
IBM

VSE/Enterprise

Systems

Architecture

VSE

Central

Functions

VSE/REXX

Reference

Version

6

Release

7

SC33-6642-10

���

IBM

VSE/Enterprise

Systems

Architecture

VSE

Central

Functions

VSE/REXX

Reference

Version

6

Release

7

SC33-6642-10

���

Note!

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

“Notices”

on

page

xxi.

Twelfth

Edition

(March

2004)

This

edition

applies

to

Version

6

Release

7

of

IBM

REXX/VSE,

which

is

part

of

VSE/Central

Functions,

Program

Number

5686-066,

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

Publications

are

not

stocked

at

the

address

given

below.

Requests

for

IBM

publications

should

be

made

to

your

IBM

representative

or

to

the

IBM

branch

office

serving

your

locality.

A

form

for

reader’s

comments

is

provided

at

the

back

of

this

publication.

If

the

form

has

been

removed,

comments

may

be

addressed

to:

IBM

Deutschland

Entwicklung

GmbH

Department

3248

Schoenaicher

Strasse

220

D-71032

Boeblingen

Federal

Republic

of

Germany

IBM

may

use

or

distribute

whatever

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

1988,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

Figures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xv

Tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xvii

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xxi

Programming

Interface

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xxi

Trademarks

and

Service

Marks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xxii

Summary

of

Changes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xxiii

Chapter

1.

Introduction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Who

Should

Read

This

Book

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

The

Compiler

and

the

Library

for

REXX/370

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

How

to

Use

This

Book

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

How

to

Read

the

Syntax

Diagrams

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

For

Further

REXX

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

Chapter

2.

REXX

General

Concepts

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

Where

to

Find

More

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 8

Structure

and

General

Syntax

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 8

Characters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 8

Comments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

Tokens

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

Implied

Semicolons

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Continuations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Expressions

and

Operators

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Expressions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Operators

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 14

Parentheses

and

Operator

Precedence

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

Clauses

and

Instructions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 18

Null

Clauses

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 18

Labels

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 18

Instructions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 18

Assignments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 18

Keyword

Instructions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 18

Commands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

Assignments

and

Symbols

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

Constant

Symbols

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

Simple

Symbols

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

Compound

Symbols

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

Stems

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Commands

to

External

Environments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 23

Commands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 23

Host

Commands

and

Host

Command

Environments.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

The

VSE

Host

Command

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

The

POWER

Host

Command

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

The

JCL

Host

Command

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

The

LINK

and

LINKPGM

Host

Command

Environments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

The

CONSOLE

Host

Command

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

Chapter

3.

Keyword

Instructions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

ADDRESS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

©

Copyright

IBM

Corp.

1988,

2004

iii

ARG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

CALL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

DO

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

Simple

DO

Group

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

Repetitive

DO

Loops

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Conditional

Phrases

(WHILE

and

UNTIL)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 36

DROP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 38

EXIT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 39

IF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 40

INTERPRET

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

ITERATE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 42

LEAVE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 43

NOP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 44

NUMERIC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 44

OPTIONS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

PARSE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 46

PROCEDURE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

PULL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

PUSH

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 52

QUEUE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 52

RETURN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

SAY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

SELECT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 54

SIGNAL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 55

TRACE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 56

Alphabetic

Character

(Word)

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

Prefix

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

Numeric

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 58

A

Typical

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 59

Format

of

TRACE

Output

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 59

UPPER

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 60

Chapter

4.

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 61

Syntax

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 61

Functions

and

Subroutines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 61

Search

Order

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 62

Errors

During

Execution

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

Built-in

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

ABBREV

(Abbreviation)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 64

ABS

(Absolute

Value)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 64

ADDRESS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 65

ARG

(Argument)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 65

ASSGN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 66

BITAND

(Bit

by

Bit

AND)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 66

BITOR

(Bit

by

Bit

OR)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 66

BITXOR

(Bit

by

Bit

Exclusive

OR)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

B2X

(Binary

to

Hexadecimal)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

CENTER/CENTRE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

COMPARE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

CONDITION

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

COPIES

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

C2D

(Character

to

Decimal)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

C2X

(Character

to

Hexadecimal)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

DATATYPE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

DATE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

DBCS

(Double-Byte

Character

Set

Functions)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

iv

REXX/VSE

Reference

DELSTR

(Delete

String)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

DELWORD

(Delete

Word)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

DIGITS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

D2C

(Decimal

to

Character)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

D2X

(Decimal

to

Hexadecimal)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

ERRORTEXT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

EXTERNALS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

FIND

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

FORM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

FORMAT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

FUZZ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

INDEX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

INSERT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

JUSTIFY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

LASTPOS

(Last

Position)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

LEFT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

LENGTH

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 80

LINESIZE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 80

MAX

(Maximum)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 80

MIN

(Minimum)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 80

OUTTRAP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 81

OVERLAY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 81

POS

(Position)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 81

QUEUED

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 81

RANDOM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

REVERSE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

RIGHT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

REXXIPT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

REXXMSG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

SETLANG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

SIGN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

SLEEP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

SOURCELINE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 84

SPACE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 84

STORAGE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 84

STRIP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 84

SUBSTR

(Substring)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 85

SUBWORD

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 85

SYMBOL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

SYSVAR

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

TIME

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

TRACE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

TRANSLATE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

TRUNC

(Truncate)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

USERID

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

VALUE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

VERIFY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 90

WORD

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 90

WORDINDEX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 91

WORDLENGTH

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 91

WORDPOS

(Word

Position)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 91

WORDS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 92

XRANGE

(Hexadecimal

Range)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 92

X2B

(Hexadecimal

to

Binary)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 92

X2C

(Hexadecimal

to

Character)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 93

X2D

(Hexadecimal

to

Decimal)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 93

Contents

v

Additional

Functions

Provided

in

REXX/VSE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 94

EXTERNALS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 94

FIND

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 94

INDEX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 95

JUSTIFY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 95

LINESIZE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 96

USERID

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 96

External

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 96

ASSGN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 97

LOCKMGR

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 98

MERGE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 98

OPERMSG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 98

OUTTRAP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 99

PAUSEMSG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 101

REXXIPT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 102

REXXMSG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 103

SETLANG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 104

SLEEP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 105

SORTSTEM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 105

STORAGE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 105

SYSVAR

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 106

Chapter

5.

Parsing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 109

Parsing

Rules

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 109

Simple

Templates

for

Parsing

into

Words

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 109

Templates

Containing

String

Patterns

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

Templates

Containing

Positional

(Numeric)

Patterns

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 112

Parsing

with

Variable

Patterns

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

Using

UPPER

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

Parsing

Instructions

Summary

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 116

Parsing

Instructions

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 116

Advanced

Topics

in

Parsing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 117

Parsing

Multiple

Strings

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 117

Combining

String

and

Positional

Patterns:

A

Special

Case

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 118

Parsing

with

DBCS

Characters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 119

Details

of

Steps

in

Parsing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 119

Chapter

6.

Numbers

and

Arithmetic

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 123

Introduction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 123

Definition

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 124

Numbers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 124

Precision

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 124

Arithmetic

Operators

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 124

Arithmetic

Operation

Rules—Basic

Operators

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 125

Arithmetic

Operation

Rules—Additional

Operators

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 126

Numeric

Comparisons

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 128

Exponential

Notation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 128

Numeric

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 130

Whole

Numbers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 130

Numbers

Used

Directly

by

REXX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 130

Errors

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 130

Chapter

7.

Conditions

and

Condition

Traps

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 131

Action

Taken

When

a

Condition

Is

Not

Trapped

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 132

Action

Taken

When

a

Condition

Is

Trapped

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 132

Condition

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 134

vi

REXX/VSE

Reference

Descriptive

Strings

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 134

Special

Variables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 134

The

Special

Variable

RC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 134

The

Special

Variable

SIGL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 135

Chapter

8.

Using

REXX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 137

Additional

REXX

Support

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 137

Programming

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 137

Customizing

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 138

Writing

Programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 139

Running

a

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 140

Communicating

with

a

User

Console

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 140

Chapter

9.

Reserved

Keywords,

Special

Variables,

and

Command

Names

.

.

.

.

.

.

.

.

. 141

Reserved

Keywords

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 141

Special

Variables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 141

Reserved

Command

Names

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 142

Chapter

10.

REXX/VSE

Commands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 143

Immediate

Commands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 143

DELSTACK

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 143

DROPBUF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 144

EXEC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 145

EXECIO

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 146

Read

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 152

Additional

Options

Required

for

SAM

Files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 152

EXECIO

Input

Checking

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 153

Return

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 153

HI

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 160

HT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 160

MAKEBUF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 160

NEWSTACK

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 161

QBUF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 163

QELEM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 164

QSTACK

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 165

RT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 166

SETUID

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 166

SUBCOM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 167

TE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 168

TQ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 168

TS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 169

VSAMIO

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 169

Return

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 174

Using

the

VSAMIO

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 175

Chapter

11.

ADDRESS

POWER

Commands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 181

Accessing

Entries

in

VSE/POWER

Queues

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 181

GETQE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 182

Security

Considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 185

PUTQE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 187

QUERYMSG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 194

Rules

for

Issuing

Job

Completion

Messages

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 195

CTL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 196

Submitting

and

Controlling

Power

Jobs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 198

Chapter

12.

JCL

Command

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 201

Contents

vii

The

JCL

Host

Command

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 201

Format

of

Address

JCL

Commands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 202

VSE

JCL

ON

Conditions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 202

Unsupported

JCL

Commands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 202

VSE

JCL

Output

Trapping

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 202

Return

codes

from

the

JCL

Host

Command

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 202

Chapter

13.

Host

Command

Environments

for

Loading

and

Calling

Programs

.

.

.

.

.

.

.

. 205

Host

Commands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 205

The

LINK

Host

Command

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 206

Return

Codes

from

the

LINK

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 207

The

LINKPGM

Host

Command

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 208

Return

Codes

from

the

LINKPGM

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 210

Table

of

Authorized

Programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 210

Invoking

VSE

Utilities

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 214

Invoking

LIBR

using

ADDRESS

LINK

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 214

Invoking

IDCAMS

using

ADDRESS

LINK

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 215

Invoking

ASSEMBLE

and

LNKEDT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 215

Invoking

DITTO

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 216

Chapter

14.

REXX/VSE

Console

Automation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 217

Benefits

of

a

Programmable

REXX

Console

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 217

A

Look

at

VSE/ESA’s

Console

Support

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 217

Console

I/O

Interfaces

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 218

General-Use

Console

Interfaces

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 219

Master

Console

versus

User

Console

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 220

Routing

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 220

Service

Offerings

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 221

Console

Command

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 221

Console

Commands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 221

Activating

a

Console

Session

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 222

Creating

a

Command

and

Response

Correlation

Token

(CART)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 224

Querying

the

Current

Console

Setting

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 225

Switching

to

a

Console

Session

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 225

Deactivating

a

Console

Session

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 226

Examples

of

REXX

and

VSE

Console

Commands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 226

Having

Command

Responses

Outstanding

in

Parallel

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 227

Routing

Messages

From

and

Replies

To

a

Specific

Partition

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 227

Tracking

of

Operator

Communication

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 228

Console

Host

Command

Replaceable

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 228

Console-related

REXX

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 229

DELMSG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 229

FINDMSG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 230

GETMSG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 233

LOCKMGR

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 235

MERGE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 236

OPERMSG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 238

PAUSEMSG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 239

SENDCMD

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 239

SENDMSG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 239

SORTSTEM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 240

SYSDEF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 241

SYSVAR

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 242

Error

Codes

of

Failing

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 243

Always

Keep

in

Mind...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 244

Make

Frequent

Use

of

the

GETMSG

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 245

viii

REXX/VSE

Reference

Do

not

Send

Messages

to

″Yourself″

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 245

Redirect

Some

Output

to

SYSLST

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 245

Direct

Messages

to

Only

One

Console

(ECHOU

Option)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 245

Remember

the

REXNORC

Profile

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 246

Split

off

a

Time-consuming

Task

into

a

Separate

Job

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 246

Finish

All

Preparatory

Work

Prior

to

ACTIVATE

CONSOLE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 246

Handle

One

Command

at

a

Time

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 246

Start

Testing

on

a

Small

Scale

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 247

The

Most

Important

Rule...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 247

REXX/VSE

CPU

Monitor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 247

REXX

Console

Application

Framework

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 248

Operation

Scenarios

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 248

Concept

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 248

How

to

Use

the

REXX

Console

Application

REXXCO

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 250

Automated

Operation

Demos

(Examples)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 253

REXXLOAD

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 254

REXXFLSH

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 255

REXXCXIT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 256

REXXSPCE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 257

REXXCPUM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 259

REXXDOM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 261

Other

Examples

(Not

Related

to

Console

Functions)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 262

Miscellaneous

Examples

of

Using

the

REXX

Console

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 264

Retrieve

Messages

using

Filter

and

Timestamp

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 264

Scan

the

Hardcopy

File

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 264

Scan

Job

Messages

for

One

Partition

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 264

Return

and

Reason

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 267

MCSOPER

Macro

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 268

MCSOPMSG

Macro

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 268

MGCRE

Macro

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 269

Command

Processor

Return

and

Reason

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 270

CORCMD

Command

for

Problem

Solving

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 270

Chapter

15.

REXX

Sockets

Application

Program

Interface

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 275

Programming

Hints

and

Tips

for

Using

REXX

Sockets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 275

SOCKET

External

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 276

Tasks

You

Can

Perform

Using

REXX

Sockets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 276

REXX

Socket

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 278

Accept

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 279

Bind

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 281

Close

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 282

Connect

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 282

Fcntl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 284

GetClientId

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 285

GetHostByAddr

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 285

GetHostByName

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 286

GetHostId

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 286

GetHostName

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 287

GetPeerName

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 287

GetSockName

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 288

GetSockOpt

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 288

GiveSocket

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 289

Initialize

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 290

Ioctl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 291

Listen

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 292

Read

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 293

Contents

ix

Recv

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 294

RecvFrom

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 295

Resolve

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 296

Select

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 297

Send

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 298

SendTo

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 299

SetSockOpt

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 300

ShutDown

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 301

Socket

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 302

SocketSet

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 303

SocketSetList

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 303

SocketSetStatus

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 304

TakeSocket

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 305

Terminate

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 306

Translate

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 306

Version

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 308

Write

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 308

REXX

Sockets

System

Messages

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 309

REXX

Sockets

Return

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 309

Sample

Programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 311

REXX-EXEC

RSCLIENT

Sample

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 311

REXX-EXEC

RSSERVER

Sample

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 313

Sample

Programs

Using

the

TCP/IP

SSL

Support

with

the

REXX/VSE

Socket

Function

.

