs, midrange servers
of all kinds, all the way up to the largest mainframes.

This book covers the major Rexx interpreters. All are either free or open source or come bundled
with an operating system. All support classic Rexx, the form of the language standardized by TRL-
2 and later by the ANSI-1996 standard. Additionally, there are Open Object Rexx and roo!, true
object-oriented supersets of classic Rexx, and NetRexx, a Rexx-like language for developing appli-
cations in the Java environment. Figure 13-1 below shows how object-oriented Rexx interpreters
and NetRexx evolved from classic Rexx. Beyond these free implementations and variations, there
exist several commercial implementations as well.

The Evolution of Rexx
Object-oriented Rexx

| >

Early 1980s Mid 1990s
|

& =

"Classic"
Rexx

—

NetRexx
Figure 13-1

Chapter 13

Rexx’s ubiquity and standardization have two implications. First, this means that your knowledge
applies to a broad range of platforms. If you know how to code Rexx scripts on a PC, you can do it on a
mainframe. If you program Rexx under Windows, you can do it under Linux, Solaris, VM, or any of
dozens of other operating systems. In learning Rexx, you acquire a broadly applicable skill portable
across numerous environments.

The second advantage to ubiquity and standardization is code portability. For example, a script could be
developed under Windows and then run under Unix. Code can be designed to be platform-independent,
leading to savings for organizations that support diverse platforms. Different kinds of problems can be
addressed by scripts hosted on different platforms. One could develop scripts in one environment and
run them in another.

Code portability is not a given. Regardless of language standards, there are still different platform-
unique characteristics that intrude upon this goal. This chapter points out some of the factors affecting
code portability and how to address them when writing Rexx scripts.

Whether code portability is desirable depends on your goals. In most cases, creating scripts that are com-
patible across many operating systems, platforms, and Rexx interpreters restricts the use of the language
to its standard capabilities. It forgoes the power of language extensions and OS-unique features beyond
the Rexx language standards. Writing and testing portable code also typically involves extra effort. This
chapter does not argue for code portability — whether portability is desirable depends on your own
needs. The purpose here is simply to offer guidance where portability is a goal.

To provide this guidance, the chapter covers several key topics. First, we discuss some of the factors that
affect code portability. These orient you as to how easy (or difficult) it may be to achieve portability in
different application projects. Next, we discuss the various Rexx standards. Understanding what these
standards contain and their slight differences helps you achieve portable scripts because you’ll know
better what it means to “code to the standard” if you know what the standards define.

After this, we discuss how scripts learn about their environment. This underlies portability. Only the
environmentally aware script can act in ways that support its portability. We start by reviewing various
functions and features of Rexx that the book has already covered, but this time we view them through a
new lense —how can they aid portability? We also introduce new instructions and functions whose
main purpose is environmental awareness. Then, we demonstrate some of the principles of portability
with a script that intelligently determines the platform and interpreter it runs under. This is the core
requirement of a portable application: the ability to query and understand the environment in which it
executes.

We conclude the chapter with a more detailed discussion of the techniques and challenges of portable
code. This addresses Rexx tools and interfaces, and the manners in which they can enhance (or detract)
from portable scripting.

Factors Affecting Portability

Your knowledge of Rexx is widely applicable across platforms because humans have the ability to dis-
cern (and allow for) minor differences. Programs, of course, have no such capability unless it is explicitly
recognized and coded for.

190

Writing Portable Rexx

There are several factors that affect code portability.

First is whether the code stays within the Rexx standards. Code that remains within the ANSI-1996 stan-
dard will be most portable. Better yet, code within the slightly more narrow TRL-2 standard definition,
since many Rexx implementations were designed for TRL-2 and do not address the minor ANSI-1996
improvements. Later in this chapter we summarize the evolution of Rexx standards and the minor dif-
ferences between them.

The second factor that affects the portability of Rexx scripts across platforms is whether the developer
considers code portability a goal during program design and development. Sometimes it is quite possi-
ble to make choices that provide a higher degree of code portability without any extra effort — all that
is required is that the developer recognize the nuances of code portability in his or her program and
address them up front.

Take, for example, file I/O. Recall that Chapter 5 illustrated both line-oriented and character-oriented
1/O. Both are implemented through a set of instructions and functions that are all well within all Rexx
standards. Yet scripts making certain assumptions when using character-oriented I/O will be less
portable than those using line-oriented I/O (since character I/O reads the line-ending and file-ending
characters that vary across operating systems). This is a simple example where code can be made much
more portable at the mere price of understanding platform differences.

Perhaps the biggest factor affecting code portability is the degree to which the script issues operating
system commands. This is one of the major uses of Rexx, of course, and operating system commands
vary by the OS.

Recognize that the OS’s under which the script is to run affect how portable that script can be. For exam-
ple, Windows is a family of like operating systems. It is easier to write a script to run under different ver-
sions of Windows and to issue Windows commands than it is to write a script that issues both Windows
and Linux commands and runs under both Windows and Linux, for example. Cross-platform portability
is always easier when the operating systems involved are similar, such as those within a single operating
system family. Portability across all forms of Windows or across all varieties of Linux is easier than
achieving portability across Windows and Linux.

The nature of the commands the script issues affect its portability. If you write a script that runs under
the three major varieties of Unix (Oracle Solaris, IBM AIX, and HP HP/UX), the higher-level commands
are common across these three OSs. By higher-level, we mean Unix commands that meet generally
accepted Unix System standards. The lower-level commands diverge among these three versions of Unix.
They become unique and system-dependent. Lower-level commands include, for example, those of the
proprietary volume managers used in these three systems. Another example is parameters that
configure the Unix kernel.

Foreknowledge of the environments in which a script will run is a key determinant in how much effort
it costs to make the code portable. The developer can design and modularize code to address the target
operating systems. He or she can isolate OS-specific code to certain places within the program, and
avoid literal command strings in favor of building them within variables, for example. Retroactively try-
ing to impose code portability on a working script that was designed without this goal in mind is always
more difficult and always costs more.

191

Chapter 13

How many operating system commands a script issues (and how OS-specific those commands are)
determine how portable code is and how much effort portability takes. A script that performs a generic
task independent of operating system should be highly portable. The scripts in this book provide exam-
ples. Up to this chapter, only one executed an operating system command (the Windows c1s command
to clear the display screen). It was easy to test these scripts under both Windows and Linux. The next
chapter goes into more detail about how to issue commands from Rexx scripts to the operating system.
Since these scripts are oriented toward issuing OS commands, they are much more bound to the plat-
form for which they were developed and run. The rule of thumb is: generic tasks can be coded to be run any-
where, whereas OS-specific tasks will always present a challenge if code portability is a goal.

Finally, many Rexx programs interface to outside packages, for example, for user interaction through a
GUI or data storage via a database management system. The following chapters describe and illustrate
some of these interfaces. Interfaces present another portability challenge. Some interfaces are themselves
designed to be platform-independent, so they make scripts more portable. Other interfaces are platform-
dependent and so render scripts that use them platform-specific. Consider the costs as well as the bene-
fits of any interface before deciding to use it in your scripts.

Rexx Standards

Outside of limiting the operating system commands your script issues and sticking to cross-platform
interfaces, the biggest action you can take to develop portable code is to code within the Rexx standards.
This section describes these standards in more detail as well as the manner in which they evolved and
the differences between them. Understanding the standards and their differences enables you to code for
greatest portability.

Figure 13-2 shows the evolution of Rexx and its standards.

Rexx Standards

Early
1985 1990 90s 1996
| >
TRL-1 TRL-2 SAA ANSI
Language
3.50 4.00 5.00 i

Figure 13-2

192

Writing Portable Rexx

This table summarizes the four Rexx key standards and when each was promulgated:

Standard Date Language Level
TRL-1 1985 3.50

TRL-2 1990 4.00

SAA 1992 -

ANSI 1996 5.00

Michael Cowlishaw, the inventor of Rexx, wrote his definitive book The Rexx Language: A Practical
Approach to Programming in 1985. He produced this book after several years of feedback on Rexx from
the thousands of users connected to IBM’s VNET network (an internal IBM network that presaged the
Internet). The result was that the original Rexx language definition embodied in TRL-1 was remarkably
complete, mature and stable.

Mr. Cowlishaw issued the second edition to his book, called TRL-2, in 1990. TRL-2 lists the changes it
makes over TRL-1 in an appendix. There are 33 changes that take only four pages to describe. Many of
the changes are highly specific “minor additions” more than anything else. The major improvements are
summarized below.

Major TRL-2 Standard Additions to TRL-1

Input/output — The stream function is added for greater control over I/O, and it
and the NOTREADY condition offer greater control over I/O errors.

Condition trapping — In addition to the NOTREADY condition, the condition func-
tion provides more information to error routines. The signal and call
instructions can refer to named trap routines (previously the names of the trap
routines were required to be the same as the name the condition they handled).

Binary strings — Binary strings are added as well as several conversion functions
that apply to them: b2x and x2b.

More specific definitions — TRL-2 tightens up the definitions of TRL-1 where neces-
sary, providing a more accurate language definition for interpreter writers. There are
also many very small miscellaneous changes.

Rexx interpreters that conform to the language definition of TRL-1 are said to be of language level 3.50.
Those conforming to TRL-2 are at language level 4.00.

IBM defined and published its Systems Application Architecture standard, or SAA, in the early 1990s. The
goal of SAA was to increase code and skills portability across IBM’s diverse operating systems. As part
of this effort, IBM identified Rexx as its common procedures language across all its operating systems. This
had two effects. First, IBM ensured that Rexx was available and came bundled with all its operating sys-
tems. This not only included mainframe operating systems in the OS, VM, and VSE families, but also
included systems such as IBM i and i5/0OS. The second effect of SAA was that IBM converged the fea-
tures of its Rexx implementations across its platforms. TRL-2 (and its VM/CMS implementation) formed
the common base.

193

Chapter 13

An American National Standards Institute, or ANSI, committee embarked on standardization of Rexx
beyond that of TRL-2 in the early 1990s. The committee completed its work in 1996 with the publication
of the Rexx standard X3.274-1996. This standard is commonly referred to in Rexx circles as ANSI-1996.
The ANSI-1996 standard makes only minor language additions to the TRL-2 standard. The primary con-
tributions of the ANSI-1996 standard to Rexx are below. The language level of ANSI-1996 is 5.00.

Major ANSI-1996 Standard Additions to TRL-2

ANSI legitimacy — Confers the prestige and imprimatur of an international standard
upon Rexx. ANSI is the main organization for standardization of programming
languages.

A few new features — ANSI-1996 adds a few language features where they are
nondisruptive to existing scripts and earlier standards. These include, for example,
the new built-in string manipulation functions changestr and countstr, and the
new trap condition LOSTDIGITS. The date and time functions are enhanced to per-
form conversions in addition to just reporting the date and time. A few more special
variables are added (.xc, .rs, .result, .mn, .sigl).

Data left to read — The chars and lines functions previously returned the number
of characters or lines left to read on the input stream. Determining these values
could consume much time for large files. ANSI-1996 allows the returning of 1, mean-
ing “some undetermined number of characters or lines are left to read.” The 1ines
function has two options: ¢, which returns the number of lines left to read in the
file, and N, which allows a return of 1 for one or more lines left to read and 0 if there
are no lines left to read. For backward compatibility, N is the default.

Command I/ O — ANSI-1996 more accurately defined how input is sent to commands
and how command output and errors are captured. These are reflected in enhance-
ments to the address instruction and address function. The address instruction
now includes keywords input, output and error to manage communication
to/from the operating system or other external command execution environment.
The address function can return the setting of these three new keywords. Chapter
14 illustrates how to use the address instruction and address function.

More precise language definition — Provides a more precise definition of Rexx
beyond that provided by TRL-2. TRL-2 defines Rexx in book form, readable by the
typical software developer or IT programmer. The ANSI-1996 standard is written in
a format designed for those who need the precise definition necessary to create a
Rexx interpreter or assess whether a specific interpreter meets international stan-
dards. The ANSI-1996 standard is more rigorous than TRL-2 but less readable for
the average developer.

Nearly all Rexx implementations meet the TRL-2 standard. Many also either meet the ANSI-1996 stan-
dard or are being enhanced to meet it. To rephrase this in terms of the “language level,” nearly all Rexx
implementations meet or exceed language level 4.00 and some achieve 5.00. The main exceptions to this
rule would be those Rexxes that were purposely designed as “language variants,” for example, NetRexx.
Rexx thus features a strong, well-defined and widely adhered to language standard. Coding to it greatly
increases code portability.

194

Writing Portable Rexx

All the programs appearing to this point in this book conform to the TRL-2 and ANSI-1996 standards. In
the upcoming section of this book on “Rexx Implementations” we cover some of the implementation-
and platform-specific aspects of various Rexx interpreters. Subsequent chapters on interfaces to outside
packages (like databases, the Tk GUI, XML and the like) also go beyond the Rexx standard, because they
are not part of the language.

One big factor in Rexx’s success as a widely used scripting language is that it was defined rigorously by
a highly readable book, TRL-2, relatively early in its history. Yet this language definition was published
after the language had reached a full, stable state. Compared to many programming languages, Rexx
was lucky in this regard. The popularity of some programming languages suffers because they become
widely implemented before a standard solidifies; other languages quickly gain a standard but this
occurs before the language gains all the necessary features. Rexx programmers benefit from this happy
history with much more standardized and portable code than many other languages.

The bottom line is that to render your scripts as standardized and as portable as possible, all you need
do is code to the TRL-2 and ANSI-1996 standards. This section spells out exactly the differences between
the major Rexx standards. Combined with information from your Rexx interpreter’s manual, this knowl-
edge makes it much more possible to code portable scripts.

How a Script Learns about Its Environment

We've mentioned a few factors that affect code portability. Underlying this is the script’s ability to learn
about its environment. To issue operating system commands in a cross-system manner, for example, the
script needs to be able to determine under which operating system it runs. The script might also need to
know about how it was invoked, the version and language level of Rexx running it, the date and time,
and other bits of environmental information. This section addresses this need. First we'll repeat (but con-
solidate) instructions and functions that provide information to scripts that have been discussed in previ-
ous chapters. Then we’ll get into new material showing how scripts retrieve environmental information
critical to their knowledgeable interaction with their environment in a cross-platform manner.

As covered earlier in Chapter 8, a script learns its input arguments or parameters through these two key
instructions:

Q parse arg— Access input parameters (without automatic uppercase translation)

Q arg—Access input parameters (with automatic uppercase translation)
arg is just the “short form” of the instruction:
parse upper arg [template]
The arg function can:

Q Tell how many input arguments were passed —Coded as arg ()
Q Tell if the nth argument exists —Coded as arg (n, 'E")
Q Return the nth argument (assuming it exists) —Coded as arg (n)

A number of built-in functions allow scripts to access environmental information. Scripts that issue these
functions without any arguments retrieve environmental information:

195

Chapter 13

Function Environmental Information Returned

address Returns current default command environment, or, returns the current input,
output, and error redirections.

date Returns the date in any of a variety of formats based on the input parameter.

digits Returns numeric precision.

fuzz Returns precision for numeric comparisons (the fuzz factor).

form Returns whether current format for exponential numbers is SCIENTIFIC or
ENGINEERING.

sourceline Returns the total number of lines in the source script, or returns a specific line if a

line number is supplied as an argument.

time Returns local time in 24-hour clock format. A variety of options allow the time to
be returned in any desired format. Can also be used to measure elapsed time (as
an interval timer).

trace Returns the current trace level.

Many of these functions can also be used to set operational characteristics by supplying input argu-
ments. We’ve seen examples of all these functions except for date and time.

The stream function is also useful for retrieving information about I/O operations and the I/O environ-
ment. Most Rexx interpreters provide for a much broader use of the stream function than the Rexx stan-
dards minimally require. This transforms the stream function into a general-purpose mechanism for
retrieving I/O information, controlling I/O devices, and issuing I/O commands. All interpreters mini-
mally support these two stream options:

Q D (Description) — An implementation-dependent description of I/O status

Q s (Status) — The state of the stream: ERROR, NOTREADY, READY, Oor UNKNOWN

Individual I/O operations return values that indicate whether the I/O operation was successful. Take a
new look at the I/O functions from the perspective of their return values and the information these carry:

1/0 Function 1/0 Information Returned

charin Returns the number of characters read (0 if none were read).

charout Returns the number of characters not successfully written (0 means success).
chars Returns a nonzero value if at least one character remains to be read.

linein Returns a line read from a file or the null string if no line exists to read.
lineout Return value varies by requested operation. For writing one line, a return

value of 0 means the line was successfully written, 1 means it was not.

lines Returns a nonzero value if there is at least one line left to be read.

196

Writing Portable Rexx

The chars and lines functions may return either the exact number of characters or lines left to be read,
or 1, indicating that some unspecified number of characters or lines remain to be read. The ANSI-1996
standard permits the interpreter flexibility in this regard. The trade-off is between providing precise
information about the amount of data left to be processed in the file versus the performance overhead of
calculating this value.

Trap or exception routines help script writers managed I/O errors raised by the NOTREADY and SYNTAX
conditions. signal onorcall on instructions enable trap routines you write in the program. Trap rou-
tines can be used to handle these error conditions: SYNTAX, HALT, ERROR, FAILURE, NOVALUE, NOTREADY,
and LOSTDIGITS. These built-in functions provide useful information to trap routines:

Function Feedback to the Error Routine

condition Returns the name of trapped condition, a textual description of the con-
dition, how the trap routine was invoked (call or signal), and the cur-
rent state of the trapped condition (ON, OFF, or DELAY)

errortext Returns the textual error message for a given Rexx error number

sourceline Returns the number of lines in the source script, or a specific line if a
line number is supplied as an argument

trace Returns the current trace level, or can be used to alter it

All these functions can be coded anywhere in Rexx scripts except for condition, which specifically
returns information about the current trapped condition and is thus not likely to be useful outside of a
trap routine.

Several important Rexx special variables provide information both to trap routines and throughout Rexx
scripts. The three special variables in the TRL-2 standard are uninitialized until an event occurs that sets
them:

Special Variable Meaning
rc The return code from a host command, or a Rexx SYNTAX error code.
sigl The line number that caused control to jump to a label. This could be set

by the transfer of control caused by a trapped condition, or simply by a
regular call to an internal routine or invoking an internal function.

result The string sent back to a calling routine by the return instruction. If
return is coded without an operand, result is set to uninitialized.

Previous chapters in this book have mentioned most of these sources of information for Rexx scripts.
Our intent here is to consolidate this information, then build upon it and combine it with new features to
show how you can write portable scripts. Now, let’s move on to adding new sources of environmental
information: the parse source and parse version instructions.

197

Chapter 13

The parse source instruction provides three information elements. They are listed in this table:

parse source Information Element Meaning
system A single word for the platform on which
the script is running. Often cites the

operating system.

One word that indicates how the script was

invocation invoked. Often returns COMMAND,
FUNCTION or SUBROUTINE.
filename The name of the file containing the Rexx script

that is running. Usually this is a fully qualified
file name conforming to the conventions of the
operating system on which the script is running.

Here’s sample code that shows how to retrieve this system information:

parse source system invocation filename
say 'System:' system ' Invocation:' invocation 'Filename:' filename

The output of this code, of course, depends on the platform on which it is run. Here’s an example of the
output generated when this code runs under Regina Rexx on a Windows system:

System: WIN64 Invocation: COMMAND Filename: C:\Regina\pgms\parseenv.rexx
The same statements run under many Linux distributions with Regina yield:
System: UNIX Invocation: COMMAND Filename: /regina/parseenv.rexx

This output is system-dependent (which is the entire point!). By retrieving it the script can understand
on which platform it is running. The script also knows the filename containing its own code and the
manner in which it was invoked. Of course, the filename will represent the file-naming conventions of
the operating system on which the script runs. For example, Windows filenames will have backslashes
between directory levels, while Linux, Unix, and BSD will contain forward slashes between directory
names.

The system or platform keyword is most significant. Table L-1 in Appendix L lists common values for
the system data element for popular Rexx interpreters running on various platforms. It also contains a
script you can run on any system to return these environmental values. Using code like this cues your
script into these platform differences.

The parse version instruction tells the script about the Rexx interpreter that is running it. While
parse source yields basic platform information, parse version supplies basic interpreter informa-
tion. This can be used, for example, to figure out in real time which Rexx features will be supported or
which version of an interpreter is being used. Here are the parse version data items:

198

Writing Portable Rexx

parse value Information Element Meaning
language Interpreter name and version
level The language level this interpreter supports,

according to the Rexx language levels described
earlier in this chapter (e.g., 3.50, 4.00, 5.00, or
similar identifier)

date Along with month and year, describes the
release date for the interpreter

month See date

year See date

Here’s an example of how to code to retrieve this information:

parse version language level date month year
say 'Language:' language 'Level:' level 'Date:' date 'Month:' month 'Year:' year

When run under Windows with Regina Rexx, here is sample output:
Language: REXX-Regina 3.9.6 (MT) Level: 5.00 Date: 29 Month: Apr Year: 2024
Running the statements on many Linux distributions with Regina yields output like this:
Language: REXX-Regina 3.9.5(MT) Level: 5.00 Date: 25 Month: Jun Year: 2022

The level is especially important because it tells the script what Rexx features it can expect to see. The
script could execute different code appropriate to the particular interpreter under which it runs to fulfill
its tasks.

The language allows the script to dynamically adapt to any known peculiarities or extensions offered
by specific Rexx interpreters. Chapters 20 through 30 describe many of these extended features and how
to use them.

After collecting information from parse source and parse version, a script usually knows enough
about its environment that it can issue operating system commands appropriate to the platform on
which it is running. By running different statements or modules based on the platform, scripts can be
rendered platform-independent.

Another step is often useful. Based on the parse source system feedback, issue an operating system
command appropriate to the OS that provides more information on its version and release level. For
example, under Windows and DOS systems, execute the ver (version) command. For all forms of
Linux, Unix, and BSD, run the uname command (such as uname -a). The script can capture the
feedback from these commands and know exactly what operating system it is working with. (An error
return code from the command shows that the script was not on track with the command it executed.)
This can be trapped by an exception condition routine if desired or simply addressed by analyzing the
command return code.

199

Chapter 13

A Sample Program

To this point, we have discussed a variety of instructions and functions that can aid in writing portable
code. Some of these functions were introduced in earlier chapters in different contexts, while others are
newly introduced in this chapter. All are useful to writing portable code because all supply environmen-
tal information to scripts. Now, we need to look at an example program that shows how to synthesize
this information into portable code.

This example program determines the Rexx interpreter under which it runs and the Rexx standards for
that interpreter. This is a key ability portable scripts must have: the ability to determine how they are
being run and under which interpreter. In this instance, the script expects to see the Regina interpreter. If
not, it displays a message.

The script also determines whether it is running under Windows or Linux. It issues an OS command to
determine the OS version and release (either ver for Windows or uname -a for Linux). Then it displays
the OS version and release information to the user.