.

.

.

. 317

Installation

of

REXX/VSE

SOCKET

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 321

Chapter

16.

Debug

Aids

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 323

Interactive

Debugging

of

Programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 323

Interrupting

Program

Processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 325

Starting

and

Stopping

Tracing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 325

Chapter

17.

Programming

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 327

General

Considerations

for

Calling

REXX/VSE

Routines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 328

Parameter

Lists

for

REXX/VSE

Routines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 329

Specifying

the

Address

of

the

Environment

Block

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 331

Return

Codes

for

REXX/VSE

Routines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 332

Calling

REXX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 333

Calling

REXX

Directly

with

the

JCL

EXEC

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 333

Calling

REXX

with

ARXEXEC

or

ARXJCL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 335

External

Functions

and

Subroutines

and

Function

Packages

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 348

Interface

for

Writing

External

Function

and

Subroutine

Code

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 348

Function

Packages

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 351

Variable

Pool

–

ARXEXCOM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 356

Maintain

Entries

in

the

Host

Command

Environment

Table

–

ARXSUBCM

.

.

.

.

.

.

.

.

.

.

. 362

Trace

and

Execution

Control

Routine

–

ARXIC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 365

Get

Result

Routine

–

ARXRLT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 368

SAY

Instruction

Routine

–

ARXSAY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 372

Halt

Condition

Routine

–

ARXHLT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 374

Text

Retrieval

Routine

–

ARXTXT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 376

LINESIZE

Function

Routine

–

ARXLIN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 380

OUTTRAP

Interface

Routine

–

ARXOUT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 382

Chapter

18.

Customizing

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 385

Flow

of

REXX

Program

Processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 385

Language

Processor

Environment

Initialization

and

Termination

.

.

.

.

.

.

.

.

.

.

.

.

.

. 386

Loading

and

Freeing

a

REXX

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 387

Processing

of

the

REXX

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 388

x

REXX/VSE

Reference

Overview

of

Replaceable

Routines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 388

Exit

Routines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 389

Chapter

19.

Language

Processor

Environments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 391

Overview

of

Language

Processor

Environments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 391

Using

the

Environment

Block

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 393

When

Environments

Are

Automatically

Initialized

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 394

Characteristics

of

a

Language

Processor

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 394

Flags

and

Corresponding

Masks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 397

Module

Name

Table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 401

Host

Command

Environment

Table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 404

Function

Package

Table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 406

Values

in

the

ARXPARMS

Default

Parameters

Module

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 409

How

ARXINIT

Determines

What

Values

to

Use

for

the

Environment

.

.

.

.

.

.

.

.

.

.

.

.

. 411

Values

ARXINIT

Uses

to

Initialize

Environments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 411

Chains

of

Environments

and

How

Environments

Are

Located

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 412

Locating

a

Language

Processor

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 414

Changing

the

Default

Values

for

Initializing

an

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 416

Providing

Your

Own

Parameters

Module

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 416

Specifying

Values

for

Different

Environments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 417

Parameters

You

Cannot

Change

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 417

Control

Blocks

Created

for

a

Language

Processor

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 417

Format

of

the

Environment

Block

(ENVBLOCK)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 418

Format

of

the

Parameter

Block

(PARMBLOCK)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 419

Format

of

the

Work

Block

Extension

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 419

Format

of

the

REXX

Vector

of

External

Entry

Points

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 421

Changing

the

Maximum

Number

of

Environments

in

a

Partition

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 424

Using

the

Data

Stack

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 425

Chapter

20.

Initialization

and

Termination

Routines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 431

Initialization

Routine

–

ARXINIT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 431

Entry

Specifications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 431

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 432

Specifying

How

REXX

Obtains

Storage

in

the

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 433

How

ARXINIT

Determines

What

Values

to

Use

for

the

Environment

.

.

.

.

.

.

.

.

.

.

.

. 435

Parameters

Module

and

In-Storage

Parameter

List

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 436

Specifying

Values

for

the

New

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 436

Termination

Routine

–

ARXTERM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 440

Chapter

21.

Replaceable

Routines

and

Exits

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 443

Replaceable

Routines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 444

General

Considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 445

Using

the

Environment

Block

Address

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 445

Installing

Replaceable

Routines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 446

Exec

Load

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 446

The

Exec

Block

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 449

The

In-Storage

Control

Block

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 449

Input/Output

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 450

Functions

Supported

for

the

I/O

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 453

Buffer

and

Buffer

Length

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 455

Line

Number

Parameter

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 456

I/O

Control

Block

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 456

Data

Set

Information

Block

(DSIB)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 457

Host

Command

Environment

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 459

Data

Stack

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 462

Functions

Supported

for

the

Data

Stack

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 464

Contents

xi

Storage

Management

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 466

User

ID

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 468

Function

Supported

for

the

User

ID

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 469

Message

Identifier

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 470

REXX

Exit

Routines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 471

Exits

for

Language

Processor

Environment

Initialization

and

Termination

.

.

.

.

.

.

.

.

.

.

. 471

Halt

Exit

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 474

Installation-Supplied

Exits

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 476

Chapter

22.

Double-Byte

Character

Set

(DBCS)

Support

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 481

General

Description

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 481

Enabling

DBCS

Data

Operations

and

Symbol

Use

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 482

Symbols

and

Strings

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 482

Validation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 482

Using

DBCS

Characters

in

Symbols

and

Comments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 483

Instruction

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 484

DBCS

Function

Handling

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 485

Built-in

Function

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 486

DBCS

Processing

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 490

Counting

Option

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 490

Function

Descriptions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 490

DBADJUST

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 490

DBBRACKET

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 490

DBCENTER

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 491

DBCJUSTIFY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 491

DBLEFT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 492

DBRIGHT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 492

DBRLEFT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 493

DBRRIGHT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 493

DBTODBCS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 493

DBTOSBCS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 494

DBUNBRACKET

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 494

DBVALIDATE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 494

DBWIDTH

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 495

Chapter

23.

ARXTERMA

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 497

Entry

Specifications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 497

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 498

Return

Specifications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 498

Return

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 499

Chapter

24.

Support

for

the

Library

for

REXX/370

in

REXX/VSE

.

.

.

.

.

.

.

.

.

.

.

.

. 501

Benefits

of

Using

a

Compiler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 501

Improved

Performance

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 501

Reduced

System

Load

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 501

Protection

for

Source

Code

and

Programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 501

Improved

Productivity

and

Quality

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 501

Portability

of

Compiled

Programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 501

SAA

Compliance

Checking

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 502

Compiler

Publications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 502

Routines

and

Interfaces

for

the

Library

for

REXX/370

in

REXX/VSE

.

.

.

.

.

.

.

.

.

.

.

.

. 502

Programming

Routines

for

a

REXX

Compiler

Runtime

Processor

.

.

.

.

.

.

.

.

.

.

.

.

.

. 502

Routines

and

Interfaces

to

Support

a

REXX

Compiler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 503

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 503

How

REXX

Identifies

a

Compiled

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 503

The

Compiler

Programming

Table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 503

xii

REXX/VSE

Reference

The

Compiler

Runtime

Processor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 505

Compiler

Interface

Routines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 509

Compiler

Interface

Initialization

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 509

Compiler

Interface

Termination

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 511

Compiler

Interface

Load

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 512

Compiler

Interface

Variable

Handling

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 515

External

Routine

Search

Routine

(ARXERS)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 517

Host

Command

Search

Routine

(ARXHST)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 519

Exit

Routing

Routine

(ARXRTE)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 522

Appendix

A.

List

of

the

Names

of

Macros

Intended

for

Customers’

Use

.

.

.

.

.

.

.

.

.

. 525

General-Use

Programming

Interfaces

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 525

Mapping

Macros

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 525

Product-Sensitive

Programming

Interfaces

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 525

Appendix

B.

Servicing

REXX/VSE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 527

Appendix

C.

REXX

Supplied

Link

Books

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 529

Bibliography

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 533

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 535

Contents

xiii

xiv

REXX/VSE

Reference

Figures

1.

Example

of

Using

the

REXX

Program

Identifier

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 8

2.

Concept

of

a

DO

Loop

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

3.

Conceptual

Overview

of

Parsing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 120

4.

Conceptual

View

of

Finding

Next

Pattern

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 121

5.

Conceptual

View

of

Word

Parsing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 122

6.

Job

Management

Using

the

QUERYMSG

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 199

7.

Parameters

for

the

LINK

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 207

8.

Parameters

for

the

LINKPGM

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 209

9.

Table

of

Authorized

Programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 212

10.

Console

Data

Flow

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 218

11.

Example

of

a

Message

Action

Table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 250

12.

Example

of

a

Job

Skeleton

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 252

13.

Job

Message

Scanner

REXXSCAN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 265

14.

Overview

of

Parameter

Lists

for

REXX/VSE

Routines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 330

15.

Example

of

Calling

a

REXX

Program

from

a

JCL

EXEC

Statement

.

.

.

.

.

.

.

.

.

.

.

. 333

16.

Example

of

a

Function

Package

Directory

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 355

17.

Request

Block

(SHVBLOCK)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 359

18.

Overview

of

REXX

Program

Processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 386

19.

Overview

of

Parameters

Module

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 395

20.

Function

Package

Table

Entries

–

Function

Package

Directories

.

.

.

.

.

.

.

.

.

.

.

.

. 409

21.

Three

Language

Processor

Environments

in

a

Chain

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 413

22.

Separate

Chains

on

Two

Different

Tasks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 413

23.

One

Chain

of

Environments

for

Attached

Tasks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 414

24.

Separate

Data

Stacks

for

Each

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 426

25.

Sharing

of

the

Data

Stack

between

Environments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 427

26.

Separate

Data

Stack

and

Sharing

of

a

Data

Stack

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 428

27.

Creating

a

New

Data

Stack

with

the

NEWSTACK

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

. 429

28.

Extended

Parameter

List

–

Parameter

8

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 434

29.

Sample

Compiler

Programming

Table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 505

30.

Initializing

REXX/VSE

using

ARXINST.Z

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 527

31.

Loading

Single

Phases

into

the

SVA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 528

©

Copyright

IBM

Corp.

1988,

2004

xv

xvi

REXX/VSE

Reference

Tables

1.

Language

Codes

for

SETLANG

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 104

2.

Return

Codes

for

the

SYSVAR

function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 107

3.

Return

and

Reason

Codes

from

Command

Processors

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 270

4.

REXX

socket

functions

for

processing

socket

sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 277

5.

REXX

socket

functions

for

creating,

connecting,

changing,

and

closing

sockets

.

.

.

.

.

.

. 277

6.

REXX

socket

functions

for

exchanging

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 277

7.

REXX

socket

functions

for

resolving

names

and

other

identifiers

.

.

.

.

.

.

.

.

.

.

.

.

. 278

8.

REXX

socket

functions

for

managing

configurations,

options,

and

modes

.

.

.

.

.

.

.

.

.

. 278

9.

REXX

socket

functions

for

translating

data

and

doing

tracing

.

.

.

.

.

.

.

.

.

.

.

.

.

. 278

10.

REXX

Variables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 280

11.

Common

Return

Codes

for

REXX/VSE

Routines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 332

12.

Parameter

for

Calling

the

ARXJCL

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 337

13.

Return

Codes

for

ARXJCL

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 337

14.

Parameters

for

ARXEXEC

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 339

15.

Format

of

the

Exec

Block

(EXECBLK)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 342

16.

Format

of

the

Argument

List

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 343

17.

Format

of

the

Header

for

the

In-Storage

Control

Block

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 343

18.

Vector

of

Records

for

the

In-Storage

Control

Block

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 344

19.

Format

of

the

Evaluation

Block

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 345

20.

ARXEXEC

Return

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 347

21.

External

Function

Parameter

List

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 349

22.

Format

of

the

Evaluation

Block

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 350

23.

Return

Codes

from

Function

or

Subroutine

Code

(in

Register

15)

.

.

.

.

.

.

.

.

.

.

.

. 351

24.

Format

of

the

Function

Package

Directory

Header

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 353

25.

Format

of

Entries

in

Function

Package

Directory

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 353

26.

Parameters

for

ARXEXCOM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 357

27.

Format

of

the

SHVBLOCK

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 360

28.

Return

Codes

from

ARXEXCOM

(in

Register

15)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 362

29.

Parameters

for

ARXSUBCM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 363

30.

Format

of

an

Entry

in

the

Host

Command

Environment

Table

.

.

.

.

.

.

.

.

.

.

.

.

.

. 365

31.

Return

Codes

for

ARXSUBCM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 365

32.

Parameters

for

ARXIC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 366

33.

Return

Codes

for

ARXIC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 367

34.

Parameters

for

ARXRLT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 369

35.

ARXRLT

Return

Codes

for

GETBLOCK

or

GETEVAL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 371

36.

ARXRLT

Return

Codes

for

the

GETRLT

and

GETRLTE

Functions

.

.

.

.

.

.

.

.

.

.

.

. 371

37.

Parameters

for

ARXSAY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 373

38.

Return

Codes

for

ARXSAY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 374

39.

Parameters

for

ARXHLT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 375

40.

Return

Codes

for

ARXHLT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 376

41.

Parameters

for

ARXTXT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 377

42.

Text

Unit

and

Day

Returned

-

DAY

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 378

43.

Text

Unit

and

Month

Returned

-

MTHLONG

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 378

44.

Text

Unit

and

Abbreviated

Month

Returned

-

MTHSHORT

Function

.

.

.

.

.

.

.

.

.

.

.

. 379

45.

Return

Codes

for

ARXTXT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 379

46.

Parameters

for

ARXLIN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 381

47.

Return

Codes

for

ARXLIN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 381

48.

Parameters

for

ARXOUT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 382

49.

Return

Codes

for

ARXOUT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 383

50.

Overview

of

Replaceable

Routines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 388

51.

Format

of

the

Parameter

Block

(PARMBLOCK)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 395

52.