/* WHERE AM I: =/
A =/
/% This script learns about its environment and determines =)
/% exactly which Windows or Linux OS it runs under. =/
parse version language level date month year

parse source system invocation filename

language = translate (language) /* ensure using Regina Rexx */
if pos('REGINA',language) = 0 then

say 'ERROR: Interpreter is not Regina:' language

say 'Interpreter version/release date:' date month year

say 'Language standards level is: ' level

say 'Version information from an OS command follows...'

/* determine operating system, get its version/release info */
select
when system = 'WIN32' | system = 'WIN64' then
'ver'
when system = 'UNIX' | system = 'LINUX' then
'uname -a'
otherwise
say 'Unexpected SYSTEM:' system
end
if rc <> 0 then /* write message if OS command failed */

say 'Bad return code on OS Version command:' rc

Here is sample output for this script on a Windows system running Regina Rexx:

Interpreter version/release date: 29 Apr 2024
Language standards level is: 5.00
Version information from an OS command follows...

Microsoft Windows [Version 6.1.760]

200

Writing Portable Rexx

Here is output from the script when run under a common Linux distribution with Regina:

Interpreter version/release date: 25 Jun 2022

Language standards level is: 5.00
Version information from an OS command follows...
Linux delll 5.15.0-112-generic #122-Ubuntu SMP Thu May 23 07:48:21 UTC 2024 x86 64

x86 64 x86 64 GNU/Linux

Let’s discuss the program code. In the program, these two lines retrieve all the necessary environmental

information:

parse version language level date month vyear
parse source system invocation filename

Following these statements, the select instruction issues either the ver command for Windows sys-
tems, or the uname -a command for Linux and Unix systems. The following code snippet shows how
scripts can dynamically tailor any operating system dependent commands they issue. The select state-
ment keys off of the environmental feedback previously retrieved by the parse source instruction:

select
when system = 'WIN32' | system = 'WIN64' then
'ver'
when system = 'UNIX' | system = 'LINUX' then
'uname -a'
otherwise

say 'Unexpected SYSTEM:' system
end

In this manner, the script interacts intelligently with its environment. The Where Am I? script could eas-
ily be turned into a generic function or subroutine which returns environmental information depending
on its input parameters. It then becomes a generalized service routine, which can be incorporated into any
larger script. In this manner, a script can learn about its environment and adapt its behavior and the
commands it issues to become portable and platform-independent.

Techniques for Command Portability

To this point, we have summarized the various instructions and functions that aid in making code
portable, and we have synthesized several of them into a sample program that determines critical facts
about its environment. Now we can discuss various approaches for designing portable scripts that issue

operating system commands.

The first rule is simple and sometimes applicable: minimize the use of OS commands. This eliminates
the case in which a script casually issues an OS command which really is not necessary, thereby
compromising its portability.

Where equivalent OS commands exist and their results can be handled generically, simple if instruc-
tions can issue the appropriate OS command. For example, the script named Menu in Chapter 3 issued
the Windows c1s (clear screen) command to clear the display screen before writing its menu for the
user. The direct equivalent command under Linux and Unix is clear. Since these two commands are

201

Chapter 13

equivalent in function, the program could easily be made portable simply by determining which operat-
ing system the script runs on, and then issuing the proper command to clear the display screen through
a simple if instruction.

Of course, return codes from commands are just as system-dependent as the commands themselves.
Generally, a return code of 0 means success, while anything else means failure. This example shows that
the situation is vastly simplified if the script does not need to inspect or react to return codes.

What if the OS command produces output the script needs to process? This is a more complicated case.
For example, say that the program issues the dir command under Windows or the 1s command under
Linux or Unix to display a file list to the user. The outputs of these two commands are close enough that if
the goal is merely to display the file listing to the user, the script can use the same technique as with the
cls and clear commands —just encode an if statement to issue the appropriate command for the oper-
ating system and display its output to the user. But if the script processes the command outputs, the situa-
tion becomes much more complicated. Output formats from dir and 1s are significantly different. Here
the approach might be to invoke an appropriate internal function specific to each operating system to
issue the file list command and perform the analysis of its output. This is another common technique —
code a different OS-dependent module to handle each operating system’s commands.

A third technique is to determine the platform, then invoke an entirely different script depending on
which operating system is involved. Here the top-level, or driving, script is only a small block of code at
the very highest level of the program. It does little more than identify the operating system. After this
determination, it calls an OS-dependent script.

Which technique is best depends on the tasks the script performs and the numbers and kinds of operat-
ing system commands it issues. The binding or degree to which the code depends on the operating sys-
tem determines which approach makes sense for a given situation. In all cases, identifying the platform
on which the script is running is the first step, and isolating OS-dependent code (by if logic or into sep-
arate modules or routines) is the key.

Foreknowledge of the need for portability and the operating systems that will be supported vastly
reduces the effort involved in developing portable code. The similarity (or differences) among the sup-
ported platforms is another critical factor in determining the effort required. For example, it is relatively
easy to develop a script that is portable across all versions of Windows, or to test a script across all major
Linux distributions. It’s quite another matter to port a script that issues a lot of OS commands from
Windows to Linux or vice versa.

Issues in Code Portability

At the beginning of this chapter, we discussed a few factors that affect the portability of code. Now that
we’ve described the instructions, functions, and coding techniques that pertain to portability, we can
revisit the earlier discussion with greater specificity. Let’s explore these issues in greater detail. Here are
a number of issues of which to be aware when writing portable scripts:

Q Retrieving platform and interpreter information — The earlier sample script demonstrates how to
retrieve operating system and Rexx interpreter information. Implemented as a callable service
routine, such code can be used by any Rexx script to get the information it needs to run as a
cross-platform program. A service routine that determines operating system, platform, inter-
preter, and other environmental information forms the basis of platform-independent code in
many large applications.

202

Writing Portable Rexx

Screen interfaces — Input/output to the display screen is a major area of incompatibility among
many platforms. Using a cross-platform user interface like the Rexx/TK or Rexx/DW libraries
are one way to get around this problem — assuming that these interfaces are portable across
the platforms on which the scripts will run. Chapter 16 discusses GUI interfaces in some detail.

Database interfaces — Databases can mask I/O differences across platforms. For example,
interfacing your Rexx script to Oracle makes the I/O interface between Windows and Linux the
same because Oracle calls are the same in both environments. Just ensure that the database itself
can be relied upon for portability across the platforms you target. From this standpoint, major
databases like Oracle and Db2 offer good portability among the major commercial databases.
Among open source databases, MySQL, PostgreSQL (aka Postgres), SQLite, and Berkeley DB
offer great portability. Chapter 15 discusses database programming in detail and shows how to
accomplish it with sample scripts.

Other interfaces — We mention GUI and database interfaces specifically because these issues
pertain to so many programs. But the principles apply to many other packages and interfaces as
well — they may be useful as levers to gain more code portability, or they may hamper
portability by their own isolation to certain environments. If portability is a goal, the key is to
consider the impacts of any external packages with which your scripts will interface. Careful
thought will allow you to leverage interfaces for greater application portability and avoid
having them limit the portability of your scripts.

Character sets and code pages — Different platforms use different character-set-encoding
schemes. For example, Windows, Linux, Unix, BSD, and DOS systems use ASCII, whereas
mainframes use EBCDIC. Scripts that manipulate characters as hexadecimal or bit strings need
to be aware of these different encodings. Related issues include collating (or sort) order and code
pages or character sets.

Interpreter differences — We've already mentioned how scripts retrieve interpreter information.
Code within the lowest common denominator language level to ensure the widest portability of
your scripts. We might call this interpreter portability — Rexx scripts that can be run under any
Rexx interpreter. This trades off the convenience and power of using implementation-specific
built-in functions, for example, for the benefit of code portability.

options Instruction — The options instruction issues interpreter-specific instructions to
the Rexx interpreter. Its format is:

options expression

Here’s an example that instructs a Rexx interpreter to conform to language level 5.00 and ensure
that the trace is off:

options '5.00 Notrace'

The options that can be set are unique to each Rexx interpreter. Check your language manual to see
what your version of Rexx supports. If the interpreter does not recognize any the items, it ignores
them without issuing an error. This means that if it is important to know whether the options were
set properly, your code will have to perform this task. (Wouldn't it be nice to have a
corresponding options function by which your script could retrieve the options in effect?
There is none.) Using options may force interpreter-dependent code unless its use is carefully
controlled.

203

Chapter 13

204

a

Capturing errors by conditions — The ability to trap conditions and process them through error
routines can be a tool to gain greater cross-platform portability. NOTREADY might help with han-
dling I/0O issues while LOSTDIGITS can manage concerns with significant digits.

Universal “not” sign — Use the ANSI-standard symbol for the “not” sign, which is the backslash
(\). For example, for “not equals” you should code \= or <> or >< instead of the mainframe-
only symbols -=. See Figure 13-3.

Which 'Not' Symbol ?

L \

Mainframe only All platforms

We recommend using the universal 'Not' symbol \
Examples: \= \< >

Figure 13-3

First line of the script — For greatest portability, do not code a Linux/Unix/BSD interpreter-
location line as the first line of the script, as in this example:

#!/usr/local/bin/rexx

Without this line, you'll typically have to run Rexx scripts explicitly. Instead code this as the first
line of the script for maximum portability, starting in column 1 of line 1:

/* REXX */

This ensures that the script will run properly on mainframes running VM or OS, and it’s still
compatible with almost every other platform, as long as the script runs explicitly.

The address instruction —The address instruction sends input to OS commands and captures
their output. The ANSI-1996 address instruction standard provides for the new keywords
input, output, and error to manage command I/O. The alternatives are to use the stack for
command I/O when using the address instruction, or to avoid the address instruction
entirely by using redirected I/0O.

Many Rexx interpreters still emphasize the stack for command I/O, yet this feature is not central
to the ANSI-1996 standard. The ANSI-1996 address keywords for I/O are the true standard, yet
many Rexx interpreters still do not support them. You'll have to investigate what interpreter(s)
and platform(s) your portable code is to run on to decide which approach to use. Chapter 14 cov-
ers the address instruction in detail.

Writing Portable Rexx

Q Stay within the ANSI-1996 standard for the stack— On the mainframe and in some other environ-
ments, the stack is not only used for command processing, it is used for many other purposes as
well. For greatest portability, stay strictly within the stack definition provided by the ANSI-1996
standard. Or better, use standard language features other than the stack to accomplish the work.

Q Use only standard operands — The Rexx standards define certain instructions and functions and
allows them to have implementation-specific (nonstandard) operands. Examples include the
options instruction (to issue directions to the interpreter) and the stream function (to issue
I/0O commands). If portable code is a goal it is prudent not to use nonportable operands for
these instructions and functions.

|/O and Code Portability

File input/outout is a major area in which operating systems differ. This is because the I/O routines, or
I/O drivers, are different for every operating system. Whether you code in Rexx or some other scripting
language, you may encounter I/O incompatibilities when scripts are run on different platforms. I/O
should be encapsulated (or placed in separate routines or modules) to isolate this platform-specific code
within large Rexx scripts.

OS differences lead to minor differences in Rexx implementations. Check your release-specific documen-
tation to understand these differences.

Generally, line-oriented I/O is more portable than character-oriented I/O because character I/O may
read OS-dependent characters (representing line or file end) as part of the input stream. Scripts can be
written to rationalize the differences in character-oriented file I/O across platforms if they recognize this.

To stay within the strictest standards, assume that the chars and 1lines functions return 0 if there is no
more data to read, or some nonzero value otherwise. The nonzero value might be the number of charac-
ters or lines left to read in a persistent stream, or it could simply be 1, indicating more data to read.
These two functions should only be applied to persistent streams (files), not to transient streams (like
keyboard input).

To explicitly flush the output buffers and close a file, code the 1ineout function without a string to
write. Almost all Rexx implementations follow this TRL-2 standard. If program logic permits, the most
standard, portable way to close a file is to simply let Rexx close it without instruction from the script.

The earlier section titled “How a Script Learns about Its Environment” discussed standard return codes
from the I/O functions: charin, charout, chars, lines, 1inein, and lineout. Given that I/O varies
across operating systems, this is one area in which many Rexx interpreters still do have minor differ-
ences. The reader is advised to check his specific interpreter documentation for details. When coding
across platforms or developing code that runs under more than one Rexx implementation, check the
documentation for all interpreters involved. And also, test the script under all the operating systems
under which it will run!

Portable scripts should avoid explicitly positioning the read and write positions within files. Some Rexx

interpreters provide good advanced facilities in this regard that are outside the Rexx standards. Part I
discusses these extended features for file positioning and direct data access.

205

Chapter 13

Interfaces for Portability — RexxUtil

We'’ve previously mentioned that interfaces can aid in code portability. The popular RexxUtil package is
an example. This is an external function library that enhances code portability across multiple platforms.
These include operating systems in the Windows, Unix/Linux/BSD, macOS, mainframe, DOS, and OS/2
families. Instead of issuing operating-system-dependent commands, scripts can invoke routines in the
RexxUtil package. These then translate the script’s requests into OS-specific commands. This buffers the
script from issuing operating-system unique commands.

Figure 13-4 shows how this works. A script invokes a RexxUtil service, and the RexxUtil function per-
forms the appropriate operating system calls. Since RexxUtil runs on a number of platforms, it effec-
tively shields the script from issuing OS-specific calls in order to access OS features and facilities.
Instead, the script interfaces with the portable RexxUtil package.

Using an Interface Package to
Increase Script Portability

Operating
System
Facilities

> RexxUtil >

Generic Operating

RexxUtil System

calls specific
calls

Figure 13-4

There have been various versions of the RexxUtil library over the years, tailored and adapted to a range
of platforms, Rexx interpreters, and products. It might be useful to describe the kinds of functions that
the library contains to give an idea of the system-specific requests from which it buffers scripts. This list
enumerates and describes the major categories of functions in RexxUtil packages:

O Housekeeping — These functions load the RexxUtil library and make it accessible, or drop it
from use and memory.

O File system management — These functions manage, manipulate, search, and control
operating system files and directories.

O System interaction — These functions retrieve operating system, environmental,
configuration, and hardware information.

O Macro-space control — These functions manage the macros available for execution. Macros can
be loaded, cleared, dropped, initialized, stored, and so on.

O Console I/O — These functions support basic screen and keyboard I/O.

O Stem manipulation — These functions manipulate arrays via their stems. To give one example,
the do over function processes an entire array in a simple loop, even for sparse arrays or
arrays with non-numeric indexes or subscripts. These functions also provide for array I/O.

206

Writing Portable Rexx

Q Semaphores— These functions manage semaphores (flags used for synchronization), including
mutexes (semaphores designed to single-thread critical code sections).

Q Character-set Conversions — These functions convert to and from Unicode and support file
encryption and decryption.

RexxUtil is not the only interface package which can be used to enhance code portability. Various
database, GUI, and server-scripting packages provide the same platform-independence as the RexxUtil
package. Chapters 15 through 18 describe a number of these interface packages and how to use them.
Just be sure that the interface ports across all the platforms on which your scripts are to run!

Summary

This chapter discusses issues of code portability and offers some suggestions on how to write portable
scripts. For some projects, code portability is a key goal. The ideas in this chapter may help achieve it.
For other projects, portability is irrelevant and one doesn’t need to spend time or effort on it. Always
understand your project goals thoroughly before making these choices and coding a scripting solution.

Where code portability is a goal, understand the Rexx standards, the differences between them, and how
the interpreter you are using fits with the standards. Coding to the standards is an important means to
achieving portable code.

This chapter also listed many functions and instructions through which scripts can derive environmental
information. We discussed a brief program that interrogated its environment to determine the inter-
preter running it as well as the operating system platform. Such a program can be expanded into a more
robust, generic “service routine” to provide intelligence to other routines about their environment. The
first step any portable script must take is understanding the environment in which it runs.

We discussed a list of issues developers face when striving to make their code portable. Hopefully, the
discussion brought up points that stimulate your own thinking on how you can write code that is
portable across the platforms with which you are concerned.

The next chapter goes into detail on how to issue commands from within scripts to the operating system
(or other outside interface). It addresses how to send input to OS commands, how to check their return
codes, how to capture their output, and how to capture their error messages.

Test Your Understanding

Is code portability always a virtue?
What instructions might a script issue to learn about its environment?
What is the difference between arg and parse arg?

What is the sourceline function used for?

@ Hw NP

Where can you find a list of the differences between the TRL-1 and TRL-2 standards?

207

14

Issuing System Commands

Overview

One important use of Rexx is to develop command procedures. These are scripts that issue operating
system commands. The ability to create command procedures is one of Rexx’s great advantages.
You can automate repetitive tasks, create scripts for system administration, and customize or tailor
the operating system to your preferences.

Command procedures must manage many aspects of interaction with the operating systems, such
as building and issuing the proper OS commands and handling bad return codes and errors.

Many refer to command procedures as shell scripts, although technically this is not quite accurate
because Rexx is not a shell. Rexx is a scripting language interpreter that runs outside of the shell or
OS command interpreter. (There is one exception: a version of Regina runs within the zsh shell
and provides true shell scripting capability. With it you can permanently change the current envi-
ronment and perform tasks that can only be accomplished from within a shell, such as setting
environmental variables and changing the working directory).

Command procedures are useful for a wide variety of reasons. Scripting operating system com-
mands allows you to:

Q Automate repetitive tasks — Ever been faced with entering a lengthy list of commands to get
something done? Scripting allows you to automate these tasks, whether they are for sys-
tem administration or simply for individual users.

An example is an “install script.” For one site the author developed a simple install script
that, once developed, ran on hundreds of desktops to install a relational database man-
agement system. Performing this task without automation would have been unthinkably
time-consuming. The users themselves could not have done it because they did not have
the expertise, and the tasks would have been too error-prone. Command scripting pre-
sented a time-efficient way to get this work done.

Chapter 14

a

Save keystrokes — Creating simple scripts eliminates mundane typing and saves keystrokes. You
can create “shortcuts” for command sequences and save time.

Eliminate error — Many system commands are complicated. Scripting them eliminates the need
to remember (and correctly enter) various cryptic switches and options.

Embed intelligent interaction in the script — Error handling, special cases, and other unusual
situations — these are not what you want to face when you interact with an operating system

to perform some complex system administration task. Scripting allows you to embed intelligent
interaction with the operating system in a portable, sharable form. Someone with less experi-
ence can run a script and perform a job without having the same level of expertise that was
required to develop the script.

Run scheduled tasks — Once commands are encoded in a script, that procedure can be run in off-
hours or scheduled to run whenever desired. This is referred to as a batch command or batch
procedure.

An example from the author’s experience is scripting the create database command ina
database system that single-threaded that task (only one such command could run at one time).
We strung together the dozen create database commands we needed to issue in a simple
Rexx script and let it run overnight. Had we performed this work interactively, it would have
taken us over 14 hours. Running it during the day would have also meant developers could not
use the server that day. Running the command script at night saved a day’s work for the entire
programming staff.

Document procedures—The create database script provided us with an historical activity log,
a file that we kept to document the parameters used in creating the databases. Performing the
same work interactively often means that the actual commands that were issued and their out-
put messages are lost or forgotten. Scripting can produce log files that later can be inspected or
analyzed to understand what happened or to recall exactly what was done.

Extend the operating system — Under most environments one can execute a Rexx script simply by
entering its name. To the world, the script appears as if it were a new operating system com-
mand. Rexx thus provides a way to extend, enhance, customize or tailor the environment to
either personal preference or corporate standard.

Speed — In terms of elapsed or “wall clock” time, it is way faster to run a “batch” script than to
interactively perform some set of tasks via a graphical user interface (GUI). GUIs are great for
simplifying tasks that need to be performed interactively (read: manually). But scripted automa-
tion is always faster. Moreover, it is sometimes difficult to reduce complex tasks to simple
repeatable procedures using GUIs because of their context-driven nature. GUIs and command
scripts work together to handle interactive and automated tasks in an effective way.

While writing scripts to automate operating system commands is very useful, there are some downsides.
The big one is that any script that issues OS commands becomes platform-dependent. In most cases, this
is fine. The whole point of a command script is to issue commands specific to the platform on which it
runs. But don’t issue operating-system-specific commands in a script you intend to port. If you do, think
carefully about how this can be done in a modularized, portable way. It is not unusual to see scripts
which issue just a few system commands and become system-dependent, only to mount an effort to port
them later to some other platform. A little forethought can minimize porting effort. Chapter 13 covered
this issue in its discussion of how to develop portable Rexx code.

210

Issuing System Commands

Issuing Operating System Commands

Let’s look at how to issue operating system commands from within scripts. We'll start with a very sim-
ple, one-line sample script; then we’ll progress through various techniques that yield better flexibility
and programmability. In the next section, we’ll look closely at how scripts read feedback from the com-
mands to ensure they ran properly. There are several techniques to accomplish this and you'll want to
understand them all.

For a first example, here is a complete, one-line script that issues an operating system command. The
script issues the Windows dir (directory) command:

dir /* this script issues the DIR command */
The output to this script depends on the files in the current directory. Here’s an example:
Volume in drive D is WD_2

Volume Serial Number is 1E20-1F01
Directory of D:\Regina

<DIR> 03-24-04 11:47p .

<DIR> 03-24-04 11:47p ..
REXX EXE 344,064 04-25-03 5:20p rexx.exe
REGINA EXE 40,960 04-25-03 5:21p regina.exe
REGINA DLL 385,024 04-25-03 5:21p regina.dll

First, we need to understand how the Rexx interpreter knows to send this command to the operating
system for execution. The basic rule is this: Rexx evaluates the expressions in any line it reads. If it ends
up with a string that it does not recognize (a string that is not a Rexx instruction, label, or assignment
statement), Rexx passes the string to the active environment for execution.

By default, the active environment is the operating system. Sometimes this is called the default environ-
ment. Rexx does not “understand” or recognize operating system commands. Rexx evaluates expres-
sions, ends up with a character string outside the Rexx language definition, and passes it to the active
environment for execution.

After the command executes, control returns to the script line that immediately follows the command
(exactly the same as if the script had called an internal or external routine). The special variable rc will
contain the return code issued by the operating system command. What this value is depends on the
command, the operating system, and the command’s success or failure.

This example executes the Windows dir or directory command, captures the return code the operat-
ing system issues for that command, and displays an appropriate message:

dir /* this script issues the DIR command */
if rc = 0 then

say 'DIR command execution succeeded'
else

say 'DIR command failed, return code =' rc

It is important to remember two key rules when building commands. First, you are just building a char-

acter string (a string that represents a valid command), so you can leverage all the power of Rexx’s string
manipulation facilities to do this.

211

Chapter 14

Here’s an example that issues the directory command with two switches or options to the Windows com-
mand window. The Windows command we want to build lists files in the current directory sorted by size:

dir /0S

The coding to build this command uses automatic concatenation (with one blank) for pasting together
the first two elements, and explicit concatenation by the concatenation operator to splice in the last item
without any intervening space:

dir '/0' || s’
So, you can dynamically build character strings that represent commands to issue to the operating sys-

tem in this fashion. You can even programmatically build arbitrarily complex commands using Rexx’s
expression evaluation. Here’s a “gibberish generator” that ultimately builds and issues the exact same

command:
dir_options = 'ABCDLNOPQSTWX4' /* list of all options for the DIR command */
/* build the DIR command with options */
"dir /' || substr(dir_options,7,1) || substr(dir_options,10,1)

Use whatever coding you want (or have to) to build operating system commands. It’s all the same to the
Rexx interpreter. You can leverage the flexibility inherent in the interpreter’s evaluation of expressions
prior to passing the resulting character string to the operating system for command execution.