Summary

of

Each

Flag

Bit

in

the

Parameters

Module

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 397

53.

Flag

Settings

for

NOMSGWTO

and

NOMSGIO

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 401

©

Copyright

IBM

Corp.

1988,

2004

xvii

54.

Format

of

the

Module

Name

Table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 402

55.

Format

of

the

Host

Command

Environment

Table

Header

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 405

56.

Format

of

Entries

in

Host

Command

Environment

Table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 405

57.

Function

Package

Table

Header

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 407

58.

Values

in

ARXPARMS

Default

Parameters

Module

(1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 410

59.

Values

in

ARXPARMS

Default

Parameters

Module

(2)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 410

60.

Values

in

ARXPARMS

Default

Parameters

Module

(3)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 411

61.

Format

of

the

Environment

Block

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 418

62.

Format

of

the

Work

Block

Extension

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 420

63.

Format

of

REXX

Vector

of

External

Entry

Points

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 422

64.

Format

of

the

Environment

Table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 424

65.

Parameters

for

ARXINIT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 432

66.

Parameters

Module

and

In-Storage

Parameter

List

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 436

67.

Reason

Codes

for

ARXINIT

Processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 438

68.

ARXINIT

Return

Codes

for

Finding

an

Environment

(FINDENVB)

.

.

.

.

.

.

.

.

.

.

.

. 439

69.

ARXINIT

Return

Codes

for

Initializing

an

Environment

(INITENVB)

.

.

.

.

.

.

.

.

.

.

.

. 440

70.

Return

Codes

for

ARXTERM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 441

71.

Parameters

for

the

Exec

Load

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 447

72.

Return

Codes

for

the

Exec

Load

Replaceable

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 450

73.

Input

Parameters

for

the

I/O

Replaceable

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 452

74.

I/O

Control

Block

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 456

75.

Format

of

the

Data

Set

Information

Block

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 457

76.

Return

Codes

for

the

I/O

Replaceable

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 459

77.

Parameters

for

a

Host

Command

Environment

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 460

78.

Return

Codes

for

the

Host

Command

Environment

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 461

79.

Parameters

for

the

Data

Stack

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 463

80.

Return

Codes

for

the

Data

Stack

Replaceable

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 466

81.

Parameters

for

the

Storage

Management

Replaceable

Routine

.

.

.

.

.

.

.

.

.

.

.

.

. 467

82.

Return

Codes

for

the

Storage

Management

Replaceable

Routine

.

.

.

.

.

.

.

.

.

.

.

. 468

83.

Parameters

for

the

User

ID

Replaceable

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 468

84.

Return

Codes

for

the

User

ID

Replaceable

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 469

85.

Return

Codes

for

the

Message

Identifier

Replaceable

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

. 470

86.

Parameters

for

ARXINITX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 472

87.

Return

Codes

for

ARXINITX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 473

88.

Parameter

List

for

Halt

Exit

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 474

89.

Return

Codes

for

Halt

Exit

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 475

90.

Return

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 476

91.

Parameters

for

Exec

Processing

Exit

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 477

92.

DBCS

Ranges

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 481

93.

Parameters

for

ARXTERMA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 498

94.

Return

Codes

for

ARXTERMA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 499

95.

Compiler

Programming

Table

Header

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 504

96.

Compiler

Programming

Table

Entry

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 504

97.

Compiler

Runtime

Processor

Expected

Results

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 506

98.

Parameters

for

a

Compiler

Runtime

Processor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 508

99.

Return

Codes

from

a

REXX

Compiler

Runtime

Processor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 508

100.

Parameter

List

for

the

Compiler

Interface

Initialization

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

. 510

101.

Return

Codes

from

the

Compiler

Interface

Initialization

Routine

.

.

.

.

.

.

.

.

.

.

.

.

. 510

102.

Parameter

List

for

the

Compiler

Interface

Termination

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

. 511

103.

Parameter

List

for

the

Compiler

Interface

Load

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 513

104.

Return

Codes

from

the

Compiler

Interface

Load

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 514

105.

Parameter

List

for

the

Compiler

Interface

Variable

Handling

Routine

.

.

.

.

.

.

.

.

.

.

. 515

106.

Return

Codes

from

the

Compiler

Interface

Variable

Handling

Routine

.

.

.

.

.

.

.

.

.

.

. 517

107.

Parameters

for

the

External

Routine

Search

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 518

108.

Return

Codes

from

the

External

Routine

Search

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 519

109.

Parameters

for

the

Host

Command

Search

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 520

xviii

REXX/VSE

Reference

110.

Return

Codes

from

the

Host

Command

Search

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 521

111.

Parameters

for

the

Exit

Routing

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 522

112.

Return

Codes

from

the

Exit

Routing

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 523

113.

Mapping

Macros

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 525

114.

Mapping

Macros

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 526

115.

Mandatory

Phases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 527

116.

Recommended

Phases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 527

Tables

xix

xx

REXX/VSE

Reference

Notices

References

in

this

publication

to

IBM

products,

programs,

or

services

do

not

imply

that

IBM

intends

to

make

these

available

in

all

countries

in

which

IBM

operates.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

IBM’s

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

of

the

intellectual

property

rights

of

IBM

may

be

used

instead

of

the

IBM

product,

program,

or

service.

The

evaluation

and

verification

of

operation

in

conjunction

with

other

products,

except

those

expressly

designated

by

IBM,

are

the

responsibility

of

the

user.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to

the

IBM

Director

of

Licensing,

IBM

Corporation,

North

Castle

Drive,

Armonk,

NY

10504-1785,

USA.

For

online

versions

of

this

book,

we

authorize

you

to:

v

Copy,

modify,

and

print

the

documentation

contained

on

the

media,

for

use

within

your

enterprise,

provided

you

reproduce

the

copyright

notice,

all

warning

statements,

and

other

required

statements

on

each

copy

or

partial

copy.

v

Transfer

the

original

unaltered

copy

of

the

documentation

when

you

transfer

the

related

IBM

product

(which

may

be

either

machines

you

own,

or

programs,

if

the

program’s

license

terms

permit

a

transfer).

You

must,

at

the

same

time,

destroy

all

other

copies

of

the

documentation.

You

are

responsible

for

payment

of

any

taxes,

including

personal

property

taxes,

resulting

from

this

authorization.

There

are

no

warranties,

express

or

implied,

including

the

warranties

of

merchantability

and

fitness

for

a

particular

purpose.

Some

juristictions

do

not

allow

the

exclusion

of

implied

warranties,

so

the

above

exclusion

may

not

apply

to

you.

Your

failure

to

comply

with

the

terms

above

terminates

this

authorization.

Upon

termination,

you

must

destroy

your

machine

readable

documentation.

Programming

Interface

Information

This

book

is

intended

to

help

the

customer

write

programs

in

the

REXX

programming

language

and

customize

services

that

REXX/VSE

6.7

provides

for

REXX

processing.

This

book

primarily

documents

General-use

Programming

Interface

and

Associated

Guidance

Information

provided

by

REXX/VSE

6.7.

General-use

programming

interfaces

allow

the

customer

to

write

programs

that

obtain

the

services

of

REXX/VSE

6.7.

However,

this

book

also

documents

Product-sensitive

Programming

Interface

and

Associated

Guidance

Information

provided

by

REXX/VSE

6.7.

Product-sensitive

programming

interfaces

allow

the

customer

installation

to

perform

tasks

such

as

diagnosing,

modifying,

monitoring,

repairing,

tailoring,

or

tuning

of

REXX/VSE

6.7.

Use

of

such

interfaces

creates

dependencies

on

the

detailed

design

or

implementation

of

the

IBM

software

product.

Product-sensitive

programming

interfaces

should

be

used

only

for

these

specialized

purposes.

Because

of

their

dependencies

on

detailed

design

and

implementation,

it

is

to

be

expected

that

programs

written

to

such

interfaces

may

need

to

be

changed

in

order

to

run

with

new

product

releases

or

versions,

or

as

a

result

of

service.

©

Copyright

IBM

Corp.

1988,

2004

xxi

Product-sensitive

Programming

Interface

and

Associated

Guidance

Information

is

identified

where

it

occurs,

by

an

introductory

statement.

The

programming

interfaces

include

data

areas

and

parameter

lists.

Unless

otherwise

stated,

all

fields

in

data

areas/parameter

lists

are

part

of

the

programming

interface.

However,

all

“Reserved

...”

fields

are

not

part

of

the

programming

interface.

See

Appendix

A,

“List

of

the

Names

of

Macros

Intended

for

Customers’

Use,”

on

page

525

for

a

list

of

macros

intended

as

programming

interfaces.

Trademarks

and

Service

Marks

The

following

terms,

denoted

by

an

asterisk

(*)

in

this

publication,

are

trademarks

of

the

IBM

Corporation

in

the

United

States

or

other

countries

or

both:

IBM

BookManager

Library

Reader

VSE/ESA

Systems

Application

Architecture

SAA

MVS/ESA

AS/400

PS/2

OS/2

xxii

REXX/VSE

Reference

Summary

of

Changes

The

twelfth

edition

of

this

manual

(March

2004)

contains

several

updates

and

editorial

changes.

©

Copyright

IBM

Corp.

1988,

2004

xxiii

xxiv

REXX/VSE

Reference

Chapter

1.

Introduction

This

introductory

section:

v

Identifies

the

book’s

purpose

and

audience

v

Explains

how

to

use

the

book.

Who

Should

Read

This

Book

This

book

describes

the

REstructured

eXtended

eXecutor

(REXX)

language.

The

REXX

language

is

implemented

through:

v

The

REXX/VSE

interpreter

v

The

Library

for

REXX/370

in

REXX/VSE.

The

interpreter

is

also

called

the

language

processor.

The

Library

for

REXX/370

in

REXX/VSE

is

also

called

a

compiler’s

runtime

processor.

This

book

is

intended

for

experienced

programmers,

particularly

those

who

have

used

a

block-structured,

high-level

language

(for

example,

PL/I,

Algol,

or

Pascal).

REXX/VSE

is

a

partial

implementation

of

Level

2

Systems

Application

Architecture

(SAA)

REXX

on

the

VSE/ESA

system.

The

purpose

of

SAA

REXX

is

to

define

a

consistent

set

of

language

elements

that

can

be

used

on

several

operating

systems.

If

you

plan

to

run

REXX

programs

on

other

environments,

however,

some

restrictions

may

apply

and

you

should

review

the

publication

SAA

Common

Programming

Interface

REXX

Level

2

Reference,

SC24-5549.

REXX

programs

can

do

many

tasks,

including

the

automation

of

VSE/Operations.

For

example,

if

you

use

the

JCL

EXEC

command

to

call

a

REXX

program,

you

can

leave

JCL

statements

on

the

stack

for

VSE/ESA

to

process.

This

enables

you

to

insert

JCL

statements

or

data

into

the

current

job

stream.

Descriptions

include

the

use

and

syntax

of

the

language

and

how

the

language

processor

“interprets”

the

language

while

a

program

is

running

under

the

REXX/VSE

interpreter.

The

book

also

describes:

v

REXX/VSE

external

functions

and

REXX/VSE

commands

you

can

use

in

a

REXX

program

v

Programming

services

that

let

you

interface

with

REXX

and

the

language

processor

v

Customizing

services

that

let

you

customize

REXX

processing

and

how

the

language

processor

accesses

and

uses

system

services,

such

as

storage

and

I/O

requests.

The

Compiler

and

the

Library

for

REXX/370

See

Chapter

24,

“Support

for

the

Library

for

REXX/370

in

REXX/VSE,”

on

page

501

for

information

about

the

Compiler

and

the

Library

for

REXX/370.

How

to

Use

This

Book

This

book

is

a

reference

rather

than

a

tutorial.

It

assumes

you

are

already

familiar

with

REXX

programming

concepts.

The

material

in

this

book

is

arranged

in

chapters:

1.

Chapter

1,

“Introduction”

2.

Chapter

2,

“REXX

General

Concepts”

3.

Chapter

3,

“Keyword

Instructions”

(in

alphabetic

order)

4.

Chapter

4,

“Functions”

(in

alphabetic

order)

5.

Chapter

5,

“Parsing”

(a

method

of

dividing

character

strings,

such

as

commands)

6.

Chapter

6,

“Numbers

and

Arithmetic”

7.

Chapter

7,

“Conditions

and

Condition

Traps”

8.

Chapter

8,

“Using

REXX”

9.

Chapter

9,

“Reserved

Keywords,

Special

Variables,

and

Command

Names”

10.

Chapter

10,

“REXX/VSE

Commands”

11.

Chapter

11,

“ADDRESS

POWER

Commands”

12.

Chapter

12,

“JCL

Command

Environment”

©

Copyright

IBM

Corp.

1988,

2004

1

13.

Chapter

13,

“Host

Command

Environments

for

Loading

and

Calling

Programs”

14.

Chapter

14,

“REXX/VSE

Console

Automation”

15.

Chapter

15,

“REXX

Sockets

Application

Program

Interface”

16.

Chapter

16,

“Debug

Aids”

17.

Chapter

17,

“Programming

Services”

18.

Chapter

18,

“Customizing

Services”

19.

Chapter

19,

“Language

Processor

Environments”

20.

Chapter

20,

“Initialization

and

Termination

Routines”

21.

Chapter

21,

“Replaceable

Routines

and

Exits”

22.

Chapter

22,

“Double-Byte

Character

Set

(DBCS)

Support”

23.

Chapter

23,

“ARXTERMA

Routine”

24.

Chapter

24,

“Support

for

the

Library

for

REXX/370

in

REXX/VSE”

Appendixes

cover:

v

Appendix

A,

“List

of

the

Names

of

Macros

Intended

for

Customers’

Use”

v

Appendix

B,

“Servicing

REXX/VSE”

v

Appendix

C,

“REXX

Supplied

Link

Books”

This

introduction

and

Chapter

2,

“REXX

General

Concepts”

provide

general

information

about

the

REXX

programming

language.

The

two

chapters

provide

an

introduction

to

REXX/VSE

and

describe

the

structure

and

syntax

of

the

REXX

language;

the

different

types

of

clauses

and

instructions;

the

use

of

expressions,

operators,

assignments,

and

symbols;

and

issuing

commands

from

a

REXX

program.

Chapter

3,

“Keyword

Instructions”

describes

the

keyword

instructions.