Sometimes building the command string becomes complicated enough that developers prefer to build
the string inside a variable, then issue the command by letting Rexx interpret that variable’s contents:

command = dir '/0' || 'S’ /* build the operating system command */
command /* issues the command string to the 0S */

This approach also makes it easy to verify that the command string is built correctly because you can
just display it on the screen:

say command /* display the command to ensure correctness */

The second important rule to remember is that Rexx evaluates the expression before passing it to the operat-
ing system for execution. Say we directly coded the above dir command in the script, exactly like this:

dir /OS
The results are not what we expect:
Error 41 running "C:\Regina\pgms\dir_test.rexx", line 2: Bad arithmetic conversion

What happened? Rexx evaluates the expression before passing results to the outside command environ-
ment, the operating system, for execution. Rexx sees the slash as the division symbol, and recognizes
that operands were not encoded correctly to evaluate the attempt at division. To avoid evaluating the
expression, do what you always do in Rexx: enclose the command in quotation marks and make it a
string literal. This line gives the expected result of a directory listing because the single quotation marks
prevent Rexx from evaluating the string before sending it to the OS for execution:

'dir /0S'

212

Issuing System Commands

Feedback from OS Commands

Of course, a script that issues an operating system command must ensure that the command executed
properly. Most scripts need to verify the command by feedback they receive after it executes. Feedback
from OS commands comes in several forms:

Q The command return code
Q Error condition traps

Q The command’s textual output. This potentially includes an error message

To view the command return code, simply view the value of special variable rc. Rexx sets this special
variable for your script to inspect after the command has been issued. Since command return codes are
both OS- and command- specific, refer to the operating system’s documentation or online help system to
see possible values.

Robust code handles all possible error codes. A typical approach is to identify and directly address the
most common ones in the script, such as “success” and “failure.” Unexpected or highly specific return
codes can be handled by displaying, printing, and logging them.

One occassionally sees scripts that ignore command return codes. This mistake leads to scripts that can-
not even tell if the OS commands they issue succeeded or failed. We strongly recommend that any script
check whether the OS commands it issues succeed. In return for the small amount of time you save in
not checking command return codes, the user is left absolutely clueless when an error occurs. Design
scripts to fail safe, so they at least display appropriate error messages when commands they issue fail.

Error or exception routines are another way to manage OS commands that result in error. Chapter 10
demonstrated how command errors and failures can be trapped and addressed in special routines by
coding an error trap routine. Enable that routine through these instructions:

signal on error
signal on failure
call on error
call on failure

If call on failureand signal on failure are not active, the ERROR condition is raised instead. So,
you could handle both situations without distinguishing between them simply by coding call on
error Ofr signal on error.

The last form of command feedback is the textual output the command issues. This could be valid com-
mand output, such as the list of filenames that result from the dir command. Or it could be an error
message. For example, a dir command might result in a textual error message such as:

File Not Found

Your script can capture and analyze the OS command output. It can take special actions if the text out-
put is an error or warning message of some kind.

Let’s look at a simple way to capture output from an operating system command. Most operating sys-
tems permit I/O redirection, the ability to direct an input stream into a command and the ability to direct
its output to a file. Operating systems that support redirection include all forms of Linux, Unix, BSD,
Windows, and DOS.

213

Chapter 14

One simple way to capture command output is to redirect the output of that command to a file, then
read the file’s contents from within the Rexx program. This complete script issues the dir command
and redirects its output to a file named diroutput.txt. The do loop then reads all lines from this file
and displays them on the screen:

'dir > diroutput.txt' /* issue DIR command, redirect output to a file */
do while lines (diroutput.txt) > 0 /* show the Rexx script can access all */

say linein(diroutput.txt) /* lines of DIR output by reading file */
end

The 1lines and linein functions refer to the file named diroutput. txt. You may or may not need to
quote the filename depending on which operating system the script runs under. Unix-derived systems like
Linux use case-sensitive filenames, so you will typically encode filenames in quotation marks. Windows
and related systems do not necessarily require quoting filenames in that they are not case-sensitive. The
above code is a Windows example.

Of course, the point of redirecting command output is to capture it so that the script can analyze it.
Instead of displaying the output, as above, the script might parse it looking for messages that indicate

specific errors, for example. Then it could intelligently identify and respond to those errors.

In the following table, you can see the three redirection symbols most operating systems support.

Redirection Symbol Use
< Input comes from the named file.
> Output is written to the specified file. If the file does not exist it is

created. If the file does exist, it is over-written.

>> Output is appended (added on to the end of) the specified file. If the
file does not exist it is created. Use this symbol to preserve existing
file contents and add to it.

In the Rexx script above, we have surrounded the entire dir command with single quotation marks.
This prevents Rexx from becoming confused by the output redirection symbol (>) during expression
evaluation. Otherwise Rexx interprets > as its “greater than” symbol. The single quotation marks
prevent Rexx from evaluating the expression, so it passes the entire string, including the redirection
symbol to the default command environment (the operating system) for execution.

Here’s an example in which a Rexx script redirects both input and output for an operating system com-
mand. This is a sort command, as issued from within the Rexx script:

'sort <sortin.txt >sortout.txt'

The script directs that the sort command take its input to sort from the file sortin. txt, and that it
send the sorted list to the output file sortout. txt.If the input file sortin.txt contains these lines:

python
rexx
perl
php

214

Issuing System Commands

The output file sortout.txt contains the same items in sorted order:

perl
php
python
rexx

The script can set up the input file to the sort by creating it, if desired. The script accesses the output file
simply by reading its contents. The script could then perform any desired analysis of the command
output. For example, it could parse the output to recognize and respond to common error messages. It
could recognize error messages from the sort command such as these examples:

Invalid switch
Input file not found

Of course, the script needs to know from where to read the error messages. On some operating systems,
error messages will appear concatenated to or in place of the results when an error occurs. On others,
they may go to a default output device with a standard name, such as stderr. stderr may or may
not be directed by default to the same place as command output, depending on the operating system
and the command redirection syntax you encoded. For example, for a Windows script to intercept error
messages through the same location as it reads correct command output, the sort command would
need to be changed to the following;:

'sort <sortin.txt >sortout.txt 2>&1'

This Windows-specific form of the command directs standard error output (stderr) to the same output
file as the sort command’s output. So, if an error occurs, the phrase 2>&1 directs the textual error
messages to the output file named sortout. txt. Here, the script can read, parse, and analyze any
error messages that appear. Different operating systems have different conventions and syntax that
dictate where and how scripts access command error messages. Most Unix-derived operating systems
employ a similar syntax to this Windows example.

The more sophisticated the script, the better it will be at these two tasks:

O Recognizing textual error messages

O Responding to them intelligently

You must consider how comprehensive and fail-proof you want your script to be. It might just report any
unexpected output to the user and stop, or it could be intelligent enough to identify and react to every
possible command error. Different levels of coding will be appropriate for different situations. There is
clearly a trade-off between effort and the robustness of a script. The choice is yours. We recommend
minimally recognizing that an error has occurred and informing the user with a descriptive message.

Rexx provides other ways to feed input to operating system commands and to capture their output.

These offer flexibility and address operating systems and other command environments that do not sup-
port redirection. We discuss them next.

215

Chapter 14

Controlling Command [/0

With this introduction to issuing operating system commands, several questions pop up. For operating
systems that do not support redirection, or in cases where we want to control these operations more
closely from within the script, we must address these issues:

QO How to direct input lines to a command

0O How to capture command outputs

0O How to capture command error messages

U How to issue commands to environments other than the operating system
The address instruction fulfills all these needs. It allows you to specify an origin for command input

and targets for command output and command error output. The address instruction refers to com-
mand input, output and error messages by the following keywords:

Command 1/0 address Keyword
Command input input

Command output output

Command error output error

The input, output, and error parameters can be specified in either of two ways, as character streams
or arrays. This is the basic format for the address instruction that redirects the command’s input, out-
put and error information via three character streams:

address environment command WITH INPUT STREAM filename 1 ,
OUTPUT STREAM filename 2 ,
ERROR STREAM filename 3

The with clause and its keywords input, output, and error were added to Rexx as part of the ANSI-
1996 standard. Here is the same command with input, output, and error information directed to and
from three different arrays:

address environment command WITH INPUT STEM array_name_1. ,
OUTPUT STEM array_name_2. ,
ERROR STEM array_name_3.

The keywords stream and stem redirect to files or arrays, respectively, when using the address
instruction. The period is a required part of the array names because the address instruction refers to
what are properly termed stem variables.

The environment appears immediately after the address keyword. The environment is the target to which
commands are sent. In all examples we’ve presented thus far this is the operating system. But it also
could be a variety of other programs or interfaces, for example, a text editor or a network interface. What
environments are available depend on the platform on which the script runs and which tools or inter-
faces are installed on that platform. The available environments are platform-dependent.

216

Issuing System Commands

In Regina Rexx, the string SYSTEM refers to the operating system. To maximize portability, this string is
the same regardless of the platform on which the Regina script runs. Other Rexx interpreters refer to the
operating system by other keywords. Table L-2 in Appendix L lists some of the popular ones and shows
the instruction you run to determine its default for your system.

The command is the string to send to the environment for execution. It is evaluated before being sent to the envi-
ronment for execution, so consider whether it should be enclosed in quotation marks to prevent evaluation.
You can either create the command string in advance and refer to the variable holding it in the address
instruction, or allow Rexx to dynamically create the command for you by its expression evaluation.

The keyword wi th is followed by one, two or three redirection statements. The three redirection state-
ments are identified by the three keywords input, output, and error. Any one or all three of these
redirections can occur; those not listed take defaults. They may be coded in any order.

input refers to the source of lines that will be fed into the command as input. This essentially redirects
input for the command. output collects the command output, and error collects what the command sends
to “standard error.”

Using the keyword stream, as in the first example, means that input, output or error is directed
to/from operating system files. For input, each line in the file is a line directed to the command’s stan-
dard input. Command output and error are directed to the named output and error files.

The alternative to using streams for command input/output is arrays. The keyword stem permits cod-
ing an array name for the three redirections. Be sure to code the stem name of the array as shown earlier
(the name of the array immediately followed by a single period).

When using array input, you are required to first set array element 0 to the number of lines that are in
the input. Using the preceding example, if the input has 10 lines, set it like this before issuing the
address instruction:

array_name_1.0 = 10
You would also move the 10 input lines into the array before issuing the operating system command. In
this example, this means setting the values of array_name_1.1 through array_name_1.10 with the
appropriate command input lines.
After the command executes, array element 0 for output contains the number of lines output, and array
element 0 for error contains the number of error lines output. For example, this statement displays the
number of output lines from the command:

say array_name_2.0 /* display number of output lines from the command */
Display all the output lines from the command simply by coding a loop like this:

do j = 1 to array_name_2.0

/* process array elements here */

end

This is the preferred technique for displaying or processing the command output. Another technique is
to set the array to the null string before issuing the command:

array_name_2. = "' /* all unused array values are now the null string */

217

Chapter 14

Process all elements in the output array by checking for the null string;:

do j = 1 while array name2.j <> ''
/* process array elements here */
end

You can intermix stream and array I/O in one address instruction. For example, you could present
command input in an array, and direct the command output and error to files. Or, you could send file
input to the command, and specify that its outputs and error messages go into arrays. There is no rela-
tionship among the three specifiers; use whatever fits your scripting needs.

One can even code the same names for input, output, and error. Rexx tries to keep them straight and
not intermix their I/O. This practice becomes complicated and confers no particular advantage. It is not
recommended.

A Few Examples

To this point, we have described the basic ways in which scripts control and access command I/O. The
address instruction underlies these techniques. Since the address instruction is easier to demonstrate
than it is to describe, we need to look at a few more examples.

Remember how we redirected input to the sort command earlier and redirected its output? We did this
through the redirection operators supported in operating systems like Windows, Linux, Unix, BSD, and
DOS through this command:

'sort <sortin.txt >sortout.txt'

This address instruction achieves the same result. We’ve enclosed the input and output filenames in
single quotation marks to prevent uppercasing:

address SYSTEM sort WITH INPUT STREAM 'sortin.txt' ,
OUTPUT STREAM 'sortout.txt'

We code the keyword SYSTEM because Regina Rexx defines this string as its standard identifier for the
operating system (regardless of what the underlying OS may be). Other Rexx interpreters may require
other strings under various operating systems (see Table L-2 in Appendix L).

The keyword with tells Rexx that one, two or three redirections will follow, identified by the keywords
input, output, and error. These three keywords may appear in any order. Those that are not coded
take defaults. Since we want to send input to the sort command from a file, we coded keyword stream,
followed by the filename, sortin. txt.

Coding output stream tells Rexx to send the command output to the file named sortout. txt. Rexx is

case-insensitive, so the case of keywords like with input streamis irrelevant to the interpreter. We
used mixed case here simply to clarify the address instruction keywords.

218

Issuing System Commands

output and error streams can either replace or be appended to the named files. Use the keywords
replace or append to denote this. replace is the default. Here is the same example that was given ear-
lier, but with the provision that the output stream will be added (appended) to, instead of replaced:

address SYSTEM sort WITH INPUT STREAM 'sortin.txt' |,
OUTPUT APPEND STREAM 'sortout.txt'

Recall that the comma (,) is the continuation character. We’ve coded it here simply to continue this long
instruction across lines. We also placed single quotation marks around the filenames. The instruction
works without them but then the filenames will be altered to uppercase. Whether this is desirable
depends on the operating system. Operating systems like Linux, Unix, and BSD are case-sensitive in
their file-naming convention; operating systems like Windows and DOS are not.

Since we’ve specified append on the address instruction’s output stream, if no output file named
sortout. txt exists, running this instruction results in an output file containing:

perl
php
python
rexx

Running the command a second time appends to the output file for this result:

perl
php
python
rexx
perl
php
python
rexx

The replace option would always give the same result that is listed first in this example. In other
words, the replace option replaces any existing file with the results, while append will add results to
the end of an existing file.

You can mix file I/O and array I/O in the same address instruction. This example provides input via an
array but writes the output to a file to give the same results as the previous examples:

in_array.0 = 4 /* REQUIRED- place number of input lines in element 0 */
in_array.l = 'python' ; in_array.2 = 'rexx' ;
in_array.3 = 'perl' ; in_array.4 = 'php'

address SYSTEM sort WITH INPUT STEM in_array. OUTPUT STREAM 'sortout.txt'

You must place the number of input array lines in element 0 of that array prior to executing the address
instruction or it will fail. Of course, you also place the elements to pass in to the command in the array. If
you specify array output, Rexx communicates to your program how many output and error lines are
produced by filling in array element 0 with that value.

219

Chapter 14

Discovering Defaults —the address Function

Many Rexx instructions have corresponding functions. For example, the arg instruction reads input
arguments while the arg function returns information about input arguments. In like manner, the
address builtin function complements the address instruction. Use the address function to find out
what the default command environment is. This statement displays the default command environment:

say address|() /* displays default command environment. Example: SYSTEM */

The ANSI-1996 standard added several parameters you can specify on the address function to retrieve
specific address instruction settings. The following table lists the address function options:

address Function Option Option Stands For... Meaning
I Input Returns the input default
@) Output Returns the output default
E Error Returns the error default
N Normal Returns the default environment

Here is an example. This say instruction displays the defaults for each source or target:

say 'Input source: ' address('I') ,
'Output target:' address('O') ,
'Error target: ' address('E')

What this displays will be system and interpreter dependent. Here’s an example of output for Regina
Rexx running on a Windows computer:

Input source: INPUT NORMAL Output target: REPLACE NORMAL Error target: REPLACE NORMAL

The address function, then, is the basic means through which a script can get information about
where its commands will be issued and how their I/O is controlled.

Issuing Commands to Other Environments

In addition to redirecting command I/O, the address instruction is the basic mechanism by which
you direct commands to environments other than the operating system. To do this, simply code a
different environment on the address instruction:

address KEDIT 'set autosave 5'
This example sends a command to the KEDIT program, a text editor. Of course, what environments
are available (and how you refer to them in the environment string), strictly depends on your platform

and the available interfaces. Typical command interfaces are for program and text editors, network
control, teleprocessing monitors, and the like.

220

Issuing System Commands

There are two basic ways to tell Rexx where to send commands to. We’ve seen one — code the environ-
ment string on the address instruction. Another way is to issue the address instruction with an
environment specified but lacking a command. This sets the command target for all subsequent commands.
Look at these commands run in sequence:

address SYSTEM /* all commands now will go to SYSTEM for execution =/

'dir' /* list all files in the directory Y
'ver' /* see what version of Windows we’re running =/
address KEDIT /* all commands will now go to KEDIT for execution w/
'set autosave 5' /* issue a command to KEDIT #/
address SYSTEM /* all subsequent commands go to SYSTEM again A
'help' /* list commands for which Windows offers Help &

Using this form of the address instruction has the advantage that you can code shorter, more
intelligible commands. But explicitly coding a command on the address instruction along with its
environment better documents where the commands are sent for execution. Personal preference dictates
which to use.

You might also see the address instruction coded without any target:

address
In this case, the instruction causes commands to be routed to the environment specified prior to the last
time it was changed. In other words, repeated coding of address without any environment operand
effectively “toggles” the target for commands back and forth between two target environments.
While this could be appropriate and convenient for certain situations, we do not recommend this
approach. It becomes confusing; we prefer one of the two more self-documenting approaches described

previously.

Remember that you can always code the address function to determine the target environment for
commands:

say address() /* displays the default command environment. */
Finally, we mention that the address instruction requires that the environment must be a symbol or
literal string. It cannot be a variable. As in certain other Rexx instructions, code the value keyword if

you need to refer to the environment as a value contained in a variable:

environment variable = 'SYSTEM'
address value environment variable /* sets the environment to SYSTEM */

Sending a variable parameter into the address instruction provides greater flexibility than hard-
coding and allows scripts to dynamically change the target of any commands.

221

Chapter 14

A Sample Program

You now know the basic techniques for issuing operating system commands and managing their results.
Let’s look at a sample program that shows some of these techniques in action.

This program provides command help information for a Windows computer. First it issues the Windows
help command to the operating system without any operands. The command would be issued like this:

help

This command outputs a list of operating system commands with one line of description for each. The
output looks similar to this:

ASSOC Displays or modifies file extension associations.
AT Schedules commands and programs to run on a computer.
ATTRIB Displays or changes file attributes.
BREAK Sets or clears extended CTRL+C checking.
etc

The script captures this output and places it into an array. The command name is the index; the com-
mand description is stored in the array at that position. For example, the subscript Assoc holds the line
of help information on that command, the array element with subscript AT contains a line of
information on that command, and so on.

(Note that a few commands contain more than one line of description. This program ignores the second line
for those few commands.)

After building the array of command help information, the script prompts the user to enter an operating
system command. In response, the script displays the one-line description for that command from the
array. It also asks the user if he wants more detailed command information. If the user responds yes or
y, then the program issues the help command for the specific command the user has chosen to the
operating system. For example, if the user wants more information on the dir command, the script
issues this Windows command on the user’s behalf:

help dir

This OS command displays more extensive information about the command and its use. Several lines of
command help information appear as well as a listing of command options or switches.

After the user views the verbose help information on the command, the program prompts him to enter
another command about which he needs information. The user either enters another OS command
seeking help information, or he enters quit and the program terminates.

Here is example interaction with this script:

C:\Regina\pgms> regina command help.rexx
Enter Command you want Help on, or QUIT: ver
VER Displays the Windows version.
Want detailed information? n

222

Issuing System Commands

Enter Command you want Help on, or QUIT: vol

VOL Displays a disk volume label and serial number.

Want detailed information? y

Displays the disk volume label and serial number, if they exist.

VOL [drive:]

Enter Command you want Help on, or QUIT: ls
LS No help available.

Enter Command you want Help on, or QUIT: quit

Here is the script:

/* COMMAND HELP: */
7+ v
/* (1) Gets HELP on all OS commands, puts it into an array. i/
/* (2) Lets user get HELP info from the array or the 0S. =/
trace off /* ignore HELP command return code of 'l'*/
cmd_ text out. = "' /* array to read HELP output into */
cmd_help. =" /* array to build with command HELP info */

address SYSTEM 'help' WITH OUTPUT STEM cmd text out.
/* read contents of CMD TEXT OUT, build help array CMD HELP wy

do j=1 to cmd text out.0
parse var cmd text out.j the command command desc
cmd help.the command = command desc

end

/* allow user to query CMD HELP array & issue full HELP commands w/
call charout ,"Enter Command you want Help on, or QUIT: "

pull cmd in
do while cmd in <> 'QUIT'

if cmd help.cmd in = '' then
say cmd in ' No help available.'
else do

say cmd in cmd help.cmd in
call charout ,"Want detailed information? "
pull answer
if answer = 'Y' | answer = 'YES' then
address SYSTEM 'help' cmd in
end

call charout ,"Enter Command you want Help on, or QUIT: "
pull cmd in
end

This script first sets the trace off, because issuing a valid help command under many Windows
versions sends back a return code of 1. This contravenes normal operating system convention and
means that if the script does not mask the trace off, the user will view error messages after the script
(correctly) issues Windows help commands.

223

Chapter 14

Then the script initializes all elements in its two arrays to the null string:

cmd_text out. = '' /* array to read HELP output into */
cmd help. ="' /* array to build with command HELP info */

The subsequent address instruction gets output from the Windows help command into the array
named cmd_text out:

address SYSTEM 'help' WITH OUTPUT STEM cmd text out.

This instruction does not specify input to the help command because it intends to issue the help
command without operands or any input. The output from the help command goes into the array
cmd_text out. Each element in this array contains an OS command and one line of help information.

The script needs to break apart the OS command from its single line of help information. The following
code does this and builds the new array cmd_help.

/* read contents of CMD_TEXT OUT, build help array CMD HELP */

do j=1 to cmd text out.0
parse var cmd text out.j the command command desc
cmd help.the command = command desc

end

The cmd_help array contains one description line per Windows command. Its index is the command
itself — it is an associative array, as explained in Chapter 4. Once the array is built, the next step is to
prompt the user to enter the operating system command about which he wants help. This statement
causes the prompt to appear on the user’s screen:

call charout ,"Enter Command you want Help on, or QUIT: "
The program then uses the command the user enters as an index into the cmd_help array. This
statement applies that command as the index into the array and displays the associated line of help
information to the user:

say cmd_in cmd help.cmd in

Now, the script presents the user with a choice. Either he can ask for full information about the OS
command about which he is inquiring, or he can say “no more” and ask about some other OS command.
These statements prompt the user as to whether he wants more information about the current command:

call charout ,"Want detailed information? "
pull answer

If the user answers YES to this prompt, the script then issues the Windows help command with the OS
command of interest as its operand. The generic format for this Windows help command is this:

help command

224

Issuing System Commands

For example, if more information were desired about the Windows dir (directory) command, the script
would issue this command to Windows:

help dir

As another example, if more information were needed about the ver (version) command, the script
would issue this Windows command:

help ver

This form of the help command prompts Windows to display several lines of detailed help
information on the screen. This is the line in the program that actually issues the extended help
command:

address SYSTEM 'help' cmd in

The variable cmd_in is the command the user wants detailed information about. So, if the user requests
information on the dir command, this statement resolves to:

address SYSTEM 'help' dir

Since SYSTEM is Regina Rexx’s default command environment, the program did not need to explicitly
encode the address instruction. This line would have given the same result:

'help' cmd in

This statement is less cluttered than coding the full address instruction, but one must know what the
default command environment is to understand it. Some developers prefer to code the address
instruction in full to better document their code. Others prefer to issue operating system commands
without it for the sake of brevity.

Using the Stack for Command 1/0

The manner in which commands are sent input and their outputs and errors are captured varies
between Rexx interpreters. This chapter describes the ANSI-1996 standard, which specifies the input,
output, and error keywords on the address instruction. Rexx interpreters increasingly comply with
this standard, but not all do. Some Rexx interpreters have not yet upgraded to support the new ANSI
1996 forms of the address instruction. The ANSI-1996 standard ultimately should offer more
portability, so this approach is recommended where possible.

For many years in mainframe Rexx, the external data queue or stack was used for communications
between Rexx scripts and the commands they executed. (You'll recall that Chapter 11 discussed the
stack and its use in some detail and presented several sample scripts that make use of it.) Because
mainframe Rexx was the first available Rexx, and because the ANSI-1996 standard was devised rather
late in the Rexx evolution, most Rexx interpreters also support the stack for command I/O.

Regina Rexx is typical in this regard. It fully supports the ANSI-1996 standard address instruction
with its ANSI keywords for stream and stem I/O. But in recognition of the historical importance of
mainframe Rexx, it alternatively allows you to use the stack for command I/O. This fits with Regina’s
philosophy of supporting all major standards, both de facto and de jure.

225

Chapter 14

Using the stack for command I/O via its keywords FIFO and LIFO is an “allowed extension” to the
ANSI-1996 standard. FIFO and LIFO stand for "first-in, first-out” and "last-in, first-out", respectively.
Chapter 11 introduced these concepts along with their common uses for the stack.

Remember the example of how to code the sort using redirected input and output? The OS command we
originally coded within a script was:

'sort <sortin.txt >sortout.txt'

This code implements the same result by using the stack in Regina Rexx:

/* Show use of the Stack for Command input and output */

queue 'python' /* place 4 unsorted items into the stack */
queue 'rexx'
queue 'perl'
queue 'php'

address SYSTEM sort WITH INPUT FIFO '' OUTPUT FIFO ''

do queued ()
parse pull sorted result /* retrieve & display stack items */
say sorted result

end

The code places four unsorted items into the stack through the queue instruction. The address
instruction uses the keywords input fifo to send those four items in unsorted order to the sort
command. The output fifo keywords retrieve the four sorted items from the sort command in
FIFO order. The two back-to-back single quotation marks that appear in these clauses mean that the
default stack will be used:

WITH INPUT FIFO ''
WITH OUTPUT FIFO ''

Rexx clears or flushes the stack between its use as an input to the command and its role as a target to
collect the command output. The interpreter endeavors to keep command input and output accurate
(not intermixed).

The do loop at the bottom of the script displays the four sorted items on the user’s screen:

perl
php
python
rexx

We recommend using the ANSI-1996 standard address instruction and its keywords with, input,

output, error, stream and stem. This is more portable than using the stack and is becoming more
widely used. But either approach will work just fine.

226

Issuing System Commands

Summary

Operating system commands bring great power to Rexx scripts, while scripting brings programmability
and flexibility to operating systems. This chapter describes how Rexx scripts issue commands to the
operating system and other target environments. It shows how to verify success or failure of these
commands by checking their return codes, as well as other techniques to analyze command results. It
also describes the several methods by which input can be sent to those commands, and through which
command output and errors are captured.

Rexx implementations traditionally use the stack for command I/O, but developers increasingly favor the
ANSI-1996 standard approach. This chapter illustrates both methods and showed several code examples.

We looked at the ways in which operating system commands can be assembled and submitted to the OS
for execution. We investigated how scripts know whether commands succeed, and ways to inspect their
error output. Then we explored the address instruction, the basic vehicle by which command I/O can
be intercepted, managed, and controlled, and the address function, which returns information about
the command execution environment. Finally, we showed how to use the stack for controlling
command I/O. Many Rexx scripts use the stack for command I/O instead of the ANSI-1996 compliant
address instruction.

Test Your Understanding

1. When does Rexx send a command string to an external environment? What is the
default environment?

2. Why and under what conditions should you encode OS commands in quotation marks?
Describe one method to prepare an entire command before coding it on the line that will
be directed to the OS for execution. How would you print this command?

3. What are the three basic ways to get feedback from OS commands within scripts. Where do
you look up return code information for OS commands?

4, Name two different ways to redirect OS command input and output in a script. Which
should you use when?

5. What are the two kinds of sources and targets you can specify with the address command?
Can the two be intermixed within a single address command?

6. How do you code the address command to tell Rexx to send all subsequent commands to a
particular target environment? How do you “toggle” the address target between two
different environments?

227

19

Interfacing to Relational
Databases

Overview

Many scripts are only useful when the scripting language interfaces to a wide variety of packages.
For example, scripts need to control graphic user interfaces, or GUIs, perform database 1/0O, serve up
customized Web pages, control TCP/IP or FTP connections for communications, display and
manipulate images, and perform many other tasks that require interfaces to outside code.

Rexx offers a plethora of free and open-source interfaces, packages, and function libraries for these
purposes. Appendix H lists and describes many of the more popular ones. This chapter explores
how scripts interface to databases. Then Chapters 16 through 18 explore other free interfaces for
Rexx scripts, including GUISs, graphical images, programming Web servers, and Extensible
Markup Language (XML).

Databases are among the most important interfaces. Few industrial-strength programs can do
without the power and data management services of modern database management systems, or
DBMS.

Most database systems are relational. They view data in terms of tables composed of rows and
columns. Relational DBMSs typically provide complete features for data management, including
transactional or concurrency control, backup and recovery, various utilities, interfaces, query lan-
guages, programming interfaces, and other features for high-powered data management.

Several packages enable Rexx scripts to interface with databases. These allow the scripts to inter-
face to almost any DBMS, including both open-source and commercial systems. This chapter
focuses on the most popular open-source database interface, Rexx/SQL. Rexx/SQL interfaces
Rexx scripts to almost any database. Among them are open-source databases like MySQL,
PostgreSQL, Mini SQL, mSQL, and SQLite, and commercial databases like Oracle, DB2 UDB, SQL
Server, and Sybase. A full list follows in the next table.

Chapter 15

Rexx/SQL has been production tested with several different Rexx interpreters, including Regina and
Open Object Rexx. The examples in this chapter were all run using Regina Rexx with Rexx/SQL.
Rexx/SQL supports two types of database interface: custom, or native, interfaces and generic database
interfaces. Native interfaces are DBMS-specific. They confer performance advantages but work with only
one database. Generic database interfaces work with almost any database and offer greater standardiza-
tion and more portable code —but at the possible cost of lesser performance and the exclusion of non-
standard features.

We cover Rexx/SQL in this chapter because it is:

Q Widely used

QO Open source

Q Interfaced to all major databases
Q

Conforms to database standards

The sample scripts in this chapter all run against the MySQL open-source database. MySQL is the most
widely used open-source database and we used it for the database examples because it fits with the
book’s emphasis on free and open-source software. While the sample scripts use the MySQL interface,
they could run against databases other than MySQL with very minor modifications. In most cases, only
the first database function call (SglConnect) would have to be altered in these sample scripts to run
them against other databases. The latter part of this chapter explains how to connect scripts to other
popular databases, including Oracle, DB2 UDB, and Microsoft SQL Server. The chapter’s sample scripts
were tested on a Windows server running MySQL.

Rexx/SQL Features

The Rexx/SQL database interface follows the two major database standards for a call-level interface, or
CLI. These two interface standards are the Open Database Connectivity Application Programming Interface,
or ODBC API, and the X/Open CLI.

Rexx/SQL supports all expected relational database operations and features. It executes all kinds of SQL
statements, including Data Definition Language, or DDL, and Data Manipulation Language, or DML. Data
definition statements create, alter, and remove database objects. They include, for example, create
table or drop index. Data manipulation statements operate on rows of data, and include such state-
ments as select, insert, update, and delete.

Rexx/SQL provides all the features and functions with which you may be familiar from the call-level
interface of any database. If you are familiar with the CLI used by Oracle, DB2 UDB, MySQL, or any
almost any other database, you will find Rexx/SQL easy and convenient. Rexx/SQL supports features
such as cursor processing, dynamic statement preparation, bind variables and placeholders, SQL control
structures such as the SQL Communications Area (SQLCA), SQL error messages, null processing, auto-
commit options, concurrent database connections, and the retrieval and setting of database interface
behaviors.

If you have no experience with call-level database processing, this chapter offers an entry-level tutorial.
It will help you download and install Rexx/SQL and write simple Rexx scripts that process the database.
Ultimately, you may want to pursue the topic of database processing further by reading about the ODBC
or X/Open CLIs.

230

Interfacing to Relational Databases

Downloading and Installing Rexx/SQL

Information on Rexx/SQL is available at http://rexxsql.sourceforge.net. If Web site addresses
change, enter the keyword Rexx/SQL into any search engine and download sites will pop up.

Both source and binaries appear as downloadable for various platforms. For example, Windows users
can download a *.zip file. Decompressing that file effectively installs the product. Linux, Unix, and
BSD users can download *.tar.gz files. Source is available in *src.zip files.

Download the file specific to the database to which your Rexx scripts will connect, or download the
generic ODBC driver. Look for these keywords within the download filename to tell you which database
it supports, as outlined in the that follows.

Keyword Supports
ORA Oracle
DB2 Db2 (Db2 UDB)
SYB Sybase
SAW Sybase SQL Anywhere
MIN Mini SQL (mSQL)
MY MySQL
ODBC Generic ODBC driver
UDBC Openlink UDBC interface
SOL Solid Server
VEL Velocis (now Birdstep)
ING Ingres
WAT Watcom
INF Informix
POS Postgres and PostgreSQL
LITE SQLite
PRO Progress

Rexx/SQL uses these abbreviations throughout the product whenever there is a need to provide a stan-
dard moniker for a database. Of course, updates and changes may occur to the list so check the
Rexx/SQL home page documentation to determine which databases are fully supported.

As an example, let’s interface Rexx to a MySQL database under 64-bit Windows. Download either a file
named rxsgl__odbc _w64.zip orone named rxsqgl__my wé64.zip. Some of the underscores in these
sample filenames are replaced by the version number of the product. For example, depending on the
version number, a real filename might be something like rxsq124 odbc_w64.zip. The filenames show

231

Chapter 15

which database the driver supports. For example, rxsql24 odbc w64.zip supports the generic ODBC
driver, while rxsql24 my wé64.zip supports MySQL. We chose the native MySQL interface for the
examples in this chapter, but either works fine and provides the same results.

Under Windows, if you use an ODBC driver, you must use Windows” ODBC Data Sources Administrator
Tool to register the ODBC driver with Windows. On Windows, access this panel through Start |

Settings | Control Panel | Administrative Tools | Data Sources (ODBC). Or use the Help function and
search for keyword ODBC.

If you’re not using Windows, or if you're on Windows but are using a native interface, registering the
driver via the ODBC Data Sources Administration Tool is not necessary. Since we use the native MySQL
interface for the examples in this chapter, we did not have to use the ODBC Data Sources Administrator
Tool.

The Rexx/SQL download will decompress to include files with names starting with the letters README.
For example, in downloading the ODBC driver for Windows, we saw the two files README . odbc and
README . rexxsgl among the extracted files. Read these files! They tell you all you need to know about
setting up Rexx/SQL for your particular platform.

On some platforms, you may need to finish the installation by setting a couple of environmental vari-
ables. The PATH variable on many operating systems might need to include the directory where Rexx/
SQL is installed. The README file will tell you if any other actions are required.

For example, on Windows systems, the PATH should be set to include the folder in which the Rexx/SQL
Dynamic Link Library, or DLL, file resides, named rexxsql.d11. For Linux, Unix, and BSD systems, the
directory in which the shared library file for Rexx/SQL resides must be pointed to by the environmental
variable that references library files. On Linux this environmental variable is named LD LIBRARY PATH.
See the README file for this name for other Unix-derived operating systems.

Once Rexx/SQL is installed, run the product’s test script named simple.cmd. It resides in the directory
in which Rexx/SQL installs. This test program simply connects, then disconnects, from the database for
which you installed Rexx/SQL. It lists descriptive error messages in the event of any problem.

Next run the product test script named tester.cmd. This is a more ambitious test script that creates
some tables, makes multiple database connections and disconnections, and runs a wide variety of com-
mon SQL statements on the database. The documentation at the top of this script gives you advice about
how to run it. You must set an environmental variable or two, the nature of which varies by the database
you use. Read the documentation at the top of the script for all the details — prior to running the script.

If the two test scripts work, Rexx/SQL is installed successfully on your system. Incidentally, the two test
scripts provide excellent examples of how to code for Rexx/SQL in your scripts. Along with the sample
scripts in this chapter, you can use them as coding models to get started with Rexx/SQL and database
scripting.

The Basics

The Rexx/SQL database interface follows the two major database standards for a CLI: the ODBC API
and the X/Open CLI. Interfacing with the database via the CLI means issuing a series of database or SQL
calls. Rexx/SQL supplies these as a set of functions. The series of calls a script issues depends on the
type of database activity the script performs.

232

Interfacing to Relational Databases

Let’s discuss the Rexx/SQL database functions organized by functional area. Our goal here is to give
you an overview of what these functions are, what they do, and how to apply them. (Appendix F
describes all the functions in full detail. The appendix lists the functions alphabetically along with their
full coding formats and coding examples.)

Database Connections. These functions enable scripts to connect to a specified database, manage that con-
nection, and disconnect from the database when SQL processing is completed.

Q sglconnect — Connects to a SQL database

Q SglDisconnect — Disconnects from a SQL database

Q SglGetInfo—Retrieves Rexx/SQL information about a connection

Q0 sglbDefault — Switches the default connection to another open connection
Environmental Control. While there is but a single function for environmental control, it has an important

role in database programming. This function allows scripts to either query or set various runtime values
that affect their interactions with the database.

Q sglvariable—Retrieves or sets default runtime values

Issuing SQL Statements. These functions enable scripts to issue all kinds of database calls, including data
definition and data manipulation statements. SQL statements can be executed by a single Rexx state-
ment, or they can be prepared in advance and executed repeatedly and with optimal efficiency. These
functions also allow scripts to process multiple-row result sets either with cursors or other techniques
for multi-row processing.

SglCommand — Issues a SQL statement to the connected database

Sglprepare— Allocates a work area for a SQL statement and prepares it for processing
SglExecute — Executes a prepared statement

SqglDispose — Deallocates a work area for a statement

Sglopen— Opens a cursor for a prepared select statement

Sqglclose—Closes a cursor

SglFetch— Fetches the next row from a cursor

SglGetData— Extracts part of a column from a fetched row

I T T N I A N

SglDescribe — Describes expressions from a select statement
Transaction Control. The two transaction control statements permit scripts to dictate when data changes
are permanently applied to the database. Transaction control is fundamental to how databases guarantee

data integrity and their ability to recover a database, if necessary.

Q SglCommit — Commits the current transaction

Q SglRollback—Rolls back the current transaction

We'll see examples of many of these SQL functions in the sample scripts that we will now discuss.

233

Chapter 15

Example — Displaying Database Information

As explained previously, scripts interface to databases by issuing a series of Rexx/SQL function calls.
The previous lists describe what these functions are named and what they do. Now we need to see how
to put them together in real programs.

The first sample database script performs several “startup” and “concluding” actions that are common
to all database scripts. The only real action it takes once it connects to the database is to report some
environmental information it retrieves about the databaase. Here is what this first sample database
script does:

1. Loads the Rexx/SQL function library for use

2. Connects to the MySQL database

3. Retrieves and displays environmental information about the database

4 Disconnects from the database

Figure 15-1 describes these actions diagrammatically as a flowchart. With the addition of database pro-
cessing logic, this is the skeletal structure of most SQL scripts.

Typical Database Interaction

A

Load the database function library.
Connect to the database.

Perform database processing
via Rexx/SQL function calls.

Disconnect from the database.
Drop the database function library.

Figure 15-1

Here’s what the output from the first sample script looks like. You can see it just displays some basic ver-
sion information about the Rexx/SQL interface along with environmental information it retrieved from
the database:

The Rexx/SQL Version is: rexxsqgl 2.4 02 Jan 2000 WIN32 MySQL
The database Name is: mySQL
The database Version is: 4.0.18-max-debug

234

Interfacing to Relational Databases

Here’s the script:

/**/

/* DATABASE INFO: =/
/* */
/% Connects to MySQL, displays database information. =Y

/**/

signal on syntax /* capture SQL syntax errors */

/* load all SQL functions, make them accessible to this script */

if RxFuncAdd('SQLLoadFuncs', 'rexxsqgl', 'SQLLoadFuncs') <> 0 then
say 'rxfuncadd failed, rc: ' rc

if SQLLoadFuncs() <> 0 then

say 'sglloadfuncs failed, rc: ' rc
/* connect to the MySQL database, use default user/password ¥/
if SQLConnect(,,, 'mysgl') <> 0 then call sglerr 'On connect'
/* get and display some database information */

say 'The Rexx/SQL Version is:' SQLVariable('VERSION')
if SQLGetinfo(, 'DBMSNAME', 'desc.') <> 0
then call sglerr 'Error getting db name'
else say 'The database Name is: ' desc.1l
if SQLGetinfo(, 'DBMSVERSION', 'desc.') <> 0
then call sglerr 'Error getting db version'
else say 'The database Version is: ' desc.l
/* disconnnect from the database and drop the SQL functions */

if SQLDisconnect() <> 0 then call sglerr 'On disconnect'

if SQLDropFuncs ('UNLOAD') <> 0 then

say 'sagldropfuncs failed, rc: ' rc
exit 0
/* capture any SQL error and write out SQLCA error messages w

sglerr: procedure expose sglca.
parse arg msg

say 'Program failed, message is: ' msg
say sglca.interrm /* write SQLCA messages */
say 'SQL error is:' sqglca.sglerrm /* write SQLCA messages */

235

Chapter 15

call SQLDropFuncs 'UNLOAD'

exit 99

syntax: procedure /* capture any syntax errors */
say 'Syntax error on line: ' sigl /* identify syntax error*/
return

The first step in this program is to load the Rexx/SQL external function library and make its functions
available for the use of this script. Regina uses the Systems Application Architecture, or SAA, standard
functions to achieve this. Here is one way of coding them:

if RxFuncAdd('SQLLoadFuncs', 'rexxsqgl', 'SQLLoadFuncs') <> 0 then
say 'rxfuncadd failed, rc: ' rc

if SQLLoadFuncs() <> 0 then
say 'sglloadfuncs failed, rc: ' rc

The RxFuncAdd function first loads or registers the SqlLoadFuncs function. The middle parameter spec-
ifies the name of the file in which SglLoadFuncs can be found. In Windows, this external library is a
Dynamic Link Library, or DLL, file. It is named rexxsql.d11. The directory in which this file resides
should be part of Windows” PATH environmental variable so that Regina can locate it.

Under Linux, Unix, and BSD, the equivalent of a Windows DLL is a shared library file. An environmental
variable specifies the directory in which this shared library file resides. Different versions of Unix use
different environmental variable names for this purpose, so check the README* file for the details for
your Unix version. On most systems, it will be named LD_LIBRARY_PATH or LIBPATH. On Linux sys-
tems, this environmental variable is LD_LIBRARY_PATH.

To reiterate, the RxFuncAdd statement registers the function SqlLoadFuncs, which is part of the Rexx/
SQL external library. The call to SqglLoadFuncs then loads the remainder of the Rexx/SQL external
library. Now all its functions are available for the use of this script. See Chapter 20 if you want more
detail on the functions to access external libraries.

Since all scripts that interface to databases use this code, consider placing it in a Rexx script function or
subroutine. This takes it out of line for the main body of the code and simplifies your program.

Once the script loads the Rexx/SQL external function library, it can connect to the database. Here we
connect to the MySQL database named mysqgl (one of the two databases MySQL creates by default when
installed):
if SQLConnect(,,, 'mysgl') <> 0 then call sglerr 'On connect'
The SglConnect statement can take several other parameters, as shown in its template diagram:
SQLCONNECT ([connection name], [username], [password], [database], [host])
The required parameters for this statement vary by the database with which you are trying to connect. Our
example only supplies the name of the database to which the script wishes to connect. SqlConnect is just
about the only statement in Rexx/SQL whose coding is database-dependent. The section entitled “Working

with Other Databases” later in this chapter discusses and illustrates how to code the SglConnect function
for systems like Oracle, DB2 UDB, SQL Server, and ODBC connections.

236

Interfacing to Relational Databases

After connecting, the script executes the Sglvariable function to retrieve and display the version of
Rexx/SQL:

say 'The Rexx/SQL Version is:' SQLVariable('VERSION')

Then the script invokes the SglGetInfo function twice, with different parameters, to retrieve the DBMS
name and version:

if SQLGetinfo(, 'DBMSNAME', 'desc.') <> 0
if SQLGetinfo(, 'DBMSVERSION', 'desc.') <> 0

Rexx/SQL places the results into the stem variable named in the call. Here this stem variable is desc.,
so the output strings we want are in the variable named desc. 1. The full statements show how these
values are retrieved and displayed:

if SQLGetinfo(, 'DBMSNAME', 'desc.') <> 0
then call sglerr 'Error getting db name'
else say 'The database Name is: ' desc.l

if SQLGetinfo(, 'DBMSVERSION', 'desc.') <> 0
then call sglerr 'Error getting db version'
else say 'The database Version is: ' desc.1

Its work done, the script disconnects from the database and drops the Rexx/SQL function library from
memory. Scripts typically perform these two steps as their final database actions. Here is the code that
implements these two terminating actions:

if SQLDisconnect() <> 0 then call sglerr 'On disconnect'

if SQLDropFuncs ('UNLOAD') <> 0 then
say 'sagldropfuncs failed, rc: ' rc

We’ve nested the functions inside of if instructions in order to check their return codes. When perform-
ing database processing, we recommend always checking return codes from the database functions. If not
for this little bit of extra code, the application could otherwise behave in ways that completely mystify
its users, even when the problem is something so simple as a database that needs to be started up. It is
standard practice in the database community to check the return code from every SQL statement in a
program.