Chapter

4,

“Functions”

describes

the

SAA

built-in

functions,

additional

built-in

functions,

and

external

functions

that

REXX/VSE

provides.

Other

chapters

provide

information

to

help

you

use

the

different

features

of

REXX

and

debug

any

problems

in

your

REXX

programs.

These

chapters

include:

v

Chapter

5,

“Parsing”

v

Chapter

6,

“Numbers

and

Arithmetic”

v

Chapter

7,

“Conditions

and

Condition

Traps”

v

Chapter

9,

“Reserved

Keywords,

Special

Variables,

and

Command

Names”

v

Chapter

16,

“Debug

Aids.”

REXX/VSE

provides

several

REXX/VSE

commands

you

can

use

for

REXX

processing.

Chapter

10,

“REXX/VSE

Commands”

describes

the

syntax

of

these

commands.

Chapter

12,

“JCL

Command

Environment,”

on

page

201

describes

these

environments

introduced

in

Chapter

2,

“REXX

General

Concepts,”

on

page

7

in

greater

detail.

Chapter

14,

“REXX/VSE

Console

Automation,”

on

page

217

describes

a

special

REXX/VSE

facility

that

is

centered

around

a

VSE/ESA

programmable

console.

This

facility

enables

you

to

automate

and

make

more

productive

the

operation

of

your

VSE/ESA

console.

Besides

REXX

language

support,

REXX/VSE

provides:

v

Programming

services

you

can

use

to

interface

with

REXX

and

the

language

processor

v

Customizing

services

that

let

you

customize

REXX

processing

and

how

the

language

processor

accesses

and

uses

system

services,

such

as

I/O

and

storage.

Chapter

17,

“Programming

Services”

describes

programming

services.

Chapter

18,

“Customizing

Services”

introduces

customizing

services,

which

the

following

chapters

describe

in

greater

detail:

v

Chapter

19,

“Language

Processor

Environments”

v

Chapter

20,

“Initialization

and

Termination

Routines”

v

Chapter

21,

“Replaceable

Routines

and

Exits.”

Introduction

2

REXX/VSE

Reference

Note:

REXX/VSE

is

interactive

only

from

the

operator’s

console.

This

reservation

applies

to

any

terms

in

this

book

suggesting

interactive

input

and

output.

For

example,

displaying

output

refers

to

presenting

it

through

the

current

output

stream;

entering

information

refers

to

providing

it

through

the

current

input

stream.

The

REXX/VSE

messages

are

included

in

the

VSE/ESA

Messages

and

Codes

manual

and

therefore

available

in

all

VSE/ESA

supported

languages.

See

the

VSE/ESA

Planning,

SC33-6703,

and

VSE/ESA

System

Upgrade

and

Service,

SC33-6702

manuals

if

you

plan

to

use

the

Fast

Service

Upgrade

(FSU)

function

to

migrate

to

VSE/ESA

2.1.

Appendix

B,

“Servicing

REXX/VSE”

provides

information

to

help

you

reload

phases

after

service

into

the

SVA.

How

to

Read

the

Syntax

Diagrams

Throughout

this

book,

syntax

is

described

using

the

structure

defined

below.

v

Read

the

syntax

diagrams

from

left

to

right,

from

top

to

bottom,

following

the

path

of

the

line.

The

��───

symbol

indicates

the

beginning

of

a

statement.

The

───�

symbol

indicates

that

the

statement

syntax

is

continued

on

the

next

line.

The

�───

symbol

indicates

that

a

statement

is

continued

from

the

previous

line.

The

───��

symbol

indicates

the

end

of

a

statement.

Diagrams

of

syntactical

units

other

than

complete

statements

start

with

the

�───

symbol

and

end

with

the

───�

symbol.

v

Required

items

appear

on

the

horizontal

line

(the

main

path).

��

STATEMENT

required_item

��

v

Optional

items

appear

below

the

main

path.

��

STATEMENT

optional_item

��

v

If

you

can

choose

from

two

or

more

items,

they

appear

vertically,

in

a

stack.

If

you

must

choose

one

of

the

items,

one

item

of

the

stack

appears

on

the

main

path.

��

STATEMENT

required_choice1

required_choice2

��

If

choosing

one

of

the

items

is

optional,

the

entire

stack

appears

below

the

main

path.

��

STATEMENT

optional_choice1

optional_choice2

��

v

If

one

of

the

items

is

the

default,

it

appears

above

the

main

path

and

the

remaining

choices

are

shown

below.

��

STATEMENT

default_choice

optional_choice

optional_choice

��

v

An

arrow

returning

to

the

left

above

the

main

line

indicates

an

item

that

can

be

repeated.

��

STATEMENT

repeatable_item

��

A

repeat

arrow

above

a

stack

indicates

that

you

can

repeat

the

items

in

the

stack.

Introduction

Chapter

1.

Introduction

3

v

A

set

of

vertical

bars

around

an

item

indicates

that

the

item

is

a

fragment,

a

part

of

the

syntax

diagram

that

appears

in

greater

detail

below

the

main

diagram.

��

STATEMENT

fragment

��

fragment:

expansion_provides_greater_detail

v

Keywords

appear

in

uppercase

(for

example,

PARM1).

They

must

be

spelled

exactly

as

shown

but

can

be

specified

in

any

case.

Variables

appear

in

all

lowercase

letters

(for

example,

parmx).

They

represent

user-supplied

names

or

values.

v

If

punctuation

marks,

parentheses,

arithmetic

operators,

or

such

symbols

are

shown,

you

must

enter

them

as

part

of

the

syntax.

The

following

example

shows

how

the

syntax

is

described:

��

MAX(

,

number

)

��

For

Further

REXX

Information

The

following

lists

publications

that

are

useful

for

programming

in

REXX:

v

The

SAA

Common

Programming

Interface

REXX

Level

2

Reference,

SC24-5549,

may

be

useful

to

more

experienced

REXX

users

who

may

wish

to

code

portable

programs.

This

book

defines

SAA

REXX.

Descriptions

include

the

use

and

syntax

of

the

language

as

well

as

explanations

on

how

the

language

processor

interprets

the

language

as

a

program

is

running.

v

The

OS/390

TSO/REXX

Reference,

SC28-1975,

is

a

comprehensive

reference

for

use

on

TSO/E.

v

The

OS/390

TSO/REXX

User’s

Guide,

SC28-1974,

introduces

the

instructions

and

functions

the

REXX

language

provides

and

explains

how

to

write

a

REXX

program.

It

describes

how

to

run

a

REXX

program

in

TSO/E

foreground

and

background,

in

MVS

batch

using

JCL,

or

in

any

address

space.

This

book

also

highlights

the

major

differences

between

the

TSO/E

CLIST

language

and

the

REXX

language.

v

The

VM/ESA:

REXX/VM

Primer,

SC24-5598,

is

an

excellent

introduction

to

REXX

and

can

help

you

get

started.

If

you

have

little

or

no

experience

in

computer

programming

or

programming

in

REXX,

it

is

worthwhile

reading.

v

The

VM/ESA:

REXX/VM

Reference,

SC24-5770,

is

a

comprehensive

reference

for

use

on

VM.

v

The

VM/ESA:

REXX/VM

User’s

Guide,

SC24-5465,

is

suitable

for

beginners

and

programmers

who

have

not

used

a

structured

language

before.

v

The

VSE/ESA

REXX/VSE

User’s

Guide,

SC33-6641,

provides

a

general

introduction

to

REXX

programming

for

beginners.

It

introduces

REXX

instructions

and

built-in

functions

and

explains

how

to

write

a

REXX

program.

It

includes

many

examples

of

REXX

applications.

v

The

VSE/ESA

REXX/VSE

Diagnosis

Reference,

SC33-6332,

provides

information

to

help

with

diagnosing

problems,

developing

search

arguments

for

searching

problem

reporting

data

bases,

and

collecting

data

for

reporting

problems

to

IBM.

v

The

VSE/ESA

Messages

and

Codes,

SC33-6796,

contains

REXX

error

numbers

and

messages.

See

page

502

for

a

list

of

books

for

the

IBM

Compiler

and

Library

for

REXX/370.

Introduction

4

REXX/VSE

Reference

You

might

also

refer

to

the

...

REXX/VSE

Home

Page

REXX/VSE

has

a

home

page

on

the

World

Wide

Web,

which

offers

up-to-date

information

about

REXX-related

products

and

services,

new

REXX

functions,

and

other

items

of

interest

to

REXX/VSE

users.

You

can

find

the

REXX/VSE

home

page

at:

http://www-1.ibm.com/servers/eserver/zseries/os/vse/support/rexx/rexxhome.html

Introduction

Chapter

1.

Introduction

5

Introduction

6

REXX/VSE

Reference

Chapter

2.

REXX

General

Concepts

The

REstructured

eXtended

eXecutor

(REXX)

language

is

particularly

suitable

for:

v

Command

procedures

v

Application

front

ends

v

Prototyping

v

Personal

computing.

Individual

users

can

write

programs

for

their

own

needs.

REXX

is

a

general

purpose

programming

language

like

PL/I.

REXX

has

the

usual

structured-programming

instructions

—

IF,

SELECT,

DO

WHILE,

LEAVE,

and

so

on

—

and

a

number

of

useful

built-in

functions.

The

language

imposes

no

restrictions

on

program

format.

There

can

be

more

than

one

clause

on

a

line,

or

a

single

clause

can

occupy

more

than

one

line.

Indentation

is

allowed.

You

can,

therefore,

code

programs

in

a

format

that

emphasizes

their

structure,

making

them

easier

to

read.

The

limit

on

the

length

of

the

value

of

variables

is

the

amount

of

storage

available

in

a

single

request.

The

limit

on

the

length

of

symbols

(variable

names)

is

250

characters.

You

can

use

compound

symbols,

such

as

NAME.Y.Z

(where

Y

and

Z

can

be

the

names

of

variables

or

can

be

constant

symbols),

for

constructing

arrays

and

for

other

purposes.

A

host

command

is

a

command

for

the

surrounding

system

to

act

upon.

Issuing

host

commands

from

within

a

REXX

program

is

an

integral

part

of

the

REXX

language.

You

can

use

REXX/VSE

commands

(for

example,

MAKEBUF,

DROPBUF,

and

NEWSTACK)

and

ADDRESS

POWER

commands

in

a

REXX

program.

You

can

also

link

to

programs

and

issue

JCL

commands.

“Host

Commands

and

Host

Command

Environments.”

on

page

24

describes

the

different

environments

for

using

host

services.

The

location

for

all

parts

of

REXX/VSE

is

the

PRD1.BASE

sublibrary.

All

descriptions

and

examples

in

this

book

refer

to

this

sublibrary.

REXX

programs

must

reside

in

a

member

of

a

sublibrary

in

the

active

PROC

chain.

For

more

information,

see

REXX/VSE

User’s

Guide.

You

can

call

a

program

from

batch

using

the

JCL

EXEC

command.

See

Figure

15

on

page

333

for

an

example.

Or

you

can

call

the

ARXEXEC

or

ARXJCL

interface

from

any

program.

See

“Calling

REXX

with

ARXEXEC

or

ARXJCL”

on

page

335

for

more

information.

Programs

are

loaded

from

the

active

PROC

chain.

A

language

processor

runs

REXX

programs.

If

a

program

is

interpreted,

it

is

processed

line-by-line

and

word-by-word.

It

is

not

first

translated

to

another

form

(compiled).

When

a

program

is

loaded

into

storage,

the

load

routine

checks

for

sequence

numbers

in

the

REXX

program.

The

routine

removes

the

sequence

numbers

during

the

loading

process.

For

information

about

how

the

load

routine

checks

for

sequence

numbers,

see

“Exec

Load

Routine”

on

page

446.

©

Copyright

IBM

Corp.

1988,

2004

7

Where

to

Find

More

Information

You

can

find

useful

information

in

the

REXX/VSE

User’s

Guide.

For

any

program

written

in

the

REXX

language,

you

can

use

the

REXX

TRACE

instruction

to

get

information

on

how

the

language

processor

interprets

the

program

or

a

particular

instruction.

See

page

502

for

a

list

of

books

for

the

IBM

Compiler

and

Library

for

REXX/370.

Structure

and

General

Syntax

REXX

programs

are

recommended

to

start

with

a

comment.

REXX/VSE

does

not

require

this.

However,

for

portability

reasons,

you

are

recommended

to

start

each

REXX

program

with

a

comment

that

begins

on

the

first

line

and

includes

the

word

REXX.

The

example

in

Figure

1

illustrates

this.

The

program

starts

with

a

comment

and

the

characters

“REXX”

are

in

the

first

line

(line

1).

A

REXX

program

is

built

from

a

series

of

clauses

that

are

composed

of:

v

Zero

or

more

blanks

(which

are

ignored)

v

A

sequence

of

tokens

(see

“Tokens”

on

page

9)

v

Zero

or

more

blanks

(again

ignored)

v

A

semicolon

(;)

delimiter

that

may

be

implied

by

line-end,

certain

keywords,

or

the

colon

(:).

Conceptually,

each

clause

is

scanned

from

left

to

right

before

processing,

and

the

tokens

composing

it

are

identified.

Instruction

keywords

are

recognized

at

this

stage,

comments

are

removed,

and

multiple

blanks

(except

within

literal

strings)

are

converted

to

single

blanks.

Blanks

adjacent

to

operator

characters

and

special

characters

(see

page

12)

are

also

removed.

Characters

A

character

is

a

member

of

a

defined

set

of

elements

that

is

used

for

the

control

or

representation

of

data.

You

can

usually

enter

a

character

with

a

single

keystroke.

The

coded

representation

of

a

character

is

its

representation

in

digital

form.

A

character,

the

letter

A,

for

example,

differs

from

its

coded

representation

or

encoding.

Various

coded

character

sets

(such

as

ASCII

and

EBCDIC)

use

different

encodings

for

the

letter

A

(decimal

values

65

and

193,

respectively).

This

book

uses

characters

to

convey

meanings

and

not

to

imply

a

specific

character

code,

except

where

otherwise

stated.

The

exceptions

are

certain

built-in

functions

that

convert

between

characters

and

their

representations.

The

functions

C2D,

C2X,

D2C,

X2C,

and

XRANGE

have

a

dependence

on

the

character

set

in

use.

A

code

page

specifies

the

encodings

for

each

character

in

a

set.