When database function errors occur, this script executes this internal routine:

sqglerr: procedure expose sqglca.
parse arg msg

say 'Program failed, message is: ' msg

say sglca.interrm /* write SQLCA messages */
say 'SQL error is:' sqglca.sglerrm /* write SQLCA messages */
call SQLDropFuncs 'UNLOAD'

exit 99

237

Chapter 15

Here’s an example of the kind of error message this routine might output. In this case, the SglConnect
function failed because an incorrect database name was supplied. The database name was incorrectly
specified as mysglxxxx instead of as mysql:

Program failed, message is: On connect
REXX/SQL-1: Database Error
SQL error is: Unknown database 'mysglxxxx'

In this example, the error routine displays the SQL error message and stops the program (the last state-
ment in the error routine is an exit instruction). You could write the routine to take any other appropri-
ate action, as you see fit, and continue the program. You might even choose whether to end the program
or continue it, depending on the nature and severity of the error the error routine encounters.

The error routine shows how to retrieve and display various error messages from the database. Its first
line gives its full access to the SQL Communications Area, or SQLCA:

sglerr: procedure expose sglca.

The SQLCA is the basic data structure by which the DBMS passes status information back to the pro-
gram. The status values in the SQLCA set by database activity include the following:

SQLCA . SQLCODE — SQL return code

SQLCA. SQLERRM— SQL error message text

SQOLCA. SQLSTATE — Detailed status string (N/A on some ports)

SQLCA . ROWCOUNT — Number of rows affected by the SQL operation
SQLCA . FUNCTION — The last Rexx external function called

a

a

a

Q sQLcA.sQLTEXT — Text of the last SQL statement

Qa

a

Q sQLCA.INTCODE — The Rexx/SQL interface error number
a

SQLCA . INTERRM — Text of the Rexx/SQL interface error

Database scripts can either handle SQL errors in the body of the code (inline), or they can consolidate
error handling into one routine, such as the sqlerr routine in the sample script. In large projects consol-
idating code is advantageous because it leads to code reuse, standardizes error handling, and reduces
the size and complexity of the inline code.

The SYNTAX error condition trap fits right in with the sgqlerr routine in capturing and handling SQL
syntax errors. It is very easy to make syntax errors when coding to the SQL CLI because the character
strings one issues to the database become complicated. The SYNTAX error condition trap manages this
challenge:

syntax: procedure /* capture any syntax errors */
say 'Syntax error on line: ' sigl /* identify syntax error*/
return

238

Interfacing to Relational Databases

For large applications, we recommend writing a single SQL error-handling routine and having all SQL
errors sent to that routine. The SYNTAX trap routine can also call the SQL error handler, if desired. This
sample script simplifies error handling for clarity of illustration. The test scripts distributed with
Rexx/SQL provide a fuller and more robust SQL error handler. Review those scripts if you want to
develop a more comprehensive, generalized SQL error handler.

Example — Create and Load a Table

Now we know how scripts connect to and access relational databases. The next step is to develop exam-
ples that issue data manipulation language statements to manage the data in databases, and data defini-
tion language statements to manage database objects like relational tables. To illustrate basic SQL
programming, let’s create a simple telephone number directory. Each entry (row) has only two columns:
the person’s last name and his or her telephone number.

This program creates a phone directory. It does this by creating a database table named phonedir, then
loading it with data. The “data load” is simply an interactive loop that prompts the user to enter peo-
ple’s names and their phone numbers. When the user enters the character string EXIT, the program
ends.

Here is the script:

/**/

/* PHONE DIRECTORY: =/
/* */
/% Creates the phone directory and loads data into it. =Y
/**/
signal on syntax /* capture SQL syntax errors */
call sgl_initialize /* load all Rexx/SQL functions*/
if SQLConnect(,,, 'mysqgl') <> 0 then call sglerr 'On connect'

if SQLCommand (ul, "use test") <> 0 then call sglerr 'On use'

/* drop the table if it exists, and create the table a-new w
rc = SQLCommand (dl, "drop table phonedir") /* dont care about rc */

sglstr = 'create table phonedir (lname char(10), phone char(8))"
if SQLCommand (cl,sglstr) <> 0 then call sglerr 'On create'

say "Enter last name and phone number ==> "
pull Iname phone .
/* this loop collects data from user, inserts it as new rows ¥/
do while (lname <> 'EXIT')
sglstr = "insert into phonedir values('" || lname || "'",

n!ln || phone |||)||
if SQLCommand(il,sglstr) <> 0 then call sglerr 'On insert'

239

Chapter 15

say "Enter last name and phone number ==> "
pull lname phone .
end

call sgl_pgm_end /* disconnect, drop functions */
exit 0

The first line of the program enables the SYNTAX error condition:
signal on syntax /* capture SQL syntax errors */

Since the previous sample script, Database Info, already showed the code for the SYNTAX error handler,
we have not shown it again in the above program. Similarly, the next line in the script invokes a new
subroutine called sql_initialize:

call sqgl_initialize /* load all Rexx/SQL functions*/

This routine registers and loads the Rexx/SQL interface. It contains exactly the same code as the previ-
ous program (using the RxFuncAdd and SglLoadFuncs functions). We do not duplicate this code in this
example, in order to keep it as short and readable as possible.

After connecting to the database, the script tells MySQL which database it wants to use. It issues the
MySQL use test database command through a single call to the Sq1Command function:

if SQLCommand(ul, "use test") <> 0 then call sglerr 'On use'

For purposes of initialization, the script drops the phonedir table if it already exists. If the phonedir
table does not exist and this statement fails, that’s okay. We’re only dropping it to ensure that the subse-
quent create table statement will not fail because the table already exists. (The pairing of drop
table / create table statements in this manner is a common technique in database processing.)
Here is the drop table statement:

rc = SQLCommand(dl, "drop table phonedir") /* dont care about rc */
The statements that create the database table phonedir come next:

sglstr = 'create table phonedir (lname char(10), phone char(8))'"
if SQLCommand(cl,sglstr) <> 0 then call sglerr 'On create'

As this code shows, the new table has only two columns: one for the person’s last name and one for their
phone number. The first statement builds the SQL create table statement in a variable, while the sec-
ond statement executes that command. The second statement also references the sglerr routine,
because we consolidated all SQL error processing in a single routine. Since this routine contains the exact
same code as the previous sample program, we have not included it in the program’s code here.

The script now enters a do loop where it prompts for the user to enter names and their associated phone
numbers. These two statements build and issue the SQL insert statement that adds each record to the
database:

sglstr = "insert into phonedir values('" || lname || "'",

w o H phone ||l)l|
if SQLCommand(il,sqglstr) <> 0 then call sglerr 'On insert'

240

Interfacing to Relational Databases

Instead of building the SQL statement separately, in the first statement, it could be nested inside of the
SglCommand function call. We use a separate statement to build this string because of its syntactical com-
plexity. This makes for more readable code. A large percentage of SQL programming errors involve
statement syntax, and this approach makes it easy to verify the SQL statement simply by displaying the
string. We generally recommend building SQL statements in variables like this rather than dynamically
concatenating them within the actual SQL function encoding.

To end the program, we need to issue the SqglDisconnect and SqlDropFuncs calls. Since this code is
the same as the previous program, we’ve isolated it in its own routine called sql_pgm_end:

call sqgl_pgm_end /* disconnect, drop functions */

We don’t include this code in the example because it duplicates the same lines as the previous sample

script. You can see that using common routines for database connection, disconnection, and error han-
dling is a very sensible approach. It both reduces the code you must write for each script and reduces

errors.

In database programming, scripts must commit (make permanent) any database changes. In this script,
the data is auto-committed to the database by disconnecting from the interface. Auto-commit automati-
cally commits the data to the database if the script ends normally. Alternatively, the script could explic-
itly issue the SQL sqlCommit statement:

if SQLCommit () <> 0 then call sglerr 'On commit'

The Rexx/SQL interface allows scripts to control the auto-commit feature. Use the Sglvariable func-
tion to retrieve and/or set this and other behaviors of the database interface. Simple programs like this
sample script tend to rely on auto-commit to apply changes to the database upon their termination.
More advanced database scripts require explicit control of commit processing. We'll see an example of
the sQL.Commi t function later in this chapter in a script that updates the phone numbers in the database.

Example — Select All Results from a Table

Okay, we’ve created a table in the database and inserted a few rows in it. The preceding sample script
shows how these tasks can be accomplished. The logical question now is: How do we view the rows in
the table?

This script shows one easy way:

/**/

/* PHONE DIRECTORY LIST: */
/* */
A Displays the phone directory's contents. &y
/**/
signal on syntax /* capture SQL syntax errors */
call sgl_initialize /* load all Rexx/SQL functions*/
if SQLConnect(,,, 'mysgl') <> 0 then call sglerr 'On connect'

if SQLCommand (ul, "use test") <> 0 then call sglerr 'On use'

sglstr = 'select * from phonedir order by lname'

241

Chapter 15

if SQLCommand (sl,sglstr) <> 0 then call sglerr 'On select'

/* This loop displays all rows from the SELECT statement. */
do j = 1 to sglca.rowcount

say 'Name:' sl.lname.j 'Phone:' sl.phone.j
end
call sgl_pgm_end /* disconnect, drop functions */
exit 0

This script uses some of the same database service routines as the previous example:

0 syntax— Error routine that handles SYNTAX errors

QO sqgl_initialize—Registers and loads Rexx/SQL external functions
QO sglerr —Consolidates SQL statement error handling
a

sql_pgm_end— Disconnects from the database and drops Rexx/SQL functions
The code for these routines is in the first sample program and is not repeated here. The basic problem in
this script is this: how do we execute a SQL select statement to retrieve and display the rows in the

table? Here is the code that builds and executes the select statement:

sglstr = 'select * from phonedir order by lname'
if SQLCommand(sl,sglstr) <> 0 then call sglerr 'On select'

This statement retrieves the data of the rows in the phonedir table. To display it, we need a do loop:
do j = 1 to sglca.rowcount
say 'Name:' sl.lname.j 'Phone:' sl.phone.j
end
The data elements in each row are referred to by this syntax:
Statement_name.Column_name.Row_identifier
In the example, for the person’s name, this resolves to:
sl.lname.j
This neat Rexx/SQL syntax makes multiple row retrieval easy. Just put this row reference inside a do
loop and display all the data. Later we'll see another way to display data from a SQL select statement
via standard ODBC-X/Open programming, called cursor processing.
The variable sglca.rowcount was set by the interface as feedback to the select statement. It tells how

many rows were retrieved by the select, so we use it as the loop control limit. Another way to get this
same information is to inspect element 0 in the returned rows. s1.1lname.0 and s1.phone. 0 also

242

Interfacing to Relational Databases

contain a count of the number of rows retrieved. Instead of referring to sgqlca.rowcount, as does the
preceding code, we could also have coded the display loop as:

do j =1 to sl.lname.O
say 'Name:' sl.lname.j 'Phone:' sl.phone.j
end

Either approach to controlling the number of do loop iterations works fine. Once retrieval and display of
the rows is complete, the script calls its internal routine sgl_pgm_end to disconnect from the database
and drop the Rexx/SQL functions. This terminates the database connection and releases resources

(memory).

Example — Select and Update Table Rows

We've created a database table, inserted rows, and viewed the rows. Time to update the data.

This simple script updates the phone numbers. Its do loop prompts the user to enter a person’s name. If
the person exists in the table, the program prompts for a phone number, and updates that person’s
phone number in the phonedir table. If the person does not exist in the table, the script displays a “not
found” message and prompts for the next person to update. The script ends when the user enters the
character string EXIT.

Here is the script:

/**/

/* PHONE DIRECTORY UPDATE: =/
/* */
/% Updates rows in the phone directory w/ new phone numbers. */
/**/
signal on syntax /* capture SQL syntax errors */
call sqgl_initialize /* load all Rexx/SQL functions*/
if SQLConnect(,,, 'mysqgl') <> 0 then call sglerr 'On connect'

if SQLCommand (ul, "use test") <> 0 then call sglerr 'On use'

say "Enter name or 'EXIT':" /* prompt for person for whom */
pull lname . /* we'll update the phone &y

do while (lname <> 'EXIT')

/* retrieve the phone number for the person to update =Y
sglstr = 'select phone from phonedir where lname ="'
|| lname || '"'

if (SQLCommand(sl,sglstr) <> 0) then call sglerr 'On select'

/* 1f we retrieved one row, we retrieved the person given &y
/* go ahead and update that person's phone # in the database */

if sglca.rowcount <> 1 then

243

Chapter 15

say 'This person is not in the database:' lname
else do

say lname 'Current phone:' sl.phone.l

say 'Enter new phone number:'

pull new_phone

sglstr = 'update phonedir set phone ="' || new_phone || '"',
|| ' where lname ="' || lname || '"'
if SQLCommand(ul,sglstr) <> 0 then call sqglerr 'On update'

end
/* commit to end the interaction, get the next person's name */

if SQLCommit () <> 0 then call sglerr 'On commit'
say "Enter name or 'EXIT':"
pull lname

end

call sqgl_pgm_end /* disconnect, drop functions */
exit 0

Much of the code of this program is similar to what we’ve seen in previous examples. Among the new
statements, this is the select statement that tries to retrieve the phone number of the person the user
enters:

sglstr = 'select phone from phonedir where lname ="'
|| lname || '"
if (SQLCommand(sl,sglstr) <> 0) then call sglerr 'On select'

If the variable sqlca.rowcount is not 1 after this call, we know that we did not retrieve a row for the
name. The person (as entered by the user) does not exist in the table:

if sqglca.rowcount <> 1 then
say 'This person is not in the database:' lname

The script assumes that each person’s name is unique, so the statement will either retrieve 0 or 1 rows.
Of course, in a real database environment, some unique identifier or key other than the person’s name
would likely be used.

If we do retrieve a row, this code prompts the user to enter the person’s new phone number and updates
the database:

say lname 'Current phone:' sl.phone.l

say 'Enter new phone number:'

pull new_phone

sqglstr = 'update phonedir set phone ="' || new_phone || '"',
|| ' where lname ="' || lname || '"'

if SQLCommand (ul,sglstr) <> 0 then call sglerr 'On update'

After the SQL update statement, the program commits any changes made to apply them permanently to
the database through the SglCommit function:

if SQLCommit () <> 0 then call sglerr 'On commit'

244

Interfacing to Relational Databases

Example — Cursor Processing

In the programs thus far, we’ve relied on a very useful feature of the Rexx/SQL interface: the ability to
execute any SQL statement in one function call. The Rexx/SQL SglCommand function lets scripts issue
either data definition or data manipulation statements, including select’s. The Rexx/SQL interface
does not limit which SQL statements are allowed, unlike some call-level database interfaces.

Some interfaces do not allow SQL select statements that return more than one row to be run through a
single statement. If a select statement returns more than one row, it requires cursor processing. A cursor
is a structure that allows processing multiple-row result sets, one row at a time.

These are the major steps in processing multi-row results sets using a cursor:

1. A sqglprepare statement prepares the cursor for use. This allocates a work area and “compiles”
the select statement associated with the cursor.

2. The sqlopen function opens the cursor.

3. Aprogram do loop retrieves rows from the cursor, one by one, through the sqlFetch function.

4. When done, the script closes the cursor by a SglClose, and deallocates the work area by a
SglDispose call.

Figure 15-2 illustrates this process pictorially.

Database Cursor Processing

!

SQLPrepare Prepare the cursor for use
SQLOpen Open the cursor
Row to No
process?
Yes
SQLFetch Fetch the row

——

SQLClose Close the cursor,
SQLDispose Release resources

!

Figure 15-2
245

Chapter 15

This script implements the logic of cursor processing:

/**/

/* PHONE DIRECTORY LIST2: &y
/* */
7% Displays the phone directory's contents using a cursor. Y/
/**/
signal on syntax /* capture SQL syntax errors */
call sqgl_initialize /* load all Rexx/SQL functions*/
if SQLConnect(,,, 'mysqgl') <> 0 then call sglerr 'On connect'

if SQLCommand (ul, "use test") <> 0 then call sglerr 'On use'

sglstr = 'select * from phonedir order by lname'
if SQLPrepare(sl,sglstr) <> 0 then call sglerr 'On prepare'

if SQLOpen(sl) <> 0 then call sglerr 'On open'
/* this loop displays all rows from the SELECT statement &y
do while SQLFetch(sl) > 0

say 'Name:' sl.lname 'Phone:' sl.phone

end

if SQLClose(sl) <> 0 then call sglerr 'On close'
if SQLDispose(sl) <> 0 then call sglerr 'On dispose'

call sgl_pgm_end /* disconnect, drop functions */
exit 0

In this program, the SglPrepare function allocates memory and internal data structures and readies the
SQL statement (here a select) for subsequent execution:

sglstr = 'select * from phonedir order by lname'
if SQLPrepare(sl,sqglstr) <> 0 then call sglerr 'On prepare'

Next, open the cursor by a Sq10pen statement. Cursors must always be explicitly opened, as this next
statement shows. In this respect, cursors are not like Rexx files, which are automatically opened for use:

if SQLOpen(sl) <> 0 then call sglerr 'On open'

Once the cursor is open, fetch and display rows from the cursor, one at a time, by using the SqglFetch
call. This do loop shows how individual rows may be processed, one after another:

do while SQLFetch(sl) > 0
say 'Name:' sl.lname 'Phone:' sl.phone

end

After all the rows have been processed, end by closing the cursor and freeing any resources. Use the
SglClose and SglDispose functions for this:

if SQLClose(sl) <> 0 then call sglerr 'On close'

if SQLDispose(sl) <> 0 then call sglerr 'On dispose'

246

Interfacing to Relational Databases

Statement preparation can be used for other SQL statements besides select. While this approach may
seem more cumbersome, it offers a performance benefit if the script executes the SQL statement more
than once. This is because the SglPrepare function places SQL statement compilation into a separate
step. Executing the SQL statement is then a separate, more efficient, repeatable step. If you prepare a
SQL statement one time, then execute it repeatedly, this multi-step approach yields better performance.

SQL insert, update and delete statements can also be prepared in advance. Use the SglExecute
function after the SqlPrepare function to execute the SQL insert, update or delete statement. End
the process by sqlDispose. Use the same sequence of statements for data definition statements:
SglPrepare, SqlExecute, SglDispose. (One DDL statement, describe, requires this sequence:
SqglPrepare, SglDescribe, SqlDispose).

Rexx/SQL gives you the choice whether to opt for convenience with the single-statement processing of
the sqlCommand function, or to go for performance with SqglPrepare and SqlExecute. The trade-off
between the two approaches is one of coding convenience and simplicity versus optimal performance.

Bind Variables

Structured Query Language, or SQL, permits the kinds of database queries illustrated by the sample
programs above. But if SQL statements were always hardcoded, the language would not offer the pro-
grammability or flexibility scripts require. Bind variables provide the required flexibility. Bind variables
are placeholders within SQL statements that allow scripts to dynamically substitute values into the SQL
statement.

Here’s an example. In the phone directory update script, we prompted the user to enter a person’s
name; then we retrieved the phone number based on that name. We then dynamically concatenated that
person’s name into the SQL select statement the script issued. The statements worked fine but the
dynamic concatenation made for some complex syntax. Here’s a simpler way to write the same state-
ments using a parameter marker or placeholder variable that represents the bind variable

sglstr = 'select phone from phonedir where lname = ? '
if (SQLCommand(sl,sglstr,lname) <> 0) then call sglerr 'On select'

The question mark (?) is the placeholder variable. The SqlCommand function includes an extra parame-
ter that supplies a value that will be dynamically substituted in place of the placeholder variable prior to
SQL statement execution. In this example, the value of 1name will replace the placeholder variable
before execution.

Bind variables can be a more efficient way to process SQL statements. They also are a little easier or
cleaner to code. Rexx/SQL fully supports them. But different DBMSs have different syntax for parame-
ter markers and so this feature is necessarily database-dependent. We eschewed programming with bind
variables in this chapter for this reason.

247

Chapter 15

Working with Other Databases

SQL is an ANSI-standard language, and the Rexx/SQL interface follows standard API conventions for
relational databases. This limits the differences in scripts that access different DBMSs. The changes you
must make to point a script at one DBMS versus another when using Rexx/SQL are minimal. Usually,
you need only change the SqlConnect statement.

The Rexx/SQL documentation at the Rexx/SQL SourceForge project at http://rexxsql.source-
forge.net/doc/index.html includes a series of appendices, one for each DBMS the product supports.
Read these appendices for DBMS-specific information. These appendices explain the minimal differ-
ences between database targets when using Rexx/SQL.

The one statement that does change when targeting different databases is SqlConnect. Database con-
nections are inherently DBMS-specific. The next three brief sections describe the basic rules for encoding
SQLConnect statements to access Oracle-, DB2 UDB-, and ODBC-compliant databases. The ODBC
drivers, as explained earlier in this chapter, permit scripts to access almost any database, because ODBC

is widely implemented as a universal interface for database access. You would use the ODBC drivers
when connecting to Microsoft SQL Server databases, for example.

Connecting to Oracle

Here’s how to connect to Oracle databases using the Rexx/SQL package. When connecting to Oracle
databases via the SQLConnect function, all SglConnect parameters are optional. Here are some sample
connections. To connect to a database running on the local machine with an externally dentified userid
and password:

rc = sqglconnect ()
To connect to a local database with the default userid of scott with its default password of tiger:

rc = sglconnect(, 'scott', 'tiger") /* Scott lives! */

Now let’s connect scott to a remote database on machine prod.world (as identified in Oracle’s
SQL*Net configuration files):

rc = sglconnect ('MYCON', 'scott', 'tiger',, 'PROD.WORLD')

Connecting to DB2 UDB

This section describes how to connect to IBM’s DB2 Universal database, better known as DB2 UDB. The
DB2 UDB native interface uses the CLI provided by IBM Corporation.

The database name parameter is required for a DB2 connection. Here are some sample connections. To
connect to the SAMPLE database and name the connection MYCON, encode this:

rc = sglconnect ('MYCON',,, 'SAMPLE')

248

Interfacing to Relational Databases

To connect as CODER with the password of TOPGUN, youwould code a statement like this :
rc = sglconnect (, 'CODER', 'TOPGUN', 'SAMPLE")

The Db2 UDB database fully supports bind variables. Db2 bind variables are denoted by the standard
marker, the question mark (?).

Connecting using ODBC

The Open Database Connectivity, or ODBC, standard is a generalized interface that is supported by a
very broad range of relational databases. Use the ODBC driver for data access if Rexx/SQL does not
support a direct or native driver for your database. The ODBC driver was long popular for connecting to
Microsoft’s SQL Server database.

In making the ODBC connection, the userid, password, and database name arguments are required on the
SglConnect function. Here is an sample connection:

rc = sglconnect ("MYCON', 'scott', 'tiger', '"REXXSQL')

The connection is named MYCON and the login occurs using userid scott and its password tiger. The
fourth argument is the ODBC Data Source Name, or DSN. Under Windows systems, this is created using
the Window’s ODBC Data Sources Administration tool. The DSN in the preceding sample statement is
named REXXSQL.