You

should

be

aware

that:

v

Some

code

pages

do

not

contain

all

characters

that

REXX

defines

as

valid

(for

example,

¬,

the

logical

NOT

character).

v

Some

characters

that

REXX

defines

as

valid

have

different

encodings

in

different

code

pages

(for

example,

!,

the

exclamation

point).

For

information

about

Double-Byte

Character

Set

characters,

see

Chapter

22,

“Double-Byte

Character

Set

(DBCS)

Support,”

on

page

481.

/*

REXX

program

to

check

...

...

The

program

then

...

*/

...

...

...

EXIT

Figure

1.

Example

of

Using

the

REXX

Program

Identifier

REXX

General

Concepts

8

REXX/VSE

Reference

Comments

A

comment

is

a

sequence

of

characters

(on

one

or

more

lines)

delimited

by

/*

and

*/.

Within

these

delimiters

any

characters

are

allowed.

Comments

can

contain

other

comments,

as

long

as

each

begins

and

ends

with

the

necessary

delimiters.

They

are

called

nested

comments.

Comments

can

be

anywhere

and

can

be

of

any

length.

They

have

no

effect

on

the

program,

but

they

do

act

as

separators.

(Two

tokens

with

only

a

comment

in

between

are

not

treated

as

a

single

token.)

/*

This

is

an

example

of

a

valid

REXX

comment

*/

Take

special

care

when

commenting

out

lines

of

code

containing

/*

or

*/

as

part

of

a

literal

string.

Consider

the

following

program

segment:

01

parse

pull

input

02

if

substr(input,1,5)

=

’/*123’

03

then

call

process

04

dept

=

substr(input,32,5)

To

comment

out

lines

2

and

3,

the

following

change

would

be

incorrect:

01

parse

pull

input

02

/*

if

substr(input,1,5)

=

’/*123’

03

then

call

process

04

*/

dept

=

substr(input,32,5)

This

is

incorrect

because

the

language

processor

would

interpret

the

/*

that

is

part

of

the

literal

string

/*123

as

the

start

of

a

nested

comment.

It

would

not

process

the

rest

of

the

program

because

it

would

be

looking

for

a

matching

comment

end

(*/).

You

can

avoid

this

type

of

problem

by

using

concatenation

for

literal

strings

containing

/*

or

*/;

line

2

would

be:

if

substr(input,1,5)

=

’/’

||

’*123’

You

could

comment

out

lines

2

and

3

correctly

as

follows:

01

parse

pull

input

02

/*

if

substr(input,1,5)

=

’/’

||

’*123’

03

then

call

process

04

*/

dept

=

substr(input,32,5)

For

information

about

Double-Byte

Character

Set

characters,

see

Chapter

22,

“Double-Byte

Character

Set

(DBCS)

Support,”

on

page

481

and

the

OPTIONS

instruction

on

page

45.

Tokens

A

token

is

the

unit

of

low-level

syntax

from

which

clauses

are

built.

Programs

written

in

REXX

are

composed

of

tokens.

They

are

separated

by

blanks

or

comments

or

by

the

nature

of

the

tokens

themselves.

The

classes

of

tokens

are:

Literal

Strings:

A

literal

string

is

a

sequence

including

any

characters

and

delimited

by

the

single

quotation

mark

(’)

or

the

double

quotation

mark

(").

Use

two

consecutive

double

quotation

marks

("")

to

represent

a

"

character

within

a

string

delimited

by

double

quotation

marks.

Similarly,

use

two

consecutive

single

quotation

marks

(’’)

to

represent

a

’

character

within

a

string

delimited

by

single

quotation

marks.

A

literal

string

is

a

constant

and

its

contents

are

never

modified

when

it

is

processed.

A

literal

string

with

no

characters

(that

is,

a

string

of

length

0)

is

called

a

null

string.

These

are

valid

strings:

’Fred’

"Don’t

Panic!"

’You

shouldn’’t’

/*

Same

as

"You

shouldn’t"

*/

’’

/*

The

null

string

*/

REXX

General

Concepts

Chapter

2.

REXX

General

Concepts

9

Note

that

a

string

followed

immediately

by

a

(

is

considered

to

be

the

name

of

a

function.

If

followed

immediately

by

the

symbol

X

or

x,

it

is

considered

to

be

a

hexadecimal

string.

If

followed

immediately

by

the

symbol

B

or

b,

it

is

considered

to

be

a

binary

string.

Descriptions

of

these

forms

follow.

Implementation

maximum:

A

literal

string

can

contain

up

to

250

characters.

(But

note

that

the

length

of

computed

results

is

limited

only

by

the

amount

of

storage

available.)

Hexadecimal

Strings:

A

hexadecimal

string

is

a

literal

string,

expressed

using

a

hexadecimal

notation

of

its

encoding.

It

is

any

sequence

of

zero

or

more

hexadecimal

digits

(0–9,

a–f,

A–F),

grouped

in

pairs.

A

single

leading

0

is

assumed,

if

necessary,

at

the

front

of

the

string

to

make

an

even

number

of

hexadecimal

digits.

The

groups

of

digits

are

optionally

separated

by

one

or

more

blanks,

and

the

whole

sequence

is

delimited

by

single

or

double

quotation

marks,

and

immediately

followed

by

the

symbol

X

or

x.

(Neither

x

nor

X

can

be

part

of

a

longer

symbol.)

The

blanks,

which

may

be

present

only

at

byte

boundaries

(and

not

at

the

beginning

or

end

of

the

string),

are

to

aid

readability.

The

language

processor

ignores

them.

A

hexadecimal

string

is

a

literal

string

formed

by

packing

the

hexadecimal

digits

given.

Packing

the

hexadecimal

digits

removes

blanks

and

converts

each

pair

of

hexadecimal

digits

into

its

equivalent

character,

for

example:

’C1’X

to

A.

Hexadecimal

strings

let

you

include

characters

in

a

program

even

if

you

cannot

directly

enter

the

characters

themselves.

These

are

valid

hexadecimal

strings:

’ABCD’x

"1d

ec

f8"X

"1

d8"x

Note:

A

hexadecimal

string

is

not

a

representation

of

a

number.

Rather,

it

is

an

escape

mechanism

that

lets

a

user

describe

a

character

in

terms

of

its

encoding

(and,

therefore,

is

machine-dependent).

In

EBCDIC,

’40’X

is

the

encoding

for

a

blank.

In

every

case,

a

string

of

the

form

’.....’x

is

simply

an

alternative

to

a

straightforward

string.

In

EBCDIC

’C1’x

and

’A’

are

identical,

as

are

’40’x

and

a

blank,

and

must

be

treated

identically.

Implementation

maximum:

The

packed

length

of

a

hexadecimal

string

(the

string

with

blanks

removed)

cannot

exceed

250

bytes.

Binary

Strings:

A

binary

string

is

a

literal

string,

expressed

using

a

binary

representation

of

its

encoding.

It

is

any

sequence

of

zero

or

more

binary

digits

(0

or

1)

in

groups

of

8

(bytes)

or

4

(nibbles).

The

first

group

may

have

fewer

than

four

digits;

in

this

case,

up

to

three

0

digits

are

assumed

to

the

left

of

the

first

digit,

making

a

total

of

four

digits.

The

groups

of

digits

are

optionally

separated

by

one

or

more

blanks,

and

the

whole

sequence

is

delimited

by

matching

single

or

double

quotation

marks

and

immediately

followed

by

the

symbol

b

or

B.

(Neither

b

nor

B

can

be

part

of

a

longer

symbol.)

The

blanks,

which

may

be

present

only

at

byte

or

nibble

boundaries

(and

not

at

the

beginning

or

end

of

the

string),

are

to

aid

readability.

The

language

processor

ignores

them.

A

binary

string

is

a

literal

string

formed

by

packing

the

binary

digits

given.

If

the

number

of

binary

digits

is

not

a

multiple

of

eight,

leading

zeros

are

added

on

the

left

to

make

a

multiple

of

eight

before

packing.

Binary

strings

allow

you

to

specify

characters

explicitly,

bit

by

bit.

These

are

valid

binary

strings:

’11110000’b

/*

==

’f0’x

*/

"101

1101"b

/*

==

’5d’x

*/

’1’b

/*

==

’00000001’b

and

’01’x

*/

’10000

10101010’b

/*

==

’0001

0000

1010

1010’b

*/

’’b

/*

==

’’

*/

REXX

General

Concepts

10

REXX/VSE

Reference

Symbols:

Symbols

are

groups

of

characters,

selected

from

the:

v

English

alphabetic

characters

(A–Z

and

a–z1)

v

Numeric

characters

(0–9)

v

Characters

@

#

$

¢

.

!

2?

and

underscore.

v

Double-Byte

Character

Set

(DBCS)

characters

(X'41'–X'FE')—ETMODE

must

be

in

effect

for

these

characters

to

be

valid

in

symbols.

See

Chapter

22,

“Double-Byte

Character

Set

(DBCS)

Support,”

on

page

481

for

more

information.

Any

lowercase

alphabetic

character

in

a

symbol

is

translated

to

uppercase

(that

is,

lowercase

a–z

to

uppercase

A–Z)

before

use.

These

are

valid

symbols:

Fred

Albert.Hall

WHERE?

If

a

symbol

does

not

begin

with

a

digit

or

a

period,

you

can

use

it

as

a

variable

and

can

assign

it

a

value.

If

you

have

not

assigned

it

a

value,

its

value

is

the

characters

of

the

symbol

itself,

translated

to

uppercase

(that

is,

lowercase

a–z

to

uppercase

A–Z).

Symbols

that

begin

with

a

number

or

a

period

are

constant

symbols

and

cannot

be

assigned

a

value.

One

other

form

of

symbol

is

allowed

to

support

the

representation

of

numbers

in

exponential

format.

The

symbol

starts

with

a

digit

(0–9)

or

a

period,

and

it

may

end

with

the

sequence

E

or

e,

followed

immediately

by

an

optional

sign

(-

or

+),

followed

immediately

by

one

or

more

digits

(which

cannot

be

followed

by

any

other

symbol

characters).

The

sign

in

this

context

is

part

of

the

symbol

and

is

not

an

operator.

These

are

valid

numbers

in

exponential

notation:

17.3E-12

.03e+9

Implementation

maximum:

A

symbol

can

consist

of

up

to

250

characters.

(But

note

that,

if

it

is

a

variable,

the

only

limit

on

its

value

is

the

amount

of

storage

obtainable

in

a

single

request.)

Numbers:

These

are

character

strings

consisting

of

one

or

more

decimal

digits,

with

an

optional

prefix

of

a

plus

or

minus

sign,

and

optionally

including

a

single

period

(.)

that

represents

a

decimal

point.

A

number

can

also

have

a

power

of

10

suffixed

in

conventional

exponential

notation:

an

E

(uppercase

or

lowercase),

followed

optionally

by

a

plus

or

minus

sign,

then

followed

by

one

or

more

decimal

digits

defining

the

power

of

10.

Whenever

a

character

string

is

used

as

a

number,

rounding

may

occur

to

a

precision

specified

by

the

NUMERIC

DIGITS

instruction

(default

nine

digits).

See

pages

123-130

for

a

full

definition

of

numbers.

Numbers

can

have

leading

blanks

(before

and

after

the

sign,

if

any)

and

can

have

trailing

blanks.

Blanks

may

not

be

embedded

among

the

digits

of

a

number

or

in

the

exponential

part.

Note

that

a

symbol

(see

preceding)

or

a

literal

string

may

be

a

number.

A

number

cannot

be

the

name

of

a

variable.

These

are

valid

numbers:

12

’-17.9’

127.0650

73e+128

’

+

7.9E5

’

1.

Note

that

some

code

pages

do

not

include

lowercase

English

characters

a–z.

2. The

encoding

of

the

exclamation

point

character

depends

on

the

code

page

in

use.

REXX

General

Concepts

Chapter

2.

REXX

General

Concepts

11

You

can

specify

numbers

with

or

without

quotation

marks

around

them.

Note

that

the

sequence

-17.9

(without

quotation

marks)

in

an

expression

is

not

simply

a

number.

It

is

a

minus

operator

(which

may

be

prefix

minus

if

no

term

is

to

the

left

of

it)

followed

by

a

positive

number.

The

result

of

the

operation

is

a

number.

A

whole

number

is

a

number

that

has

a

zero

(or

no)

decimal

part

and

that

the

language

processor

would

not

usually

express

in

exponential

notation.

That

is,

it

has

no

more

digits

before

the

decimal

point

than

the

current

setting

of

NUMERIC

DIGITS

(the

default

is

9).

Implementation

maximum:

The

exponent

of

a

number

expressed

in

exponential

notation

can

have

up

to

nine

digits.

Operator

Characters:

The

characters:

+

-

\

/

%

*

|

&

=

¬

>

<

and

the

sequences

>=

<=

\>

\<

\=

><

<>

==

\==

//

&&

||

**

¬>

¬<

¬=

¬==

>>

<<

>>=

\<<

¬<<

\>>

¬>>

<<=

/=

/==

indicate

operations

(see

page

14).

A

few

of

these

are

also

used

in

parsing

templates,

and

the

equal

sign

is

also

used

to

indicate

assignment.

Blanks

adjacent

to

operator

characters

are

removed.

Therefore,

the

following

are

identical

in

meaning:

345>=123

345

>=123

345

>=

123

345

>

=

123

Some

of

these

characters

may

not

be

available

in

all

character

sets,

and,

if

this

is

the

case,

appropriate

translations

may

be

used.

In

particular,

the

vertical

bar

(|)

or

character

is

often

shown

as

a

split

vertical

bar

(¦).

Throughout

the

language,

the

not

character,

¬,

is

synonymous

with

the

backslash

(\).

You

can

use

the

two

characters

interchangeably

according

to

availability

and

personal

preference.

Special

Characters:

The

following

characters,

together

with

the

individual

characters

from

the

operators,

have

special

significance

when

found

outside

of

literal

strings:

,

;

:

)

(

These

characters

constitute

the

set

of

special

characters.

They

all

act

as

token

delimiters,

and

blanks

adjacent

to

any

of

these

are

removed.

There

is

an

exception:

a

blank

adjacent

to

the

outside

of

a

parenthesis

is

deleted

only

if

it

is

also

adjacent

to

another

special

character

(unless

the

character

is

a

parenthesis

and

the

blank

is

outside

it,

too).

For

example,

the

language

processor

does

not

remove

the

blank

in

A

(Z).

This

is

a

concatenation

that

is

not

equivalent

to

A(Z),

a

function

call.

The

language

processor

does

remove

the

blanks

in

(A)

+

(Z)

because

this

is

equivalent

to

(A)+(Z).

The

following

example

shows

how

a

clause

is

composed

of

tokens.

’REPEAT’

A

+

3;

This

is

composed

of

six

tokens—a

literal

string

(’REPEAT’),

a

blank

operator,

a

symbol

(A,

which

may

have

a

value),

an

operator

(+),

a

second

symbol

(3,

which

is

a

number

and

a

symbol),

and

the

clause

delimiter

(;).

The

blanks

between

the

A

and

the

+

and

between

the

+

and

the

3

are

removed.

However,

one

of

the

blanks

between

the

’REPEAT’

and

the

A

remains

as

an

operator.

Thus,

this

clause

is

treated

as

though

written:

’REPEAT’

A+3;

REXX

General

Concepts

12

REXX/VSE

Reference

Implied

Semicolons

The

last

element

in

a

clause

is

the

semicolon

delimiter.

The

language

processor

implies

the

semicolon:

at

a

line-end,

after

certain

keywords,

and

after

a

colon

if

it

follows

a

single

symbol.

This

means

that

you

need

to

include

semicolons

only

when

there

is

more

than

one

clause

on

a

line

or

to

end

an

instruction

whose

last

character

is

a

comma.

A

line-end

usually

marks

the

end

of

a

clause

and,

thus,

REXX

implies

a

semicolon

at

most

end

of

lines.

However,

there

are

the

following

exceptions:

v

The

line

ends

in

the

middle

of

a

string.

v

The

line

ends

in

the

middle

of

a

comment.

The

clause

continues

on

to

the

next

line.

v

The

last

token

was

the

continuation

character

(a

comma)

and

the

line

does

not

end

in

the

middle

of

a

comment.

(Note

that

a

comment

is

not

a

token.)

REXX

automatically

implies

semicolons

after

colons

(when

following

a

single

symbol,

a

label)

and

after

certain

keywords

when

they

are

in

the

correct

context.

The

keywords

that

have

this

effect

are:

ELSE,

OTHERWISE,

and

THEN.

These

special

cases

reduce

typographical

errors

significantly.

Note:

The

two

characters

forming

the

comment

delimiters,

/*

and

*/,

must

not

be

split

by

a

line-end

(that

is,

/

and

*

should

not

appear

on

different

lines)

because

they

could

not

then

be

recognized

correctly;

an

implied

semicolon

would

be

added.

The

two

consecutive

characters

forming

a

literal

quotation

mark

within

a

string

are

also

subject

to

this

line-end

ruling.

Continuations

One

way

to

continue

a

clause

onto

the

next

line

is

to

use

the

comma,

which

is

referred

to

as

the

continuation

character.

The

comma

is

functionally

replaced

by

a

blank,

and,

thus,

no

semicolon

is

implied.

One

or

more

comments

can

follow

the

continuation

character

before

the

end

of

the

line.

The

continuation

character

cannot

be

used

in

the

middle

of

a

string

or

it

will

be

processed

as

part

of

the

string

itself.

The

same

situation

holds

true

for

comments.

Note

that

the

comma

remains

in

execution

traces.

The

following

example

shows

how

to

use

the

continuation

character

to

continue

a

clause.

say

’You

can

use

a

comma’,

’to

continue

this

clause.’

This

displays:

You

can

use

a

comma

to

continue

this

clause.

Expressions

and

Operators

Expressions

in

REXX

are

a

general

mechanism

for

combining

one

or

more

pieces

of

data

in

various

ways

to

produce

a

result,

usually

different

from

the

original

data.

Expressions

Expressions

consist

of

one

or

more

terms

(literal

strings,

symbols,

function

calls,

or

subexpressions)

interspersed

with

zero

or

more

operators

that

denote

operations

to

be

carried

out

on

terms.

A

subexpression

is

a

term

in

an

expression

bracketed

within

a

left

and

a

right

parenthesis.

Terms

include:

v

Literal

Strings

(delimited

by

quotation

marks),

which

are

constants

v

Symbols

(no

quotation

marks),

which

are

translated

to

uppercase.

A

symbol

that

does

not

begin

with

a

digit

or

a

period

may

be

the

name

of

a

variable;

in

this

case

the

value

of

that

variable

is

used.

Otherwise

a

symbol

is

treated

as

a

constant

string.

A

symbol

can

also

be

compound.

v

Function

calls

(see

page

61),

which

are

of

the

form:

REXX

General

Concepts

Chapter

2.

REXX

General

Concepts

13

��

symbol(

literal_string(

,

expression

)

��

Evaluation

of

an

expression

is

left

to

right,

modified

by

parentheses

and

by

operator

precedence

in

the

usual

algebraic

manner

(see

“Parentheses

and

Operator

Precedence”

on

page

16).

Expressions

are

wholly

evaluated,

unless

an

error

occurs

during

evaluation.

All

data

is

in

the

form

of

“typeless”

character

strings

(typeless

because

it

is

not—as

in

some

other

languages—of

a

particular

declared

type,

such

as

Binary,

Hexadecimal,

Array,

and

so

forth).

Consequently,

the

result

of

evaluating

any

expression

is

itself

a

character

string.

Terms

and

results

(except

arithmetic

and

logical

expressions)

may

be

the

null

string

(a

string

of

length

0).

Note

that

REXX

imposes

no

restriction

on

the

maximum

length

of

results.

However,

there

is

usually

some

practical

limitation

dependent

upon

the

amount

of

storage

available

to

the

language

processor.

Operators

An

operator

is

a

representation

of

an

operation,

such

as

addition,

to

be

carried

out

on

one

or

two

terms.

The

following

pages

describe

how

each

operator

(except

for

the

prefix

operators)

acts

on

two

terms,

which

may

be

symbols,

strings,

function

calls,

intermediate

results,

or

subexpressions.

Each

prefix

operator

acts

on

the

term

or

subexpression

that

follows

it.

Blanks

(and

comments)

adjacent

to

operator

characters

have

no

effect

on

the

operator;

thus,

operators

constructed

from

more

than

one

character

can

have

embedded

blanks

and

comments.

In

addition,

one

or

more

blanks,

where

they

occur

in

expressions

but

are

not

adjacent

to

another

operator,

also

act

as

an

operator.

There

are

four

types

of

operators:

v

Concatenation

v

Arithmetic

v

Comparison

v

Logical.

String

Concatenation

The

concatenation

operators

combine

two

strings

to

form

one

string

by

appending

the

second

string

to

the

right-hand

end

of

the

first

string.

The

concatenation

may

occur

with

or

without

an

intervening

blank.

The

concatenation

operators

are:

(blank)

Concatenate

terms

with

one

blank

in

between

||

Concatenate

without

an

intervening

blank

(abuttal)

Concatenate

without

an

intervening

blank

You

can

force

concatenation

without

a

blank

by

using

the

||

operator.

The

abuttal

operator

is

assumed

between

two

terms

that

are

not

separated

by

another

operator.

This

can

occur

when

two

terms

are

syntactically

distinct,

such

as

a

literal

string

and

a

symbol,

or

when

they

are

separated

only

by

a

comment.

Examples:

An

example

of

syntactically

distinct

terms

is:

if

Fred

has

the

value

37.4,

then

Fred’%’

evaluates

to

37.4%.

If

the

variable

PETER

has

the

value

1,

then

(Fred)(Peter)

evaluates

to

37.41.

In

EBCDIC,

the

two

adjoining

strings,

one

hexadecimal

and

one

literal,

’c1

c2’x’CDE’

evaluate

to

ABCDE.

REXX

General

Concepts

14

REXX/VSE

Reference

In

the

case

of:

Fred/*

The

NOT

operator

precedes

Peter.

*/¬Peter

there

is

no

abuttal

operator

implied,

and

the

expression

is

not

valid.

However,

(Fred)/*

The

NOT

operator

precedes

Peter.

*/(¬Peter)

results

in

an

abuttal,

and

evaluates

to

37.40.

Arithmetic

You

can

combine

character

strings

that

are

valid

numbers

(see

page

11)

using

the

arithmetic

operators:

+

Add

-

Subtract

*

Multiply

/

Divide

%

Integer

divide

(divide

and

return

the

integer

part

of

the

result)

//

Remainder

(divide

and

return

the

remainder—not

modulo,

because

the

result

may

be

negative)

**

Power

(raise

a

number

to

a

whole-number

power)

Prefix

-

Same

as

the

subtraction:

0

-

number

Prefix

+

Same

as

the

addition:

0

+

number.

See

Chapter

6,

“Numbers

and

Arithmetic,”

on

page

123

for

details

about

precision,

the

format

of

valid

numbers,

and

the

operation

rules

for

arithmetic.

Note

that

if

an

arithmetic

result

is

shown

in

exponential

notation,

it

is

likely

that

rounding

has

occurred.

Comparison

The

comparison

operators

compare

two

terms

and

return

the

value

1

if

the

result

of

the

comparison

is

true,

or

0

otherwise.

The

strict

comparison

operators

all

have

one

of

the

characters

defining

the

operator

doubled.

The

==,

\==,

/==,

and

¬==

operators

test

for

an

exact

match

between

two

strings.

The

two

strings

must

be

identical

(character

by

character)

and

of

the

same

length

to

be

considered

strictly

equal.

Similarly,

the

strict

comparison

operators

such

as

>>

or

<<

carry

out

a

simple

character-by-character

comparison,

with

no

padding

of

either

of

the

strings

being

compared.

The

comparison

of

the

two

strings

is

from

left

to

right.

If

one

string

is

shorter

than

and

is

a

leading

substring

of

another,

then

it

is

smaller

than

(less

than)

the

other.

The

strict

comparison

operators

also

do

not

attempt

to

perform

a

numeric

comparison

on

the

two

operands.

For

all

the

other

comparison

operators,

if

both

terms

involved

are

numeric,

a

numeric

comparison

(in

which

leading

zeros

are

ignored,

and

so

forth—see

“Numeric

Comparisons”

on

page

128)

is

effected.

Otherwise,

both

terms

are

treated

as

character

strings

(leading

and

trailing

blanks

are

ignored,

and

then

the

shorter

string

is

padded

with

blanks

on

the

right).

Character

comparison

and

strict

comparison

operations

are

both

case-sensitive,

and

for

both

the

exact

collating

order

may

depend

on

the

character

set

used

for

the

implementation.

For

example,

in

an

EBCDIC

environment,

lowercase

alphabetics

precede

uppercase,

and

the

digits

0–9

are

higher

than

all

alphabetics.

In

an

ASCII

environment,

the

digits

are

lower

than

the

alphabetics,

and

lowercase

alphabetics

are

higher

than

uppercase

alphabetics.

The

comparison

operators

and

operations

are:

=

True

if

the

terms

are

equal

(numerically

or

when

padded,

and

so

forth)

REXX

General

Concepts

Chapter

2.

REXX

General

Concepts

15

\=,

¬=,

/=

True

if

the

terms

are

not

equal

(inverse

of

=)

>

Greater

than

<

Less

than

><

Greater

than

or

less

than

(same

as

not

equal)

<>

Greater

than

or

less

than

(same

as

not

equal)

>=

Greater

than

or

equal

to

\<,

¬<

Not

less

than

<=

Less

than

or

equal

to

\>,

¬>

Not

greater

than

==

True

if

terms

are

strictly

equal

(identical)

\==,

¬==,

/==

True

if

the

terms

are

NOT

strictly

equal

(inverse

of

==)

>>

Strictly

greater

than

<<

Strictly

less

than

>>=

Strictly

greater

than

or

equal

to

\<<,

¬<<

Strictly

NOT

less

than

<<=

Strictly

less

than

or

equal

to

\>>,

¬>>

Strictly

NOT

greater

than

Note:

Throughout

the

language,

the

not

character,

¬,

is

synonymous

with

the

backslash

(\).

You

can

use

the

two

characters

interchangeably,

according

to

availability

and

personal

preference.

The

backslash

can

appear

in

the

following

operators:

\

(prefix

not),

\=,

\==,

\<,

\>,

\<<,

and

\>>.

Logical

(Boolean)

A

character

string

is

taken

to

have

the

value

false

if

it

is

0,

and

true

if

it

is

1.

The

logical

operators

take

one

or

two

such

values

(values

other

than

0

or

1

are

not

allowed)

and

return

0

or

1

as

appropriate:

&

AND

Returns

1

if

both

terms

are

true.

|

Inclusive

OR

Returns

1

if

either

term

is

true.

&&

Exclusive

OR

Returns

1

if

either

(but

not

both)

is

true.

Prefix

\,¬

Logical

NOT

Negates;

1

becomes

0,

and

0

becomes

1.

Parentheses

and

Operator

Precedence

Expression

evaluation

is

from

left

to

right;

parentheses

and

operator

precedence

modify

this:

v

When

parentheses

are

encountered

(other

than

those

that

identify

function

calls)

the

entire

subexpression

between

the

parentheses

is

evaluated

immediately

when

the

term

is

required.

v

When

the

sequence:

term1

operator1

term2

operator2

term3

is

encountered,

and

operator2

has

a

higher

precedence

than

operator1,

the

subexpression

(term2

operator2

term3)

is

evaluated

first.

The

same

rule

is

applied

repeatedly

as

necessary.

Note,

however,

that

individual

terms

are

evaluated

from

left

to

right

in

the

expression

(that

is,

as

soon

as

they

are

encountered).

The

precedence

rules

affect

only

the

order

of

operations.

REXX

General

Concepts

16

REXX/VSE

Reference

For

example,

*

(multiply)

has

a

higher

priority

than

+

(add),

so

3+2*5

evaluates

to

13

(rather

than

the

25

that

would

result

if

strict

left

to

right

evaluation

occurred).

To

force

the

addition

to

occur

before

the

multiplication,

you

could

rewrite

the

expression

as

(3+2)*5.

Adding

the

parentheses

makes

the

first

three

tokens

a

subexpression.

Similarly,

the

expression

-3**2

evaluates

to

9

(instead

of

-9)

because

the

prefix

minus

operator

has

a

higher

priority

than

the

power

operator.