Connecting to MySQL

MySQL is one of the most popular open source database in the world. Like Rexx itself, it is freely
downloadable and highly functional. As a result, it has become very popular as a fully featured, low
cost alternative to expensive commercial database management systems.

When connecting to MySQL databases, the database name is the only required parameter on SglConnect.
The sample programs in this chapter all connected to a MySQL database named test. These two
statements from those sample scripts illustrate the connection in the SoLConnect function, and the
selection of the MySQL test database in the second statement:

if SQLConnect (,,, 'mysqgl') <> 0 then call sglerr 'On connect'
if SQLCommand (ul, "use test") <> 0 then call sglerr 'On use'

One way in which MySQL differs from many other database management systems is that only certain
kinds of MySQL tables support transactions. The SqlCommit and SqlRollback functions only
provide transactional control against tables that specifically support transactions. So, you must use the
proper kind of table to write transactional programs. Another difference of which you should be aware
is that MySQL does not support bind variables.

Other database differences

Beyond the SqlConnect statement, what other aspects of Rexx/SQL will be coded differently according to
which DBMS you use? Bind variables are one area. Bind variables allow you to dynamically place
variables into SQL statements. The syntax for the placeholders varies between DBMSs.

249

Chapter 15

The SglDefault and SglDescribe functions operate slightly differently under various databases. The
Sglvariable and SqlGetInfo functions return slightly different information for different databases.

Finally, the way in which SQL statements themselves are encoded will sometimes vary. This is due to the
databases themselves, not because of the Rexx/SQL interface. While most DBMSs support various ANSI
SQL standards, most also support keywords and features beyond the standards. Oracle is an example.
Oracle SQL is one of the most powerful database languages, but it achieves this power at some cost in
standardization. Be aware of variants from SQL standards if retargeting Rexx/SQL scripts toward differ-
ent DBMSs.

Other Database Interfaces

This chapter focuses on Rexx/SQL because it is the most popular open-source database interface and
because it accesses all important DBMSs. Other Rexx database interfaces are also available.

One example is IBM’s commercial interfaces for its DB2 Universal Database (DB2 UDB). DB2 UDB runs
on a variety of operating systems including Linux, Unix, Windows, and mainframes. The mainframe
product has a different code base than that sold for Linux, Unix, and Windows. Writing Rexx-to-DB2
scripts on the mainframe is popular because scripting offers an easy way to customize database manage-
ment activities. Rexx is an easier language to program with than the alternatives in tailoring and manag-
ing the database environment.

This discussion focuses on DB2 UDB for Linux, Unix, and Windows (LUW). We discuss the LUW prod-
uct because more readers will likely have access to one of these operating systems than a mainframe
platform. But the Rexx scripting for data manipulation language, or DML, statements we present here
for DB2 UDB under LUW is essentially the same as you would code when using mainframe DB2.

As opposed to a generic database interface like Rexx/SQL, the IBM Rexx / DB2 interfaces give much
greater control over DB2 UDB, including all its administrative functions and utilities. The downside is
that the Rexx/DB2 interfaces are DB2-specific. They are nonportable and come bundled with a pur-
chased commercial database. They only operate against DB2 databases, whereas Rexx/SQL operates on
nearly any relational database.

Among IBM’s programming interfaces for managing and controlling DB2 UDB databases, the Rexx/DB2
interfaces are easier to program than the alternatives (those for compiled languages like C/C++,
COBOL, or FORTRAN). They bring the power and productivity of Rexx scripting to the administration
and management of DB2 UDB. Check IBM’s interface documentation to see which Rexx interpreters
their interfaces currently support.

Let’s take a look at the Rexx/DB2 package. Three Rexx/DB2 interfaces come bundled with DB2 UDB for
Linux, Unix, and Windows:

250

Interfacing to Relational Databases

DB2 UDB Interface Use

SQLEXEC The SQL interface. Use this to access databases and issue SQL state-
ments. This interface supports the kinds of SQL processing illus-
trated in this chapter with Rexx/SQL, for example, DML statements,
cursor processing, and parameter markers.

SQLDB2 An interface to DB2’s command-line processor (CLP). Use it to run any
of the hundreds of commands the CLP supports, including those for
attach, connect, backup, restore, utilities, an the like.

SQLDBS An interface to DB2’s Administrative APIs. Use this to script adminis-
trative tasks for DB2 databases.

These three interfaces give Rexx scripts complete control over DB2 UDB. Not only can you program
DML and DDL statements, but you can also script database administration, utilities, configuration
changes, and the like. Rexx scripts can even run database stored procedures on most platforms.

The Rexx statements that access the Rexx/DB2 interfaces vary slightly by operating system. Under
Windows, for example, Rexx scripts use the SAA standards to register and load these three DB2 inter-
faces. This is the same standard for access to external functions illustrated previously with Rexx/SQL.
For example, these statements set up the three DB2 interfaces for use within a Windows Rexx script:

if RxFuncQuery('SQLEXEC') <> 0 then
feedback = RxFundAdd('SQLEXEC', 'DB2AR', 'SQLEXEC')

if RxFuncQuery ('SQLDB2') <> 0 then
feedback = RxFundAdd('SQLDB2', 'DB2AR', 'SQLDB2')

if RxFuncQuery ('SQLDBS') <> 0 then
feedback = RxFundAdd('SQLDBS', 'DB2AR', 'SQLDBS')

Once access to the DB2 interfaces has been established, scripts can connect to databases and issue SQL
calls. Here is an example of how to embed SQL statements in scripts using the SQLEXEC interface. This
code sequence updates one or more rows in a table by issuing the DML update statement:

statement = "UPDATE STAFF SET JOB = 'Clerk' WHERE JOB = 'Mgr'"
CALL SQLEXEC 'EXECUTE IMMEDIATE :statement'
IF (SQLCA.SQLCODE < 0) THEN

SAY 'Update Error: SQLCODE = ' SQLCA . SQLCODE

This example builds a SQL update statement in a variable named statement. It immediately executes
the statement by the SQLEXEC function. The host variable named statement, identified by its preceding
colon (:), contains the SQL statement to execute. The script checks the return code in special variable
SQLCA. SQLCODE to see whether the SQL statement succeeded or failed. As in the Rexx/SQL interface,
the Rexx/DB2 interface sets a number of variables that pass status information back to the script
through the SQLCA.

251

Chapter 15

In this example, note the use of uppercase for Rexx and SQL statements, and lowercase for literals and
other parts of the code. This is the informal “standard” to which Rexx scripts often adhere in IBM envi-
ronments and in mainframe programming. It's a popular way of coding that serves to identify different
parts of the code. Of course, since Rexx is not case-sensitive, you can use whatever case or mix of case
you feel comfortable with or find most readable. The only exception is the data itself (in character string
literals within Rexx scripts and character data residing in the database). These are case-sensitive.

Here’s another coding example. These statements show how to set up cursor processing using the
SQLEXEC interface:

prep _string = "SELECT TABNAME FROM SYSCAT.TABLES WHERE TABSCHEMA = 2"
CALL SQLEXEC 'PREPARE S1 FROM :prep string';

CALL SQLEXEC 'DECLARE Cl CURSOR FOR S1';

CALL SQLEXEC 'OPEN Cl USING :schema name';

This time the script builds the SQL statement in the variable named prep string. The question mark
(?) is a parameter marker or placeholder variable for which values will be substituted.

The SELECT statement is dynamically prepared. The SQLEXEC interface first PREPAREs the SELECT;
then it DECLAREs and OPENs the cursor. After executing the preceding code, a FETCH loop would then
process each row returned in the result set, and a CLOSE statement would end the use of the cursor.

One issue in cursor processing is how to detect null values. Null values are data elements whose values
have not been set. Whether a column can contain nulls depends on the column and table definitions, and
also whether any column values have not been loaded or inserted. To detect null values, the Rexx/DB2
interface uses indicator variables. The keyword INDICATOR denotes them, as in this example:

CALL SQLEXEC 'FETCH Cl1 INTO :cm INDICATOR :cmind'

IF (cmind < 0)
SAY 'Commission is NULL'

If the indicator variable cmind is set to a negative value by the interface, then the column variable cm is
null. A null variable indicates that a column entry has not yet been assigned a value in the database.

Calls to the Rexx/DB2 SQLDB2 and SQLDBS interfaces are coded like those we’ve discussed in
illustrating the SQLEXEC preceding interface. Here are the generic templates for invoking the SQLEXEC,
SQLDB2, and SQLDBS interfaces. Each names the interface, then follows it with a SQL statement or
command string representing the function desired in the call:

CALL SQLEXEC 'sgl statement'
CALL SQLDB2 ' command string'
CALL SQLDBS ' command string'
These three code examples appear in the IBM manual, IBM Db2 UDB Application Development Guide. This

and all other Db2 manuals can be freely accessed or downloaded from the online IBM Publications
Center, as described in Appendix A.

252

Interfacing to Relational Databases

You can see from the code examples in this section that coding the Rexx/DB2 interface is slightly differ-
ent from coding SQL calls with the Rexx/SQL package. Nonetheless, if you know one of these two inter-
faces, it is quite easy to learn the other. The principles that underlie how to code data manipulation and
data definition statements are the same in both products.

Summary

This chapter overviews of the features of the Rexx/SQL interface in accessing relational databases.
Rexx/SQL is an open-source product that accesses almost any type of SQL database.

The examples showed how quick and convenient Rexx/SQL coding is. It allows single-statement execu-
tion of SQL statements, including select's and DDL. Yet it also supports statement preparation, bind
variables, auto-commits, and all the other features programmers might want in their call-level database
interface.

We discussed five sample scripts that use the Rexx/SQL interface. The first illustrated the basic mecha-
nisms of creating and terminating database connections. It also retrieved and displayed database version
and release information. The second script showed how to create and load a database table. Two scripts
showed how to read all the rows of a table. The first used Rexx/SQL’s “array” notation to refer to indi-
vidual table rows, while the second illustrated the more standard but cumbersome approach called cur-
sor processing. An update script showed how to retrieve and update individual rows within a table. It
also illustrated the value of explicitly committing data from within a script.

We also took a quick look at IBM’s proprietary Rexx/DB2 interfaces. These exemplify the kinds of
database-specific programming and administration possible in Rexx scripts. Scripting these tasks is
much more productive than using traditional compiled programming languages. While we did not walk
through complete sample scripts illustrating the Rexx/DB2 interfaces, we discussed several code snip-
pets that show how these interfaces are coded.

This chapter just touches upon the broad topic of database programming. Our purpose is to describe
Rexx database scripting and to demonstrate its coding in a simple manner. If you need more information
about database programming, please obtain one of the many books on that topic.

Test Your Understanding

1. What are the key advantages to the Rexx/SQL interface? What are the advantages to using a
DBMS in your scripts?

2. What Rexx/SQL functions must every script start with?

3. How to you initiate and terminate database connections? How can you check the status of a
connection?

4. Describe how you would write a single routine to process SQL errors. What are the advantages
to such a routine? What SQLCA variables are set by the interface, and what do they tell your
script?

253

Chapter 15

5. SQL statement syntax is complex. Tell how you can code to quickly identify and reduce syntax
€erTorS.

What is the purpose of the SqlDispose function? How does it differ from SqlDisconnect?

7. Compare the use of Rexx/SQL to the bundled Rexx/DB2 interfaces for scripting with DB2 UDB.
What are the advantages of each toolset?

254

16

Graphical User Interfaces

Overview

This chapter explores graphical user interface, or GUI packages. It gives you an overview of the
major packages, explains when to use each, and explores how to design scripts that use them.

GUI development is a detail-oriented process and scripts that create and manage GUIs typically
require many lines of code. We cannot cover all the ins and outs of GUI programming in a single
chapter. GUI programming is a study in its own right. It means learning the many functions,
parameters and attributes involved in windows programming. Our goals here are to describe the
different GUI interfaces available to Rexx programmers and offer guidance on the advantages and
drawbacks of each. We also give you an idea of the structure and design of typical GUI-based
scripts. The sample scripts are quite basic, yet studying them should equip you to move into more
serious GUI scripting.

As a universal scripting language, Rexx runs on every imaginable platform. One advantage of this
versatility is that several GUI packages interface with Rexx. These include Rexx/Tk, Rexx/DW,
Rexx Dialog, ooDialog, RexxGTK, Dr. Dialog, VX*Rexx, and VisPro/REXX. The downside to this
variety is that no single GUI interface has established itself as the de facto standard for Rexx
developers.

In this chapter, we'll first briefly characterize the major GUIs available for Rexx scripting. For each,
we’ll mention some of its advantages and uses, and we'll list the environments in which it runs or
is typically used. These brief product profiles orient you to which interface product might be most
appropriate for your own applications. Following these short product profiles, we'll look at three
packages in greater detail: Rexx/Tk, Rexx/DW, and Rexx/gd. The first two packages aid in script-
ing Rexx GUISs, while the latter is for creating graphical images. We’ve selected these three pack-
ages for detailed, coding-level coverage for specific reasons. All three are:

O Open-source products that are freely downloadable
O Popular, widely used, and well proven

O Run across the major operating systems families

Let’s start with the brief sketches of the major GUI interfaces.

Chapter 16

Rexx/Tk

Rexx/Tk allows Rexx scripts to use the Tk, or “ToolKit,” GUI popularized by the Tcl/Tk scripting lan-
guage. This package enables the development of portable, cross-platform GUIs. Tk supports all impor-
tant widgets or window elements. Its dozens of functions categorized as Menus, Labels, Text, Scrollbars,
Listboxes, Buttons, Text Entry, Sliders, Frames, Canvas, Window Design, Event Handlers, and
Convenience functions.

To use Rexx/Tk, you must install both it and the Tcl/Tk scripting language. Your Rexx scripts invoke
Rexx/Tk external functions, which then run their corresponding Tcl/Tk commands. The names and pur-
poses of the Rexx/Tk functions are similar to their corresponding Tk commands, so if you know one,
you know the other.

The advantage to Rexx/Tk is that Tk is one of the most widely used cross-platform GUI toolkit in the
world. It runs on all major platforms. Tk became popular because it makes the complex, detail-oriented
process of creating GUISs relatively easy. Sharing Rexx’s goal of ease-of-use makes Tk a nice fit for Rexx
scripting. Those who already know the Tk interface experience little learning curve with Rexx/Tk. You
could read a Tcl/Tk book to learn Rexx/Tk. Plenty of documentation and tutorials are available.

The downside to Rexx/Tk is that it requires Tcl/Tk on your system and has the performance penalty
associated with a two-layer interface. If problems arise, you could find yourself dealing with two levels
of software — the Rexx/Tk interface with its functions, and the corresponding Tcl/Tk commands.

Rexx/Tk is open-source software distributed under the GNU Library General Public License, or GNU
LGPL. Information on Rexx/Tk and downloads are http://rexxtk.sourceforge.net/index.html.

We discuss Rexx/Tk in more detail later in this chapter.

Rexx/DW

This GUI package is based on Dynamic Windows, or DW, a lightweight GUI framework modeled on the
GTK toolkit of Unix and Linux (GTK is also known as GTK+ and the Gimp Toolkit). GTK is open source
under the GNU LGPL license. With Rexx scripts, Rexx/DW presently runs under the Windows, Linux,
Unix, and OS/2-derived environments.

Widgets are the basic display items placed on GUI windows. The Dynamic Windows package supports
a wide variety of widgets, including: Entryfield or Editbox, Multiline Entryfield or Editbox, Combobox,
Button, Radio Button, Spin Button, Checkbox, Container or Listview, Treeview, Splitbar,
Bitmap/Pixmap/Image, Popup and Pulldown Menus, Notebook, Slider, Percent or Progress meter,
Listbox, Render/Drawing Area, Scrollbar, and Text or Status Bar.

Rexx/DW differs slightly from the Dynamic Windows framework in that it offers a few special functions
beyond what DW contains, while it lacks a few others DW has. So, while Rexx/DW closely follows
Dynamic Windows’ functionality, it is not an exact match.

The main advantage to Rexx/DW is that it is a lightweight interface. Compared to Rexx/Tk, Rexx/DW
provides a cross-platform GUI, while eliminating the overhead of Tcl/Tk that Rexx/Tk requires.
Rexx/DW addresses the performance concerns that sometimes arise when programming GUI interfaces.
Sometimes it’s simpler not to have the Tcl/Tk system installed on the computer and involved as an
intermediate software layer.

256

Graphical User Interfaces

Rexx/DW is a newer project than Rexx/Tk. Programmers who compare the two may wish to compare
the level of ongoing effort behind the two projects when deciding which to use. An easy way to do this
is to access the Web pages for the respective products at SourceForge.net.

Rexx/DW is open-source software distributed under the GNU LGPL. Information on Rexx/DW and
downloads are at http://rexxdw.sourceforge.net/. The GTK+ project homepage is located at
www.gtk.org/.

We discuss Rexx/DW in more detail later in this chapter.

Rexx Dialog

This GUI is specifically designed for Windows operating systems with either the Reginald or Regina
Rexx interpreters. Reginald is a Rexx interpreter based upon Regina, and was extended and enhanced
with Windows-specific functions. It specifically targets Windows platforms. (Reginald is currently out
of support.) Rexx Dialog is the component added to support the typical kinds of GUI interactions users
expect from Windows-based applications. It optimizes the GUI for Windows. Where portability is not a
concern, Rexx Dialog brings Windows “power programming” to Rexx developers.

Chapter 23 covers Reginald and its Windows-oriented features. That chapter provides further informa-
tion on Rexx Dialog and its functions, as well as information on where to download the package. It also
offers examples of a few of Reginald’s Windows-oriented functions.

ooDialog and RexxGTK for ooRexx

You access the downloads for the Open Object Rexx (or ooRexx) project at its SourceForge home page of
https://sourceforge.net/projects/oorexx/. When you do, you'll see downloads for two
different GUI interfaces you can use with ooRexx: ooDialog and RexxGTK.

ooDialog is a windows and dialog management tool for building GUIs with ooRexx running under
Windows. It gives easy access to the underlying Windows API through an extensive library of classes
and methods.

RexxGTK is an ooRexx class library that provides access to the cross-platform GTK graphical interface
available on most mainstream operating systems (eg, Linux, Unix, BSD, Windows, Mac). You must have
the GTK+ libraries installed to use it. This provides an extensive set of free and open source classes and
methods for developing GUI applications. RexxGTK is designed for use with ooRexx and does not work
with other Rexx interpreters.

Dr. Dialog, VX*Rexx, VisPro Rexx

These interfaces were popular under OS/2 and have faded along with OS/2. The latter two were com-
mercial. Searching under the names of any of these products in a common Internet search engine like
Google provides more information on them if you need it.

257

Chapter 16

Rexx/Tk

Now that we’ve profiled the major GUI interface packages, let’s explore three of the most popular in
greater detail. We start with Rexx/Tk, a popular, portable interface modeled on the Tk interface popular-
ized by the Tcl/Tk scripting language.

Rexx/Tk is an external function library that provides Rexx scripts interface to the Tcl/Tk command lan-
guage. Rexx/Tk has well over 100 functions. Each directly corresponds to a Tcl/Tk GUI command. The
Rexx/Tk documentation maps the Tcl/Tk graphics commands to their equivalent Rexx/Tk functions.
This means that you can learn Rexx/Tk programming from Tcl/Tk graphics books. Or, to put it another
way, to program in Rexx/Tk you must know something about Tcl/Tk GUI programming.

Rexx/Tk includes another 50 plus “extensions,” extra functions that map onto Tcl code that is dynami-
cally loaded during Tcl programming. This provides all the GUI facilities Tcl/Tk programmers have
access to, whether or not those functions are dynamically loaded.

The Rexx/Tk function names correspond to their Tcl/Tk equivalents. For example, Tk’s menu command
becomes TkMenu in the Rexx library; menu post becomes TKMenuPost. This makes it easy to follow
the mapping between the Tcl/Tk command and Rexx/Tk functions.

Tcl/Tk is case-sensitive. Quoted commands or widgets must be typed in the proper case. The special
return code tkrc is set by any Rexx/Tk function. tkrc is 0 when a function succeeds, negative on
error, or a positive number for a warning. The TkError function makes available the full text of any
error message.

Appendix G lists all the Rexx/Tk functions and extensions and their definitions. It gives you the com-
plete overview of the functions provided with the product.

Downloading and installing

First you must download and install Tcl/Tk on your system. Searching on Google provides a list of sev-
eral download sites. Among them are ActiveState at www.activestate.com/Products/ActiveTcl.

The website provides the product along with documentation and set up information. Downloads come
in both source and binary distributions for all major platforms. Tcl/Tk is free software. Read the license
that downloads with the product for terms of use.

Under Windows we did nothing more than download the *.zip file, decompress it, and run the
installer program. For first time users of Rexx/Tk, we recommend the “default install” of Tcl/Tk to
avoid any problems.

After installing Tcl/Tk, be sure to run one or more of its “demo” programs. These reside in a subdirec-
tory to the product directory and have the extension *. tcl. Running a demo program ensures that
your installation succeeded.

The next step is to download and install the Rexx/Tk package. Rexx/Tk can be freely downloaded from
SourceForge.net. The Rexx/Tk Web page documents the package at http://rexxtk.sourceforge.
net/. The Web page includes a link to download the product, or go to http://sourceforge.net
and enter keywords Rexx/Tk into the search panel.

258

Graphical User Interfaces

The product is available in source and binaries for various platforms. After downloading and decom-
pressing the appropriate file, read the README and the setup.html files that describe product installa-
tion. You must set environmental variables and the PATH to reflect the product and library location. To

use the external function library, your scripts must be able to load the Windows DLL named
rexxtk.dll or the Linux or Unix shared library file named 1ibrexxtk*.

Rexx/Tk is an external function library, as is Rexx/DW. Either is usable from any Rexx interpreter that
supports standard access to external functions. Both are always tested with the Regina interpreter, so if
you experience problems that appear to be interpreter-related, verify your install by testing with Regina.

Basic script design

Rexx/Tk scripts are event-driven, or activated by user interaction with the top-level window and its wid-

gets, so scripts share a common structure. The logic of their main routine or driver is typically:

1. Register and load the Rexx/Tk external function library.

Create the top-level or main window, including all its widgets. Display the main window to the user.

o P w

Figure 16-1 diagrams this logic.

Enter a loop which manages user actions on the widgets.

The script terminates when the user exits the top-level window.

Rexx/Tk GUI Scripting

!

Load Rexx/Tk function library

A

Build & display main window

4

User action Yes
is Exit ?

No

Handle user interaction

L

—

Drop Rexx/Tk function
library and exit

!

Figure 16-1

Specific routines are invoked within your script depending on user actions (mouse-clicks and inputs).

259

Chapter 16

A simple example

Let’s review a very simple sample script. We’ve kept it minimal so that you can see the basic script struc-
ture. The goal here is not to explore Tk widgets, of which there is a very full universe. It is simply to ori-
ent you to the typical design of Rexx/Tk scripts.