The

order

of

precedence

of

the

operators

is

(highest

at

the

top):

+

-

¬

\

(prefix

operators)

**

(power)

*

/

%

//

(multiply

and

divide)

+

-

(add

and

subtract)

(blank)

||

(abuttal)

(concatenation

with

or

without

blank)

=

>

<

(comparison

operators)

==

>>

<<

\=

¬=

><

<>

\>

¬>

\<

¬<

\==

¬==

\>>

¬>>

\<<

¬<<

>=

>>=

<=

<<=

/=

/==

&

(and)

|

&&

(or,

exclusive

or)

Examples:

Suppose

the

symbol

A

is

a

variable

whose

value

is

3,

DAY

is

a

variable

whose

value

is

Monday,

and

other

variables

are

uninitialized.

Then:

A+5

->

’8’

A-4*2

->

’-5’

A/2

->

’1.5’

0.5**2

->

’0.25’

(A+1)>7

->

’0’

/*

that

is,

False

*/

’

’=’’

->

’1’

/*

that

is,

True

*/

’

’==’’

->

’0’

/*

that

is,

False

*/

’

’¬==’’

->

’1’

/*

that

is,

True

*/

(A+1)*3=12

->

’1’

/*

that

is,

True

*/

’077’>’11’

->

’1’

/*

that

is,

True

*/

’077’

>>

’11’

->

’0’

/*

that

is,

False

*/

’abc’

>>

’ab’

->

’1’

/*

that

is,

True

*/

’abc’

<<

’abd’

->

’1’

/*

that

is,

True

*/

’ab

’

<<

’abd’

->

’1’

/*

that

is,

True

*/

Today

is

Day

->

’TODAY

IS

Monday’

’If

it

is’

day

->

’If

it

is

Monday’

Substr(Day,2,3)

->

’ond’

/*

Substr

is

a

function

*/

’!’xxx’!’

->

’!XXX!’

’000000’

>>

’0E0000’

->

’1’

/*

that

is,

True

*/

REXX

General

Concepts

Chapter

2.

REXX

General

Concepts

17

Note:

The

last

example

would

give

a

different

answer

if

the

>

operator

had

been

used

rather

than

>>.

Because

’0E0000’

is

a

valid

number

in

exponential

notation,

a

numeric

comparison

is

done;

thus

’0E0000’

and

’000000’

evaluate

as

equal.

The

REXX

order

of

precedence

usually

causes

no

difficulty

because

it

is

the

same

as

in

conventional

algebra

and

other

computer

languages.

There

are

two

differences

from

common

notations:

v

The

prefix

minus

operator

always

has

a

higher

priority

than

the

power

operator.

v

Power

operators

(like

other

operators)

are

evaluated

left-to-right.

For

example:

-3**2

==

9

/*

not

-9

*/

-(2+1)**2

==

9

/*

not

-9

*/

2**2**3

==

64

/*

not

256

*/

Clauses

and

Instructions

Clauses

can

be

subdivided

into

the

following

types:

Null

Clauses

A

clause

consisting

only

of

blanks

or

comments

or

both

is

a

null

clause.

It

is

completely

ignored

(except

that

if

it

includes

a

comment

it

is

traced,

if

appropriate).

Note:

A

null

clause

is

not

an

instruction;

for

example,

putting

an

extra

semicolon

after

the

THEN

or

ELSE

in

an

IF

instruction

is

not

equivalent

to

using

a

dummy

instruction

(as

it

would

be

in

PL/I).

The

NOP

instruction

is

provided

for

this

purpose.

Labels

A

clause

that

consists

of

a

single

symbol

followed

by

a

colon

is

a

label.

The

colon

in

this

context

implies

a

semicolon

(clause

separator),

so

no

semicolon

is

required.

Labels

identify

the

targets

of

CALL

instructions,

SIGNAL

instructions,

and

internal

function

calls.

More

than

one

label

may

precede

any

instruction.

Labels

are

treated

as

null

clauses

and

can

be

traced

selectively

to

aid

debugging.

Any

number

of

successive

clauses

may

be

labels.

This

permits

multiple

labels

before

other

clauses.

Duplicate

labels

are

permitted,

but

control

passes

only

to

the

first

of

any

duplicates

in

a

program.

The

duplicate

labels

occurring

later

can

be

traced

but

cannot

be

used

as

a

target

of

a

CALL,

SIGNAL,

or

function

invocation.

Instructions

An

instruction

consists

of

one

or

more

clauses

describing

some

course

of

action

for

the

language

processor

to

take.

Instructions

can

be:

assignments,

keyword

instructions,

or

commands.

Assignments

A

single

clause

of

the

form

symbol=expression

is

an

instruction

known

as

an

assignment.

An

assignment

gives

a

variable

a

(new)

value.

See

“Assignments

and

Symbols”

on

page

19.

Keyword

Instructions

A

keyword

instruction

is

one

or

more

clauses,

the

first

of

which

starts

with

a

keyword

that

identifies

the

instruction.

Keyword

instructions

control

the

external

interfaces,

the

flow

of

control,

and

so

forth.

Some

keyword

instructions

can

include

nested

instructions.

In

the

following

example,

the

DO

construct

(DO,

the

group

of

instructions

that

follow

it,

and

its

associated

END

keyword)

is

considered

a

single

keyword

instruction.

REXX

General

Concepts

18

REXX/VSE

Reference

DO

instruction

instruction

instruction

END

A

subkeyword

is

a

keyword

that

is

reserved

within

the

context

of

some

particular

instruction,

for

example,

the

symbols

TO

and

WHILE

in

the

DO

instruction.

Commands

A

command

is

a

clause

consisting

of

only

an

expression.

The

expression

is

evaluated

and

the

result

is

passed

as

a

command

string

to

some

external

environment.

Assignments

and

Symbols

A

variable

is

an

object

whose

value

can

change

during

the

running

of

a

REXX

program.

The

process

of

changing

the

value

of

a

variable

is

called

assigning

a

new

value

to

it.

The

value

of

a

variable

is

a

single

character

string,

of

any

length,

that

may

contain

any

characters.

You

can

assign

a

new

value

to

a

variable

with

the

ARG,

PARSE,

or

PULL

instructions,

the

VALUE

built-in

function,

the

VALUE

built-in

function,

or

the

Variable

Access

Routine

(IRXEXCOM),

or

the

variable

pool

access

interface

(ARXEXCOM)

but

the

most

common

way

of

changing

the

value

of

a

variable

is

the

assignment

instruction

itself.

Any

clause

of

the

form:

symbol=expression;

is

taken

to

be

an

assignment.

The

result

of

expression

becomes

the

new

value

of

the

variable

named

by

the

symbol

to

the

left

of

the

equal

sign.

If

you

omit

expression,

the

variable

is

set

to

the

null

string.

However,

it

is

recommended

that

you

explicitly

set

a

variable

to

the

null

string:

symbol=’’.

Variable

names

can

contain

DBCS

characters.

For

information

about

DBCS

characters,

see

Chapter

22,

“Double-Byte

Character

Set

(DBCS)

Support,”

on

page

481.

Example:

/*

Next

line

gives

FRED

the

value

"Frederic"

*/

Fred=’Frederic’

The

symbol

naming

the

variable

cannot

begin

with

a

digit

(0–9)

or

a

period.

(Without

this

restriction

on

the

first

character

of

a

variable

name,

you

could

redefine

a

number;

for

example

3=4;

would

give

a

variable

called

3

the

value

4.)

You

can

use

a

symbol

in

an

expression

even

if

you

have

not

assigned

it

a

value,

because

a

symbol

has

a

defined

value

at

all

times.

A

variable

you

have

not

assigned

a

value

is

uninitialized.

Its

value

is

the

characters

of

the

symbol

itself,

translated

to

uppercase

(that

is,

lowercase

a–z

to

uppercase

A–Z).

However,

if

it

is

a

compound

symbol

(described

under

“Compound

Symbols”

on

page

20),

its

value

is

the

derived

name

of

the

symbol.

Example:

/*

If

Freda

has

not

yet

been

assigned

a

value,

*/

/*

then

next

line

gives

FRED

the

value

"FREDA"

*/

Fred=Freda

The

meaning

of

a

symbol

in

REXX

varies

according

to

its

context.

As

a

term

in

an

expression

(rather

than

a

keyword

of

some

kind,

for

example),

a

symbol

belongs

to

one

of

four

groups:

constant

symbols,

simple

symbols,

compound

symbols,

and

stems.

Constant

symbols

cannot

be

assigned

new

values.

You

can

use

REXX

General

Concepts

Chapter

2.

REXX

General

Concepts

19

simple

symbols

for

variables

where

the

name

corresponds

to

a

single

value.

You

can

use

compound

symbols

and

stems

for

more

complex

collections

of

variables,

such

as

arrays

and

lists.

Constant

Symbols

A

constant

symbol

starts

with

a

digit

(0–9)

or

a

period.

You

cannot

change

the

value

of

a

constant

symbol.

It

is

simply

the

string

consisting

of

the

characters

of

the

symbol

(that

is,

with

any

lowercase

alphabetic

characters

translated

to

uppercase).

These

are

constant

symbols:

77

827.53

.12345

12e5

/*

Same

as

12E5

*/

3D

17E-3

Simple

Symbols

A

simple

symbol

does

not

contain

any

periods

and

does

not

start

with

a

digit

(0–9).

By

default,

its

value

is

the

characters

of

the

symbol

(that

is,

translated

to

uppercase).

If

the

symbol

has

been

assigned

a

value,

it

names

a

variable

and

its

value

is

the

value

of

that

variable.

These

are

simple

symbols:

FRED

Whatagoodidea?

/*

Same

as

WHATAGOODIDEA?

*/

?12

Compound

Symbols

A

compound

symbol

permits

the

substitution

of

variables

within

its

name

when

you

refer

to

it.

A

compound

symbol

contains

at

least

one

period

and

at

least

two

other

characters.

It

cannot

start

with

a

digit

or

a

period,

and

if

there

is

only

one

period

in

the

compound

symbol,

it

cannot

be

the

last

character.

The

name

begins

with

a

stem

(that

part

of

the

symbol

up

to

and

including

the

first

period).

This

is

followed

by

a

tail,

parts

of

the

name

(delimited

by

periods)

that

are

constant

symbols,

simple

symbols,

or

null.

The

derived

name

of

a

compound

symbol

is

the

stem

of

the

symbol,

in

uppercase,

followed

by

the

tail,

in

which

all

simple

symbols

have

been

replaced

with

their

values.

A

tail

itself

can

be

comprised

of

the

characters

A–Z,

a–z,

0–9,

and

@

#

$

¢

.

!

?

and

underscore.

The

value

of

a

tail

can

be

any

character

string,

including

the

null

string

and

strings

containing

blanks.

For

example:

taila=’*

(’

tailb=’’

stem.taila=99

stem.tailb=stem.taila

say

stem.tailb

/*

Displays:

99

*/

/*

But

the

following

instruction

would

cause

an

error

*/

/*

say

stem.*

(

*/

You

cannot

use

constant

symbols

with

embedded

signs

(for

example,

12.3E+5)

after

a

stem;

in

this

case,

the

whole

symbol

would

not

be

a

valid

symbol.

These

are

compound

symbols:

FRED.3

Array.I.J

AMESSY..One.2.

REXX

General

Concepts

20

REXX/VSE

Reference

Before

the

symbol

is

used

(that

is,

at

the

time

of

reference),

the

language

processor

substitutes

the

values

of

any

simple

symbols

in

the

tail

(I,

J,

and

One

in

the

examples),

thus

generating

a

new,

derived

name.

This

derived

name

is

then

used

just

like

a

simple

symbol.

That

is,

its

value

is

by

default

the

derived

name,

or

(if

it

has

been

used

as

the

target

of

an

assignment)

its

value

is

the

value

of

the

variable

named

by

the

derived

name.

The

substitution

into

the

symbol

that

takes

place

permits

arbitrary

indexing

(subscripting)

of

collections

of

variables

that

have

a

common

stem.

Note

that

the

values

substituted

can

contain

any

characters

(including

periods

and

blanks).

Substitution

is

done

only

one

time.

To

summarize:

the

derived

name

of

a

compound

variable

that

is

referred

to

by

the

symbol

s0.s1.s2.

.sn

is

given

by

d0.v1.v2.

.vn

where

d0

is

the

uppercase

form

of

the

symbol

s0,

and

v1

to

vn

are

the

values

of

the

constant

or

simple

symbols

s1

through

sn.

Any

of

the

symbols

s1-sn

can

be

null.

The

values

v1-vn

can

also

be

null

and

can

contain

any

characters

(in

particular,

lowercase

characters

are

not

translated

to

uppercase,

blanks

are

not

removed,

and

periods

have

no

special

significance).

Some

examples

follow

in

the

form

of

a

small

extract

from

a

REXX

program:

a=3

/*

assigns

’3’

to

the

variable

A

*/

z=4

/*

’4’

to

Z

*/

c=’Fred’

/*

’Fred’

to

C

*/

a.z=’Fred’

/*

’Fred’

to

A.4

*/

a.fred=5

/*

’5’

to

A.FRED

*/

a.c=’Bill’

/*

’Bill’

to

A.Fred

*/

c.c=a.fred

/*

’5’

to

C.Fred

*/

y.a.z=’Annie’

/*

’Annie’

to

Y.3.4

*/

say

a

z

c

a.a

a.z

a.c

c.a

a.fred

y.a.4

/*

displays

the

string:

*/

/*

"3

4

Fred

A.3

Fred

Bill

C.3

5

Annie"

*/

You

can

use

compound

symbols

to

set

up

arrays

and

lists

of

variables

in

which

the

subscript

is

not

necessarily

numeric,

thus

offering

great

scope

for

the

creative

programmer.

A

useful

application

is

to

set

up

an

array

in

which

the

subscripts

are

taken

from

the

value

of

one

or

more

variables,

effecting

a

form

of

associative

memory

(content

addressable).

Implementation

maximum:

The

length

of

a

variable

name,

before

and

after

substitution,

cannot

exceed

250

characters.

Stems

A

stem

is

a

symbol

that

contains

just

one

period,

which

is

the

last

character.

It

cannot

start

with

a

digit

or

a

period.

These

are

stems:

FRED.

A.

By

default,

the

value

of

a

stem

is

the

string

consisting

of

the

characters

of

its

symbol

(that

is,

translated

to

uppercase).