The script was developed under Microsoft’s Windows operating system, but Rexx/Tk’s portability
means it could have been developed for several other operating systems, including Linux and Unix, as
well.

All the sample script does is display a small GUI window with a menu bar. The sole option on the menu
bar in the window is labeled File. When the user clicks on File, a drop-down menu appears. It con-
tains three items labeled open ... ,Dir..., and Quit. So the drop-down menu structure is:

File
Open. . .
Dir...
Quit

If the user selects Open. . ., the standard Windows panel for File Selection appears. The user selects a file
to “open,” and the script simply confirms the user’s selection by displaying that filename in a Message
Box. The user clicks the 0k button in the Message Box and returns to view the original window.

Similarly, if the user selects Dir. . ., the standard Windows dialog for Directory Selection appears. After
the user picks a directory, the script displays the directory name in a Message Box to confirm the user’s
selection. The user clicks the Ok button in the Message Box and returns to the original window.

If the user selects Quit, a Message Box asks him or her Are You Sure? with Yes and No buttons below
this question. Selecting the No button takes the user back to the original window and its menu bar.

Clicking Yes makes the window disappear and the script ends.

Here’s the main routine or driver of the script:

/***/

/* REXX_TK EXAMPLE: */
/* */
/* A very simple example of the basics of Rexx/TK. Y/

/***/

/* load the Rexx/Tk external function library for use Y/

call RxFuncAdd 'TkLoadFuncs', 'rexxtk', 'TkLoadFuncs'
if TkLoadFuncs() <> 0 then say 'ERROR- Cannot load Rexx/Tk library!'

call top_window /* create and display the main window */

do forever /* the basic loop in this program =Y
interpret 'Call' TkWait() /* wait for user action, then respond */

end

call TkDropFuncs /* drop the library functions =

exit 0 /* end of script Y/

260

Graphical User Interfaces

The first line of the script uses the SAA function RxFuncAdd to register the function TkLoadFuncs,
which will be used to load the Rexx/Tk library:

call RxFuncAdd 'TkLoadFuncs', 'rexxtk', 'TkLoadFuncs'

The key parameter is the second one, rexxtk, which matches the filename for the external library. In
Windows, for example, the file’s name would be rexxtk.d11. Under Linux, Unix, or BSD, the parame-
ter identifies the shared library file.

The installation of the Rexx/Tk library ensures that the Rexx interpreter can find this library through the
proper environmental variable. If this line fails in your script, review the install README* files for how to
set the environmental variables Rexx requires to locate external libraries.

Once the RxFuncAdd function has registered the TkLoadFuncs function, execute TkLoadFuncs to load
the entire external library. Now all the Rexx/Tk functions are available for the use of this script:

if TkLoadFuncs() <> 0 then say 'ERROR- Cannot load Rexx/Tk library!'

This example assumes that we’re using the Regina Rexx interpreter, which bases its access to external
function libraries on the SAA standard. Other Rexx interpreters that follow the SAA interface standards
to external libraries would use the same code as this script. Some Rexx interpreters accomplish access to
external function libraries in a different manner.

Now the script creates a top-level window:
call top_window /* create and display the main window */

The code in the top_window internal subroutine can establish all sorts of widgets (or controls) and
attach them to the topmost window. We’ll look at the code of the subroutine in a moment. The point here
is that the script creates and then displays a window with which the user will interact.

Having displayed its initial window, this code is the basic loop by which the script waits for user interac-
tion with the widgets or controls on the top-level window:

do forever /* the basic loop in this program */
interpret 'Call' TkWait() /* wait for user action, then respond */
end

The script ends when the user selects the action to end it from the top-level window. The following code
should therefore never be reached, but just in case, always drop the Rexx/Tk functions and code an
exit instruction to end the main routine:

call TkDropFuncs /* drop the library functions */
exit 0 /* end of script */

That’s all there is to the main routine. Pretty simple! The real work in most GUI scripts is in the defini-

tion of the widgets or controls and the development of the routines that handle the events prompted by
user interaction with those controls.

261

Chapter 16

Here’s the internal subroutine that creates the top-level window and all its widgets:
top_window: /* create/display top-level window *******xkxkkxkk*%/
menubar = TkMenu('.ml') /* make a menubar for the top window */
/* create drop-down menu, add it to the top-level menubar */

filemenu = TkMenu('.ml.file', '-tearoff', 0) /* create drop menu */
call TkAdd menubar, 'cascade',K '-label', 'File', '-menu', filemenu

/* now add items to the File menu */

call TkAdd filemenu, 'command', '-label', 'Open...', '-rexx',6 'getfile'

call TkAdd filemenu, 'command', '-label', 'Dir...' , '-rexx',6 'getdirectory'
call TkAdd filemenu, 'command', '-label', 'Quit’' , '-rexx', 'exit_window'
call TkConfig '.', '-menu', menubar /* attach menubar to window */
return /* end of routine TOP_WINDOW */

The first line creates a menu bar for the top-level window. In Tk, the topmost window is denoted by a
period (.), and all widgets on that window derive their name from this. This line creates the menu bar
we have named .m1 for the topmost window:

menubar = TkMenu('.ml') /* make a menubar for the top window */
After creating the menu bar, the script can create a drop-down menu to attach to it. These two lines cre-
ate the drop-down menu at the far left side of the menu bar in the main window. The invocation of the

TkAdd function attaches the drop-down menu to the menu bar:

filemenu = TkMenu('.ml.file', '-tearoff', 0) /* create drop menu */
call TkAdd menubar, 'cascade', '-label', 'File', '-menu', filemenu

With the drop-down menu in place, the script needs to add items to this menu. Three more calls to
TkAdd add the three items in the drop-down menu:

call TkAdd filemenu, 'command', '-label', 'Open...', '-rexx',6 'getfile'
call TkAdd filemenu, 'command',6 '-label', 'Dir...' , '-rexx',6 'getdirectory'
call TkAdd filemenu, 'command',6 '-label', 'Quit' , '-rexx', ‘'exit_window'

A single call to the TkConfig function completes the set up by attaching the menubar to the window:
call TkConfig '.', '-menu', menubar /* attach menubar to window */

The routine has completed its task of building the top-level window and its widgets. It ends with a
return instruction.

Now we need to create three routines, one for each of three actions the user can select from the drop-
down menu. The Tkadd functions above show that the labels the user will view for these three actions
are Open. .., Dir..., and Quit. Those lines also show that the corresponding routines we need to cre-
ate for the three actions must have the names of getfile, getdirectory, and exit_window. So the

262

Graphical User Interfaces

TkAdd function associates the label the user selects with a routine in the script that will be run when he
or she selects the label from the drop-down list.

Here is the code for the getfile routine, the routine that displays the typical Windows panel from
which users select filenames (the Windows’ File Selection panel). The TkMessageBox call displays back
the filename the user selects in a Message Box and allows the user to exit back to the main window by
pressing the Ok button:

getfile: /* get a filename from user BRI LI I R LRI LIt bR AT LI IR
filename = TkGetOpenFile('-title', 'Open File')

if TkMessageBox ('-message', filename, '-title', ,
'Correct?', '-type', 'ok','-icon', 'warning') = 'ok' then nop

return

The TkGetOpenFile function sets up the Window’s File Selection dialog. You can see the power of a
widget or Windows control here: a single line of code presents and manages the entire user interaction
with the File Selection dialog.

The code to implement the directory selection routine is nearly the same as that for the routine above,
except that a Windows-style Directory Selection panel appears instead of a File Selection panel. Once
again, the TkMessageBox call echoes the user’s choice back to him or her inside a Message Box. The user
acknowledges the Message Box and continues interaction with the script by clicking on the message ok
displayed inside that Message Box:

getdirectory: /* get a directory name input *****x*kkkkkkkkkkkkkkkkx/
dirname = TkChooseDirectory('-title', 'Choose Directory')

if TkMessageBox ('-message',dirname, '-title', ,
'Correct?', '-type', 'ok','-icon', 'warning') = 'ok' then nop

return

Lastly, here is the code that executes if the user selects option Quit from the drop down menu. It dis-
plays a Message Box that asks Are You Sure? If the user pushes the No button, he or she again sees
the top-level window because of the return instruction in the code below. If he presses the Yes button,
he exits the script and its window. This executes the TkDropFuncs function below, which drops the
Rexx/Tk function library from memory and further use by the program:

exit_window: /* exits top-level window-END!****#kxkkkkkkxkxhkxkksk/

if TkMessageBox ('-message', 'Are you sure?',6 '-title', ,
'Quit?','-type', 'yvesno', '-icon', 'warning') = 'no' then Return
call TkDropFuncs /* drop the library functions */
exit 0 /* end of script */

263

Chapter 16

This sample script is very minimal. It just displays a small window with a drop-down menu and man-
ages user interaction with the window and its menu selections. Nevertheless, the script does illustrate
the basic structure of GUI scripts and how they manage user interaction. You could take this “skeletal

script” and expand it into a much more robust and complex window manager.

Your next steps

The sample script shows that most GUI scripts have the same basic structure. The logic of the driver is
simple. It is in the nearly 200 functions to create and define widgets in which complexity lies. And in
writing the procedural logic to animate the actions the user selects by interacting with the controls.
Learning the function library and how to program all the widgets or controls are the challenge.

Start by perusing the sample scripts shipped with Rexx/Tk. You can learn a lot from them. And consider
learning more about the Tcl/ Tk commands that underlie Rexx/Tk. Two good sources of information are
the Tcl/ Tk Developer’s home page, listed earlier, and any of several popular books on how to program
the Tcl/ Tk GUI Among those books are Graphical Applications with Tcl and Tk by Eric F. Johnson (M&T
Books, ISBN: 1-55851-569-0) and Tcl/Tk in a Nutshell by Raines and Tranter (O’Reilly, ISBN:
1-56592-433-9). You can find many other books on the Tk toolkit by searching online at www . amazon.com
or www . barnesandnoble. com.

Rexx/DW

Rexx/DW offers an alternative GUI toolkit to that of Rexx/Tk. Rexx/DW’s main advantage is that it is a
lightweight interface, offering potential performance improvements over Rexx/Tk.

Rexx/DW provides external functions that enable Rexx scripts to create and manage GUIs through
Netlabs.org’s Dynamic Windows, or dwindows, package. Rexx/DW scripts define widgets, elements placed
in windows, such as check boxes, radio buttons, and the like. Widgets are assembled into the window
layout by a process called packing. Internal subroutines you write called event handlers or callbacks are
associated with particular actions the user takes on the widgets.

Scripts typically present a window or screen panel to the user and wait for the user to initiate actions on
the widgets that activate the callback routines. Interaction continues as long as the user selects an action
from the window. At a certain point, the user closes the window. This ends interaction and terminates
the program.

Components

To set various layout and behavioral attributes, Rexx/DW has about 30 constants. Each constant has a
default and can be set by the script to some other value to change behavior.

Rexx/DW contains over 175 functions. These categorize into these self-descriptive groupings:

A ProcessControl
Q Dialog
Q CallbackManagement

264

Graphical User Interfaces

Browsing
ColourSupport
ModuleSupport
MutexSupport
EventSupport
ThreadSupport
PointerPosition

Utility

I N T O N A A N

PackageManagement

Rexx/DW supports 17 different callbacks or events that scripts can be programmed to handle.

Downloading and Installing Rexx/DW

Like Rexx/Tk, Rexx/DW can be freely downloaded from SourceForge.net. The Rexx/DW Web page
documents the package at http://rexxdw.sourceforge.net/. The Web page includes a link to
download the product, or go to http: //sourceforge.net and enter keywords Rexx/DW into the
search panel.

Download either compressed source or binaries for your operating system. The installation follows the
typical pattern for open-source software. If you downloaded binaries, after decompression all you must
do is set environmental variables and the PATH to reflect the product and library location. To use the
external function library, your scripts must be able to load the Windows DLL named rexxdw.dl1l or the
Unix/Linux/BSD shared library file named something similar to 1ibrexxdw*. The README* file that
downloads with the product gives installation instructions and details on how to set environmental
variables.

Basic script design

Rexx/DW scripts are event-driven, activated by user interaction with the top-level window and its wid-
gets. Their logical structure is similar to that of Rexx/Tk scripts and those developed with other promi-
nent GUI packages. The basic outline of user-driven interaction provided in Figure 16-1 applies to
Rexx/DW programming as well (except that Rexx/DW functions are used in place of Rexx/Tk functions).

The basic structure of the typical Rexx/DW script is:

1. Register and load the Rexx/DW external function library. Use code such as this:
call RxFuncAdd 'DW_LoadFuncs', 'rexxdw', 'DW_LoadFuncs'
if DW_LoadFuncs() <> 0 then say 'ERROR-- Unable to load Rexx/DW library!'

The first line uses the SAA-based function in Regina Rexx named RxFuncAdd to register the
DW_LoadFuncs external function. It resides in the external library named named by the second
parameter, rexxdw .

265

Chapter 16

In Windows, rexxdw refers to the file rexxdw.d11. In Linux or Unix, it refers to the root part
of the name of the shared library file. In either case, the proper environmental variable must be
set to indicate the location of this file for the RxFuncaAdd call to succeed. The second line
invokes the DW LoadFuncs function to load the rest of the DW external library.

2. Initialize the dynamic windows interface by invoking the Rexx/DW dw_init function.
Initialize various attributes in the constants to set interface behaviors and defaults.

3. Create the topmost panel or window. This screen may consist of a set of packed widgets, each
having various attributes and behaviors. Events are mapped into callbacks or event-handling
routines for the various actions the user might take on the window, based on the widgets it
contains. This mapping is achieved through the function dw_signal connect and potentially
other CallbackManagement functions. When all is ready, the script displays the top-level win-
dow to the user.

Now the script driver runs an endless loop that receives actions from the user. Depending on
the capabilities of the Rexx interpreter, this loop might use either of the functions dw_main
ordw main iteration. Thisloop is similar to that of the TkWwait function loop in Rexx/Tk.

4. The user ends interaction with the script by closing its top-level window.

In summary, you can see that the skeletal logic of Rexx/DW programs is the same as the sample
Rexx/Tk script we discussed earlier in the chapter. So, scripting Rexx/DW interfaces is rather similar to
scripting Rexx/Tk. The difference is that you use Rexx/DW functions to bring the logic to life. The real
work in Rexx/DW scripting is in writing the callback routines to handle user interaction with the wid-
gets on the window.

Your next steps

As with other forms of GUI programming, the program logic of Rexx/DW scripts is straightforward.
The trick lies in learning the many attributes and functions the package contains. This powerful package
contains some 175 functions!

Fortunately, Rexx/DW comes with complete documentation and sample scripts. Use these as models
with which to get started. Take the sample scripts, look them over until you understand them, then copy
them and adapt them to your own needs. This will get you up and running quickly.

Graphical Images with Rexx/gd

Rexx/gd is an external function library designed for the creation and manipulation of graphical images.
It is not intended for the creation, manipulation and control of GUIs in the same manner as are Rexx/Tk
and Rexx/DW. Rather, it creates images stored in *.gif, *.png, and *.jpg files. These could be
displayed within a GUI or Web page, for example, but the emphasis is on graphic images, not on
controlling user interaction through a GUL

266

Graphical User Interfaces

Rexx/gd draws complete graphic images with lines, arcs, text, color, and fonts. Images may be cut and
pasted from other images. The images that are created are written to PNG, GIF, JPEG, or JPG files.

Rexx/gd is based on GD, an open-source, ANSI C-language library. Rexx/gd is essentially a wrapper
that gives Rexx scripts access to the GD library code. To use Rexx/gd, you need to download and install
the GD library to your machine. Then download and install Rexx/gd.

The GD library is available at 1ibgd.github.io. Or enter the keywords gd library into any
Internet search engine for a list of current download sites. Rexx/gd can be downloaded off the same
master panel as Rexx/SQL and Rexx/DW at http://regina-rexx.sourceforge.net/ or more
specifically http://rexxgd.sourceforge.net/index.html.

The logic of a Rexx/gd routine

Rexx/gd is embedded within all kinds of Rexx scripts and used in a wide variety of applications. But the
logic of an internal routine that creates an image is predictable. Here is its basic structure:

1.

6.

Register and load the Rexx/gd library for use. Following the same style we used with Rexx/Tk
and Rexx/DW, this code looks like this:

call RxFuncAdd 'GdLoadFuncs', 'rexxgd', 'GdLoadFuncs'
if GdLoadFuncs() <> 0 then say 'ERROR-- Unable to load Rexx/gd library!’

This code registers and loads the GD function library for use according to the standard
approach of the SAA registration procedures for external function libraries.

Allocate a work area to develop an image in by invoking the gdImageCreate function.

Assign background and foreground colors to the image by calling the gdImageColorAllocate
function.

Use one or more of the drawing functions to draw graphics in the image area. For example, to
draw a line, call gdImageLine. To create a rectangle, invoke gdImageRectangle or
gdImageFilledRectangle. The script might also invoke styling, brushing, tiling, filling, font,
text, and color functions in creating the image.

The script preserves the image it created in-memory by writing it to disk. Among useful
externalization functions are gdImageJpeg, to write the image as a JPEG file, and
gmImagePng, to store the image as a PNG file.

End by releasing memory and destroying the in-memory image by a call to gdImageDestroy.

Figure 16-2 pictorially summarizes the logic of a typical Rexx/gd script.

267

Chapter 16

Rexx/gd Graphics Scripting

!

Load Rexx/gd function library

Allocate an image work area

Allocate image colors. Use
drawing functions to create image

Write image to disk to save it.
Free image work area memory

Figure 16-2

Rexx/gd provides over 75 functions. They are divided into these categories:

Image creation, destruction, loading, and saving
Drawing

Query

Font and text handling

Color management

Copying and resizing

O 000000

Miscellaneous

Rexx/gd can be combined with GUI tools like Rexx/Tk or Rexx/DW to create graphical user interfaces.
It is also useful in building parts of Web pages. In fact, let’s look at a sample script that does exactly that.

A sample program

This sample script draws the buttons that appear on a Web page. Each button contains one word of text.
Figure 16-3 displays the Web page, which is the home page for Rexx/gd at SourceForge.net at http://
rexxgd.sourceforge.net/index.html. The buttons created by the program appear down the left-
hand side of the Web page. The script appears courtesy of its author, Mark Hessling, developer/main-
tainer of Regina Rexx as well as many other key open-source Rexx tools.

268

Graphical User Interfaces

@Rexu'_gll.Rexxlmeﬂ‘ace o ipulate simple graph ges - Microsoft |
File Edit View Favorites Tools Help

Address @] http:firescogd. sourceforge. netfindes bl

Explorer provided by SBC ... =06
Ty

L

Current: 2.0

e images m PHG, JPEG and GIF formate.

proguam that was used to generate these buttons
Rexs/SHOL &

Rexs/ISAH For more detaled imformation on what Resoozd can do see the Fesoded documentation

Rews/Curses | reiuests ae availdle
Rewn/OH YR is frourar, distrted vnder the GNU Libpury Gl Pusls Lisense
Rexud/Th

K il 7 Newambar 2004
Remus/CURL M Hessling @gut edu ay

Rexx/Hrapper

RuSock

Hone: Rewovipd is & Rex extension which wraps the funcionality of the [ihgd Hbeary, Tt engbles the creation and manipulstion of grphics

Regina The buttons on the left of this page were gererated by Fewfzd. To see how simple the code is, view the souree of the Feofed

Rexx/Trans Yy Feazfgd on SourceForge, support meowuees for Resad. such as mailing lists, discussion forums, bug reporting and feature

&

D Intermet

Figure 16-3

Here is the program. (A few lines in the program wrap around onto the next line due to the margin size.)

/*

* This Rexx/gd script creates all of the buttons for
*/

Trace o

Call RxFuncAdd 'GdLoadFuncs', 'rexxgd', 'GdLoadFuncs'

Call GdLoadFuncs

text = 'Home Links Downloads Bug_Report Rexx/Tk Rexx/SQL Regina THE PDCurses
Rexx/Wrapper Documentation Rexx/ISAM Rexx/gd Rexx/Trans Rexx/Curses'

/*

* Find the maximum length of any of the button texts

*/

maxlen = 0
Do 1 = 1 To Words (text)

my Web page

if Length(Word(text,i)) > maxlen Then maxlen = Length (Word(text,i))

End

/*
* Image size is based on size of largest text
*/

font = 'GDFONTMEDIUMBOLD'

X = ((1+GdFontGetWidth(font)) * maxlen) + 8

y = GdFontGetHeight(font) + 8
Say 'Image size:' x 'x' y

Do 1 = 1 To Words (text)
img = GdImageCreate(x, y)

269

Chapter 16

/*
* First color allocated is the background - white
*/
white = GdImageColorAllocate(img, 245, 255, 250)
background = GdImageColorAllocate(img, 0, 0, 102)
blue = GdImageColorAllocate(img, 0, 0, 255)
vellowgreen = GdImageColorAllocate(img, 73, 155, 0)
/*
* Although most browsers can't handle transparent PNGs,
* set the transparent index to the background anyway.

*
cgll GdImageColorTransparent img, background
*
/* Determine text position - centered
*
xogf = (GdImageGetWidth(img) % 2) - (((Length(Word(text,i)) *
(GdFontGetWidth(font)))-1) % 2)
*
/* Draw our borders for the fill of the top left and right corners.
*
cail GdImageLine img, 6, 0, 1, background

’

0 v-
call GdImageLine img, x-7, 0, x-1, y-1, background
call GdImageFillToBorder img, 0,0, background, background
call GdImageFillToBorder img, x-1,0, background, background
/*
* Write the string in blue, and save the image
*/
call GdImageString img, font, xoff, 3, Translate(Word(text,i),' ','_"),
yellowgreen
call GdImagePNG img, makename (Word(text,i), 'green')
/*
@ then overwrite the string in yellow-green, and write this image.
*/
call GdImageString img, font, xoff, 3, Translate(Word(text,i),' ','_'), blue

call GdImagePNG img, makename (Word(text,i), 'blue')

call GdImageDestroy img
End

Return

makename: Procedure

Parse Arg text, color

text = Translate(text, 'abcdefghijklmnopgrstuvwxyz', 'ABCDEFGHIJKLMNOPQRSTUVWXYZ ')
text = Changestr('/', text, '')

text = Changestr('_', text, '')

Return color| |text'.png'

The logic of the script follows the straightforward steps listed in the preceding code. First, the script
loads the gd function library:

Call RxFuncAdd 'GdLoadFuncs', 'rexxgd',6 'GdLoadFuncs'
Call GdLoadFuncs

270

Graphical User Interfaces

The script next determines the size of the buttons, based on the size of the longest word that will be dis-
played within them. This is the code of the do loop and some code that calculates the image size.

Now the script is ready to invoke the Rexx/gd function GdImageCreate to allocate the image. The
image will be developed in a work area in memory:

img = GdImageCreate(x, y)

The script issues several GdImageColorAllocate functions to set up colors for the image and its back-
ground:

/~k
* First color allocated is the background - white
*/
white = GdImageColorAllocate(img, 245, 255, 250)
background = GdImageColorAllocate(img, 0, 0, 102)
blue = GdImageColorAllocate(img, 0, 0, 255)
yellowgreen = GdImageColorAllocate(img, 73, 155, 0)

Now, the script draws the borders of the buttons with this code:

, y-1, background

-1, yv-1, background

, 0, background, background
-1,0, background, background

call GdImageLine img, 6, 0, 0
call GdImageLine img, x-7, 0, x
call GdImageFillToBorder img, 0
call GdImageFillToBorder img, x

These statements write the image in blue and yellow-green, and save it to PNG files:

/*

* Write the string in blue, and save the image .

*/

call GdImageString img, font, xoff, 3, Translate(Word(text,i),' ','_"),yellowgreen

call GdImagePNG img, makename (Word(text,i), 'green')

/*

* . . . then overwrite the string in yellowgreen, and write this image.

*/

call GdImageString img, font, xoff, 3, Translate(Word(text,i),' ','_'), blue

call GdImagePNG img, makename (Word (text,i), 'blue')

Now that the image has been allocated, developed, and saved to a file, the script can exit. Before termi-
nating, the program destroys the allocated image and releases its memory with this statement:

call GdImageDestroy img
This script illustrates the straightforward logic of most Rexx/gd programs. As with Rexx/Tk and
Rexx/DW), this logic is simple; the trick is in learning the details of the many available functions and

how to combine them to meet your needs.

The graphical images created with Rexx/gd can be used for a variety of purposes. As shown by this pro-
gram, the images can be combined with other logic to create sophisticated Web page designs.

271

Chapter 16

Summary

This chapter describes the most popular GUI interface packages for Rexx scripting. It discusses
Rexx/Tk, Rexx/DW, and Rexx/gd in detail. These are all open-source products that are widely used
and well proven. New releases are tested with Regina and the products work with other Rexx inter-
preters as well.

We explored the basics of GUI programming at a very high level, showing the essential nature of event-
driven programming. We presented a Rexx/Tk script, albeit a very simple one. Then we looked at
Rexx/DW scripting. These scripts follow the same basic event-driven logic as the Rexx/Tk program, but
of course use the functions of the Rexx/DW library.

GUI programming is necessarily detail oriented, and scripts tend to be lengthy, even if they are logically
rather straightforward. If you are not an experienced GUI developer, this is the challenge you face. Rexx
provides all the requisite tools.

Finally, we investigated Rexx/gd and how it can be used for creating graphic images. We looked at the
Web page for the product and related the graphics on that Web page to the script that created them.
Rexx/gd is a generic graphical image tool that can be combined with other Rexx interfaces and tools to
create the graphical components of Web pages or for many other uses.

Test Your Understanding

1. What are the essential differences between Rexx/Tk and Rexx/DW? What are the advantages to
each?

2. When would you use Rexx Dialog? For which operating system was it designed and cus-
tomized?

3. What's a widget? How are widgets associated with top-level windows in Rexx/Tk versus
Rexx/DW?

4. Whatis the basic logic of the driver in most GUI scripts? What are the differences between
Rexx/Tk and Rexx/DW scripts in this regard?

5. Why has the Tcl/ Tk GUI toolkit become so popular?

6. Does Rexx/gd create GUIs? How could it be used with Web pages? Where does Rexx/gd create
its images?

272

17

Web Programming with
CGI and Apache

Overview

Rexx is well-suited to Web programming because it excels at string manipulation. Web program-
ming requires reading and interpreting string input and creating textual output. As in the next
chapter on XML, the emphasis is on string processing. Rexx string processing strengths recom-
mend it as a highly productive, easy-to-maintain language for Web programming.

There are many ways to program Web servers and build Web pages with Rexx. Two popular
technologies are the Common Gateway Interface, or CGI, and Apache’s Mod_Rexx interface.

First, we describe some of the tools available for CGI programming. CGI was one of the first popu-
lar Web server interfaces because it is easy to use and fully programmable.

Then we describe scripting Apache through its Rexx interface, Mod_Rexx. Apache is the world’s
most popular Web server. Mod_Rexx gives you complete scripting control over Apache. With it
you can efficiently and effectively serve Web pages created by Rexx scripts. You can also dynami-
cally create Web pages through a feature called Rexx Server Pages, or RSP. Dynamic Web pages are
created and tailored in real time to meet user needs.

Common Gateway Interface

The Common Gateway Interface, or CGI specification lets Web servers execute user programs to pro-
duce Web pages containing text, graphics, forms, audio, and other information. The CGI interface
allows Rexx scripts to control and drive the Web server in its provisioning of Web pages to the
user’s browser. Several free external function libraries are available to support CGI programming
in Rexx.

Chapter 17

The cqi-lib.rxx library

The Stanford Linear Accelerator Laboratory, or SLAC, created a library of CGI programming
functions called cgi-lib.rxx. Its two dozen functions are designed to simplify Rexx/CGI programming.
It also includes a tutorial and sample scripts. Download the SLAC scripts and tools from the Downloads
page at www.RexxInfo.org. Or search for the keywords Rexx CGI in any Web search engine.

To give you an idea of what this library contains, here is a quick list of its functions. The package itself
includes both the technical descriptions and full Rexx source code for these functions.

Function Use

cleanquery Removes unassigned variables from CGI query string
cgierror Reports the error message and returns

cgidie Reports the error message and “dies” or exits

chkpwd Verifies username and password

delquery Removes an item from CGI query string

deweb Converts ASCII hex code to ASCII characters
formatdate Converts date expression to Oracle format

fulturl Returns complete CGI query URL

getowner Returns a file’s owner

getfullhost Returns fully qualified domain name of the local host
htmlbreak Breaks a long line into lines for HTML parsing

htmlbot Inserts standard information (“boiler plate”) at page end
htmltop Inserts title and header at page top

httab Converts tab-delimited file into HTML table

methget Returns TRUE if the Form uses METHOD="GET"”
methpost Returns TRUE if the Form uses METHOD="POST”

myurl Adds the script’s URL to the page

Oraenv Establishes SLAC’s Oracle/Rexx environment
printheader Inserts the Content-type header

printvariables Adds the Form’s name-value variable pairs to the page
readform Reads a Form’s GET or POST input and returns it decoded
readpost

Reads a Form'’s standard input with METHOD="POST"”

Web Programming with CGI and Apache

Function Use

slacfnok Identifies a file’s visibility

striphtml Removes HTML markup from a string

suspect Returns an error message if an input string contains a suspect
character

webify Encodes special characters as ASCII hex

wraplines Breaks long lines appropriately for terminal output

The cgi-1ib.rxx package comes with several sample scripts. Here’s a simple one that illustrates sev-
eral of the functions. It simply reads form input from the user and echoes it to a Web page. It appears
here courtesy of its author Les Cottrell and the SLAC:

#!/usr/local/bin/rxx

/* Minimalist http form and script */
F=PUTENV ("REXXPATH=/afs/slac/www/slac/www/tool/cgi-rexx")
SAY PrintHeader (); SAY '<body bgcolor="FFFFFF">'

Input=ReadForm/()
IF Input='"' THEN DO /*Part 1*/
SAY HTMLTop ('Minimal Form')
SAY '<form><input type="submit">"',
'
Data: <input name="myfield">"'
END
ELSE DO /*Part 2%/
SAY HTMLTop ('Output from Minimal Form')
SAY PrintVariables (Input)
END
SAY HTMLBoCt ()

In this script, this first line accesses the cgi-1ib.rxx package:
F=PUTENV ("REXXPATH=/afs/slac/www/slac/www/tool/cgi-rexx")

The line is coded for uni-REXX, a commercial Rexx interpreter from The Workstation Group (see
Chapter 19 for information on uni-Rexx and other major commercial Rexx interpreters). Your statement
for library access would be coded differently if you use a different Rexx interpreter. For example, using
Regina and most other interpreters you could code this statement with the value built-in function. The
first parameter in the statement below is the symbol to change, the second is the value to set it to, and
the third is the variable pool in which to make the change. The result is to update the environmental
variable properly for access to the function library:

call value 'REXXPATH','/afs/slac/www/slac/www/tool/cgi-rexx', 'ENVIRONMENT'

The cgi-1ib.rxx package provides full source code for the functions, so you can set them up however
you need to as an external library for your version of Rexx. Or, use them as internal routines.

275

Chapter 17

Next, the script writes the Content Type header by the printHeader function. The content type header
must be the first statement written to the browser. It tells the browser the kind of data it will receive in
subsequent statements:

SAY PrintHeader(); SAY '<body bgcolor="FFFFFF">
The next line reads the input form with the ReadForm function:
Input=ReadForm()

If there is no input, the script writes a minimal HTML page using the HTMLTop function. The HTMLTop
function inserts a title and header at the top of a Web page:

IF Input='' THEN DO /*Part 1*/
SAY HTMLTop ('Minimal Form')
SAY '<form><input type="submit">',
'
Data: <input name="myfield">"'
END

If there was form input, the script echoes it back to the user by the Printvariables function. The
PrintVariables function adds the form’s name-value variable pairs to the Web page:

ELSE DO /*Part 2%/
SAY HTMLTop ('Output from Minimal Form')
SAY PrintVariables (Input)

END

The program ends by writing a standard footer to the Web page with the HTMLBot function:
SAY HTMLBot ()

You can see that developing Rexx scripts that interface to CGI is just a matter of following CGI rules
regarding how input is read into the script and written to the interface. CGI scripts typically read user
forms input, perform some processing, and write textual output that defines the Web page the user sees in
response. A library of functions like those provided by the cgi-1ib.rxx package makes the whole pro-
cess easier. They offer convenience and higher productivity than manually coding everything yourself.

In concluding, we mention that this Rexx/CGI function library is also the basis for the CGI interface
package offered with the Reginald Rexx interpreter. See Chapter 23 further information on Reginald and
for example Reginald scripts.

The Internet/REXX HHNS WorkBench

The CGI / Rexx library function package described in the above section helps you develop scripts that
interact with the Common Gateway Interface. Using it reduces the level of effort required in writing CGI
programs. Another free external library of Web programming functions is downloadable from Henri
Henault & Sons, Paris, France. It too, is designed for Web server programming through controlling the
Common Gateway Interface.

276

Web Programming with CGI and Apache

The purposes of this package are to help you:

Q Quickly create dynamic Web pages, tables and forms
Q Easily handle forms results
O Run Rexx-CGI scripts without change across the supported platforms
The Internet/ REXX HHNS WorkBench consists about 40 functions. This function library comes with

about a dozen sample programs. English documentation and the library are available at the Henri
Henault & Sons Web site at www.hhns . fr/fr/real_cri.html.

The library runs under Windows, Linux, and IBM’s AIX operating systems. It is tested with the Regina,
IBM Object REXX, and NetRexx interpreters. It supports two Web servers: Microsoft’s Internet
Information Services (or IIS) and the Apache open-source Web server.

Setting up the product requires several steps:

1. Download and install the product.

2 Ensure PATH or environmental variables point to the product’s shared library.

3. Configure either IIS or Apache.

4 If you're using NetRexx, ensure you have installed a servlet container engine (such as JServ or
Tomcat).

The product documentation describes these steps in detail.

To give an idea of what the library contains, here are its functions and their uses (all functions are
described in full detail in the product documentation):

Function Use

delay Wait (in seconds and milleseconds)

inkey Keyboard scan

getkwd Parse a keyword parameter list

getenv Return the value of an environmental variable
getpid Returns the current process ID

getwparm Returns a parameter value from an * . ini file
filesize Returns file size

parsefid Parses a Windows/DOS/Unix/Linux filename
popen Issues an operating system command

cgilinit Initializes, sets up CGI header

cgiSetup Initializes CGI, sets up Rexx variables only

Table continued on following page

277

Chapter 17

Function Use

CgiEnd Ends CGI script

CgiWebit Processes nonalphanumeric characters in a string
TblHdr Generates a table header

TblRow Generates a table row

FrmHdr Generates a <FORM ACTION=. .. tag
FrmInp Generates an INPUT tag within a form
Cgilmg Generates an tag

CgiHref Generates a hypertext link

r4Sh Unescape a string

CgiRefr Goes to another URL

GetCookie Extracts a value from the current cookie
Tags Generates a pair of tags

Beyond the Web programming functions, the package includes other useful functions. The following
table shows that they are divided into three categories: mathematical functions, CMS-like functions, and
date functions:

Function Group Purpose Functions

Mathematical These functions support atan, atan2, cos, sqrt, exp, fact,
advanced or transcendental log, pow, sin
mathematics.

CMS These functions support stm2file, stm2var, file2stm,
conversion between filenames var2stm, makefid

and variables and stems.

Date These functions convert between d2date, date2d
Julian day numbers and dates

Let’s take a look at a sample program using this package. This script writes a Web page that lists pro-
gram names and their descriptions. The programs it lists are the sample scripts that come with the
Internet/REXX HHNS WorkBench. The output of this program can be viewed at the product Web site,
www.hhns. fr/fr/real_cri.html, and is also depicted in Figure 17-1. The script appears here courtesy
of Henri Henault & Sons.

278

Web Programming with CGI and Apache

Quelgues prouesses techniques ...

g uil i News

"&]H.H. & Sons - Microsoft Internst Explorer provided by SBC Yahoo! DSL {S=[x]
- File Edit View Favorites Tools Help ?
ckhos= @8] http: jwwon. b FrFeeal_cribem v B

Reoxox CGI Examples

(This page i procduced by & Resee CGT)

[Description URI

|a coreplote exarepls, with the whols set of fanctions pO0_allmore ozt
|1 quich Sort Exumgle pél_georlcal
|rmﬂw computation ; display form 0 _rngsse ot
|Displays the sywstem exvvaronacent vass pal ewdisteg
|displays the REXX varibles t entry mn GO pall_albars et

|& Sitple caleulator : the imput form 36 _gampesle egi
|& Suple EURO) comvetter the angpt form]g. 30_surocvrt o
|d.npluys avery smple form 20 o ezl
|ﬁ mote eldborate list of the samble's ;l?_ai.mlﬂlm
|dsplxys avery smple list of the samples pl10_samplest om

Sen the Prograrm sowes which produces this page.

& B Irierret

L=

Figure 17-1

Here’s the program:

#! /usr/local/bin/regina
/% A more elaborate list of the samples */

call setdll /* loads the HHNS shared lib */
call CgiInit "TITLE='Another List of samples' BGCOLOR=FFFFFF"

say "<center><h4>Rexx CGI Examples</hd></center>"
say "<center>(This page is produced by a Rexx CGI)</center><p>"

if left(translate(webos), 3) = "WIN" then
call popen "Dir /b /o p*.cgi"

else call popen "ls -1 p*.cgi"

/* the above 3 statements may be replaced by
call popen webdir "*.cgi"

*/

say "<center>"
say "<table border=1>"

say tblHdr ("Description", " URI")
do queued()
/*--- get the next program name ---*/

279

Chapter 17

parse pull z

/*--- assume that 2nd line of the program is its brief description --*/
call linein z; desc = linein(z); call lineout z

parse var desc '/*' desc '*/!'

/*--- Now, write a table Row with the description and the Web link ---*/
say tblRow(strip(desc), cgiHref(z, z))

end

say '</table>'
say '</center>'

say "<p>See the "cgiHref ("r00_showsrc.cgi?pl2_samplst2.cgi", "Program source")
"which produces this page."

call cgiEnd
return 0

The program starts by accessing the shared function library by its first statement:
call setdll /* loads the HHNS shared lib */
Then it initializes by invoking the CgiInit function to write the page title:

call CgiInit "TITLE='Another List of samples' BGCOLOR=FFFFFF"

say "<center><h4>Rexx CGI Examples</h4></center>"
say "<center>(This page is produced by a Rexx CGI)</center><p>"

The next several lines get the list of program names (filenames) to place into the list of programs in the
table on the Web page. This code first determines whether the operating system is Windows or a version
of Unix; then it uses the popen function to issue either a dir or 1s command to get the directory listing
into the stack. This is a good example of how scripts can be written to operate across platforms through
OS-aware programming:

if left(translate(webos), 3) = "WIN" then
call popen "Dir /b /o p*.cgi"

else call popen "ls -1 p*.cgi"

/* the above 3 statements may be replaced by :
call popen webdir "*.cgi"

*/

Now, the program writes the table header, using the td1Hdr function:

say "<center>"
say "<table border=1>"
say tblHdr ("Description", " URI")

280

Web Programming with CGl and Apache

Next, the program executes a do loop to read each program name from the stack. For each one it
retrieves, it uses the tb1Row function to write a row into the tabular listing. Each line in the output list-
ing contains the program name, followed by the URL hyperlink to its code. The link is produced by the
cgiHref function:

/*--— Now, write a table Row with the description and the Web link -- */
say tblRow (strip(desc), cgiHref(z, z))

After it has created the table of program names and hyperlinks to their corresponding scripts, the pro-
gram closes the table:

say '</table>'
say '</center>'

The program concludes by writing a message with a URL link by the cgiHref function. Then it termi-
nates by invoking cgiEnd:

say "<p>See the "cgiHref ("r00 showsrc.cgi?pl2 samplst2.cgi", "Program source")
"which produces this page."

call cgiEnd

The Internet/REXX HHNS WorkBench makes CGI programming easier because you can leverage its set
of Web-programming-specific functions for higher productivity. The scripting example employs only a
small number of the package’s functions, yet you can see how these functions make for a higher-level,
more powerful script.

There are many more coding examples at the HHNS Web page at www.hhns.fr/fr/real cri.html.
You can run the examples at the Web site and view their Web page output while viewing the code
simultaneously in another browser panel. This makes it very easy to learn how to use this package.

Programming Apache with Mod_Rexx

The Apache Web server is the most widely used host system on the Internet. Its open source download
includes several language processor modules. These are designed to allow developers to process any part of
an Apache request including the creation of Web pages. The modules are available for Rexx, Perl, and
other languages, with names like mod_rexx, mod perl, and mod_php, respectively. Each module has
the same capabilities but supports a different scripting language.

The Apache Web server directly executes your Rexx scripts through its Mod_Rexx interface. Apache
offers a more efficient way of writing Web server code than the Common Gateway Interface. Web
server extensions like CGI typically suffer from performance overhead because they spawn separate
processes to handle new requests. The Apache server handles new requests by executing within a new
thread, rather than spawning a new process. Threads are a more efficient mechanism than processes on
most operating systems. This also means that Mod_Rexx requires a thread-safe interpreter. Examples of
thread-safe Rexx interpreters include Regina and Open Object Rexx.

281

Chapter 17

Mod_Rexx gives Rexx developers full control over all aspects of the processing of Apache server
requests. The product comes in two flavors. One is a traditional, function-based interface, while the
other is an object-oriented interface. The procedural interface contains roughly 50 functions, all of which
start with the letters wiw. The object-oriented interface consists of three classes and their accompanying
40-odd methods. This chapter focuses on the function-based interface.

Functions and special variables

Mod_Rexx is very complete and handles almost any requirement. To give you an idea of what’s
included, let’s briefly discuss the functions for the traditional, function-based interface, and their uses.
The functions are grouped into four categories:

O General Functions — This set of functions provides a base level of services necessary to work
with the Apache Web server. They manage cookies and the error log, retrieve
environmental information, and handle URLs.

O Apache Request Record Functions — These functions provide information about and manage
the request record pointer, information coming into the script from Apache and the Web.

O Updatable Apache Request Record Functions — These functions manage the request record
pointer and allow updating values as well as retrieving them.

O Apache Server Record Functions — These functions manage server-side concerns pertaining
to Apache and its environment.

Appendix] lists all the functions in the Mod_Rexx package along with descriptions of their use.

Mod_Rexx uses a set of three dozen special variables to communicate information to Rexx scripts. The
names of these variables all begin with the letters www. These special variables are set either before the
script starts, or after the script executes a function call. Their purpose is to communicate information to
the script either about the environment or the results of function calls. The sample program we discuss
later creates a Web page and displays the values of these variables. Appendix] contains a complete list
of all the Mod_Rexx special variables.

Installation

Mod_Rexx is distributed with Apache. Download Apache from www.apache.org. Or, obtain
Mod_Rexx by separate download from SourceForge at
http://sourceforge.net/projects/modrexx.

Mod_Rexx is distributed under the Common Public License. The license agreement downloads with the
product. Be sure to read it and agree to its terms before using the product. Mod_Rexx runs under
Windows, Linux, and BSD. It is tested with the Regina and Open Object Rexx interpreters.

Installing Mod_Rexx is similar to installing the Rexx interfaces described in the last few chapters. Be sure
that the Mod_Rexx shared library named mod_rexx.dll ormod rexx.so is present and that it can be
located through the PATH or the proper shared-library environmental variable. The installation instruc-
tions explain this in detail.

282

Web Programming with CGI and Apache

One additional step is required: configuring the Apache Web server to execute your Rexx scripts. To
configure Apache, just edit its configuration file and restart the server for the changes to take effect.
Apache’s configuration file is typically named http.conf and is located in the Apache conf (configura-
tion) directory. You must add lines to this file that:

QO Load the Mod_Rexx module.
Q Ensure that scripts with file extensions *.rex and * . rexx are processed by Mod_Rexx.

Q Optionally define Rexx Server Page, or RSP, support.
The lines you add to the Apache configuration file should look similar to these:

The following line needs to be added to the end of the appropriate
httpd.conf LoadModule list.

#

LoadModule rexx_module modules/mod_rexx.dll

The following lines should be added at the end of the http.conf file.
#

AddType application/x-httpd-rexx-script .rex .rexx

AddType application/x-httpd-rexx-rsp .rsp

Add these for REXX Server Page support
#

RexxRspCompiler "c:/Program Files/Apache Group/Apache2/bin/rspcomp.rex"

After reconfiguring this file, shut down and restart the Apache Web server so that the new directives
take effect.

To test the install, start your browser and enter this line into its “address entry box:”
http://your.domain.com/test.rex

Replace the text your .domain.com with the name of your own server. This test runs a Rexx test script
under Mod_Rexx and displays a simple Hypertext Markup Language (HTML) page.

Should you have any difficulty, Mod_Rexx comes with documentation that covers both installation and
the relevant Apache directives. The documentation also gives complete information on the Mod_Rexx
function library, the alternative object-oriented interface, special Rexx variables, and how to use Rexx
Server Pages.

sample script

Let’s discuss how to write scripts that manage Apache through the Mod_Rexx interface. First, we’ll
describe the kinds of processing these scripts can perform; then we’ll look at an sample program. The
sample script reads input from a user of the Web server, and writes a Web page to his or her browser in
response. It is a typical program in that it serves Web pages.

283

Chapter 17

You can write scripts that take control from Apache at any point in its request processing. These are the

processing phases during which your script might run:

1. Request
2. DPost-read request
3. URI translation
4. Header parser
5. Access control
6. Authentication
7. Authorization
8. MIME type check
9. Fixup

10. Response

11. Logging

12. Cleanup

13. Wait

14. DPost-read request

Most scripts are response handlers — they run during the Response phase of Step 10. Response handlers
receive the user’s input and write a Web pag