If

the

symbol

has

been

assigned

a

value,

it

names

a

variable

and

its

value

is

the

value

of

that

variable.

Further,

when

a

stem

is

used

as

the

target

of

an

assignment,

all

possible

compound

variables

whose

names

begin

with

that

stem

receive

the

new

value,

whether

they

previously

had

a

value

or

not.

Following

REXX

General

Concepts

Chapter

2.

REXX

General

Concepts

21

the

assignment,

a

reference

to

any

compound

symbol

with

that

stem

returns

the

new

value

until

another

value

is

assigned

to

the

stem

or

to

the

individual

variable.

For

example:

hole.

=

"empty"

hole.9

=

"full"

say

hole.1

hole.mouse

hole.9

/*

says

"empty

empty

full"

*/

Thus,

you

can

give

a

whole

collection

of

variables

the

same

value.

For

example:

total.

=

0

do

forever

say

"Enter

an

amount

and

a

name:"

pull

amount

name

if

datatype(amount)=’CHAR’

then

leave

total.name

=

total.name

+

amount

end

Note:

You

can

always

obtain

the

value

that

has

been

assigned

to

the

whole

collection

of

variables

by

using

the

stem.

However,

this

is

not

the

same

as

using

a

compound

variable

whose

derived

name

is

the

same

as

the

stem.

For

example:

total.

=

0

null

=

""

total.null

=

total.null

+

5

say

total.

total.null

/*

says

"0

5"

*/

You

can

manipulate

collections

of

variables,

referred

to

by

their

stem,

with

the

DROP

and

PROCEDURE

instructions.

DROP

FRED.

drops

all

variables

with

that

stem

(see

page

38),

and

PROCEDURE

EXPOSE

FRED.

exposes

all

possible

variables

with

that

stem

(see

page

49).

Notes:

1.

When

the

ARG,

PARSE,

or

PULL

instruction

or

the

VALUE

built-in

function

or

the

variable

pool

access

interface

(ARXEXCOM),

changes

a

variable,

the

effect

is

identical

with

an

assignment.

Anywhere

a

value

can

be

assigned,

using

a

stem

sets

an

entire

collection

of

variables.

2.

Because

an

expression

can

include

the

operator

=,

and

an

instruction

may

consist

purely

of

an

expression

(see

“Commands

to

External

Environments”),

a

possible

ambiguity

is

resolved

by

the

following

rule:

any

clause

that

starts

with

a

symbol

and

whose

second

token

is

(or

starts

with)

an

equal

sign

(=)

is

an

assignment,

rather

than

an

expression

(or

a

keyword

instruction).

This

is

not

a

restriction,

because

you

can

ensure

the

clause

is

processed

as

a

command

in

several

ways,

such

as

by

putting

a

null

string

before

the

first

name,

or

by

enclosing

the

first

part

of

the

expression

in

parentheses.

Similarly,

if

you

unintentionally

use

a

REXX

keyword

as

the

variable

name

in

an

assignment,

this

should

not

cause

confusion.

For

example,

the

clause:

Address=’10

Downing

Street’;

is

an

assignment,

not

an

ADDRESS

instruction.

3.

You

can

use

the

SYMBOL

function

(see

page

86)

to

test

whether

a

symbol

has

been

assigned

a

value.

In

addition,

you

can

set

SIGNAL

ON

NOVALUE

to

trap

the

use

of

any

uninitialized

variables

(except

when

they

are

tails

in

compound

variables—see

page

131).

Commands

to

External

Environments

Issuing

commands

to

the

surrounding

environment

is

an

integral

part

of

REXX.

REXX

General

Concepts

22

REXX/VSE

Reference

Environment

The

system

under

which

REXX

programs

run

is

assumed

to

include

at

least

one

host

command

environment

for

processing

commands.

An

environment

is

selected

by

default

on

entry

to

a

REXX

program.

The

environment

for

processing

host

commands.

is

known

as

the

host

command

environment.

You

can

change

the

environment

by

using

the

ADDRESS

instruction.

You

can

find

out

the

name

of

the

current

environment

by

using

the

ADDRESS

built-in

function.

The

underlying

operating

system

defines

environments

external

to

the

REXX

program.

REXX/VSE

provides

six

host

command

environments:

VSE,

POWER,

JCL,

LINK,

LINKPGM,

and

CONSOLE.

The

default

environment

for

processing

commands

is

VSE.

“Host

Commands

and

Host

Command

Environments.”

on

page

24

explains

the

different

types

of

host

commands

you

can

use

in

a

REXX

program

and

the

different

host

command

environments

for

the

processing

of

host

commands.

The

environments

are

provided

in

the

host

command

environment

table,

which

specifies

the

host

command

environment

name

and

the

routine

that

is

called

to

handle

the

command

processing

for

that

host

command

environment.

You

can

provide

your

own

host

command

environment

and

corresponding

routine

and

define

them

in

the

host

command

environment

table.

“Host

Command

Environment

Table”

on

page

404

describes

the

table

in

more

detail.

“Changing

the

Default

Values

for

Initializing

an

Environment”

on

page

416

describes

how

to

change

the

defaults

to

define

your

own

host

command

environments.

You

can

also

use

the

ARXSUBCM

routine

to

maintain

entries

in

the

host

command

environment

table

(see

page

362).

Commands

To

send

a

command

to

the

currently

addressed

environment,

use

a

clause

of

the

form:

expression;

The

expression

is

evaluated,

resulting

in

a

character

string

(which

may

be

the

null

string),

which

is

then

prepared

as

appropriate

and

submitted

to

the

host

command

environment.

Any

part

of

the

expression

not

to

be

evaluated

should

be

enclosed

in

quotation

marks.

The

environment

then

processes

the

command,

which

may

have

side-effects.

It

eventually

returns

control

to

the

language

processor,

after

setting

a

return

code.

A

return

code

is

a

string,

typically

a

number,

that

returns

some

information

about

the

command

that

has

been

processed.

A

return

code

usually

indicates

if

a

command

was

successful

or

not

but

can

also

represent

other

information.

The

language

processor

places

this

return

code

in

the

REXX

special

variable

RC.

See

“Special

Variables”

on

page

134.

In

addition

to

setting

a

return

code,

the

underlying

system

may

also

indicate

to

the

language

processor

if

an

error

or

failure

occurred.

An

error

is

a

condition

raised

by

a

command

for

which

a

program

that

uses

that

command

would

usually

be

expected

to

be

prepared.

(An

example

of

an

error

could

be

an

EXECIO

command

that

tries

to

write

a

record

that

is

truncated.)

A

failure

is

a

condition

raised

by

a

command

for

which

a

program

that

uses

that

command

would

not

usually

be

expected

to

recover

(for

example,

a

command

that

is

not

executable

or

cannot

be

found).

Errors

and

failures

in

commands

can

affect

REXX

processing

if

a

condition

trap

for

ERROR

or

FAILURE

is

ON

(see

Chapter

7,

“Conditions

and

Condition

Traps,”

on

page

131).

They

may

also

cause

the

command

to

be

traced

if

TRACE

E

or

TRACE

F

is

set.

TRACE

Normal

is

the

same

as

TRACE

F

and

is

the

default—see

page

56.

Here

is

an

example

of

submitting

a

command.

"ADDRESS

VSE

EXEC"

myprog

The

host

command

environment

is

VSE.

MYPROG

is

a

member

in

a

sublibrary

in

the

active

PROC

chain.

The

command

results

in

running

MYPROG.

REXX

General

Concepts

Chapter

2.

REXX

General

Concepts

23

Note:

Whenever

you

enter

a

host

command

from

a

REXX

program,

enclose

in

quotation

marks

any

part

of

the

expression

that

is

not

to

be

evaluated.

This

can

be

the

entire

command

or

parts

of

the

expression.

Whenever

a

host

command

is

processed,

the

return

code

from

the

command

is

placed

in

the

REXX

special

variable

RC.

Host

Commands

and

Host

Command

Environments.

A

host

command

is

a

command

for

the

surrounding

environment

to

act

upon.

You

can

issue

host

commands

from

a

REXX

program.

When

the

language

processor

processes

a

clause

that

it

does

not

recognize

as

an

assignment

or

other

REXX

instruction,

the

language

processor

treats

the

clause

as

a

host

command

and

routes

the

command

to

the

host

command

environment.

The

host

command

environment

processes

the

command

and

then

returns

control

to

the

language

processor.

For

example,

in

REXX

processing,

a

host

command

can

be:

v

A

REXX/VSE

command

(such

as

NEWSTACK

or

QBUF)

v

An

ADDRESS

POWER

command

(such

as

PUTQE,

GETQE,

QUERYMSG,

or

any

of

the

POWER

commands

that

you

can

issue

through

a

CTL

service

request.

See

“The

POWER

Host

Command

Environment”

on

page

25

and

Chapter

11,

“ADDRESS

POWER

Commands,”

on

page

181

for

details.)

v

The

name

of

a

REXX

procedure

in

the

active

PROC

search

chain.

v

A

JCL

command.

v

The

name

of

a

program

invoked

by

ADDRESS

LINK

or

ADDRESS

LINKPGM.

v

An

ADDRESS

CONSOLE

command

(such

as

ACTIVATE,

CART,

CONSTATE,

CONSWITCH,

and

DEACTIVATE).

If

a

REXX

program

contains

FRED

var1

var2

the

language

processor

considers

the

clause

to

be

a

host

command

and

passes

the

clause

to

the

current

host

command

environment

for

processing.

The

host

command

environment

processes

the

command,

sets

a

return

code

in

the

REXX

special

variable

RC,

and

returns

control

to

the

language

processor.

The

return

code

set

in

RC

is

the

return

code

from

the

host

command

you

specified.

(For

example,

the

value

in

RC

can

be

the

return

code

from

a

VSE/ESA

command

processor.)

A

return

code

of

-3

is

always

returned

if

you

use

a

host

command

in

a

program

and

the

host

command

environment

cannot

locate

the

command

(REXX/VSE

command,

REXX

program,

or

phase).

If

a

system

abend

occurs

during

a

host

command,

no

return

code

is

set

and

no

recovery

is

available.

If

no

abend

occurs

during

a

host

command,

the

REXX

special

variable

RC

is

set

to

the

decimal

value

of

the

return

code

from

the

command.

Certain

conditions

may

be

raised

depending

on

the

value

of

the

special

variable

RC:

v

If

the

RC

value

is

negative,

the

FAILURE

condition

is

raised.

v

If

the

RC

value

is

positive,

the

ERROR

condition

is

raised.

v

If

the

RC

value

is

zero,

neither

the

ERROR

nor

FAILURE

conditions

are

raised.

See

Chapter

7,

“Conditions

and

Condition

Traps,”

on

page

131

for

more

information.

If

you

issue

a

host

command

in

a

REXX

program,

it

is

recommended

that

you

enclose

the

entire

command

(or

as

much

of

it

as

possible)

in

quotation

marks,

for

example:

"routine-name

p1

p2"

REXX/VSE

provides

six

host

command

environments:

v

VSE

v

POWER

v

JCL

v

LINK

REXX

General

Concepts

24

REXX/VSE

Reference

v

LINKPGM

v

CONSOLE

The

VSE

Host

Command

Environment

The

default

host

command

environment

is

VSE.

You

can

use

the

VSE

host

command

environment

to

invoke

REXX/VSE

commands

(such

as

MAKEBUF

and

NEWSTACK)

and

services.

(See

Chapter

10,

“REXX/VSE

Commands,”

on

page

143).

You

can

also

call

another

REXX

program

using

the

EXEC

command.

In

the

VSE

environment,

you

can

use

all

REXX/VSE

commands

but

you

cannot

use

POWER,

JCL,

or

Console

commands.

You

can

use

one

of

the

following

instructions

to

call

a

REXX

program.

The

instructions

in

the

following

example

assume

the

current

host

command

environment

is

not

VSE.

ADDRESS

VSE

"EXEC

programname

p1

p2

..."

ADDRESS

VSE

"EX

programname

p1

p2

..."

ADDRESS

VSE

"programname

p1

p2

..."

/*

Implicit

EXEC

command

*/

If

you

use

the

ADDRESS

VSE

EXEC

command

to

invoke

another

REXX

program,

the

system

searches

the

active

PROC

chain

for

the

partition.

If

the

program

is

not

found,

the

search

for

the

program

ends

and

the

REXX

special

variable

RC

is

set

to

-3.

Note

that

the

value

that

can

be

set

in

the

REXX

special

variable

RC

for

the

VSE

environment

is

a

signed

31

bit

number

in

the

range

-2,147,483,648

to

+2,147,483,647.

To

load

and

call

a

phase

from

the

active

PHASE

search

chain,

use

one

of

the

host

command

environments

that

Chapter

13,

“Host

Command

Environments

for

Loading

and

Calling

Programs,”

on

page

205

describes.

The

POWER

Host

Command

Environment

The

POWER

host

command

environment

is

for

VSE/POWER

spool-access

services

requests,

GET,

PUT,

and

CTL.

(For

details

about

the

VSE/POWER

spool-access

services

interface,

see

VSE/POWER

Application

Programming,

SC33-6736.)

In

the

POWER

host

command

environment,

you

can

use

both

REXX/VSE

and

POWER

commands.

The

POWER

host

command

environment

lets

you:

v

Use

the

PUTQE

command

to

put

elements

on

a

POWER

queue

and

the

GETQE

command

to

retrieve

POWER

queue

elements

v

Send

a

CTL

service

request

to

POWER.

See

“CTL”

on

page

196

for

a

list

of

the

POWER

commands

that

you

can

send

through

a

CTL

service

request.

See

VSE/POWER

Administration

and

Operation,

SC33-6733,

for

the

syntax

of

these

commands.

v

Use

the

QUERYMSG

command

to

return

job

completion

messages

into

the

stem

specified

by

OUTTRAP.

v

Execute

REXX/VSE

commands

When

the

language

processor

encounters

a

command

for

the

POWER

host

command

environment,

it:

1.

Checks

if

it

is

GETQE,

PUTQE

or

QUERYMSG.

If

so,

the

language

processor

executes

the

command.

2.

Checks

if

it

is

a

valid

command

for

the

ADDRESS

VSE

environment.

If

so,

the

language

processor

executes

the

command.

3.

Sends

the

command

to

POWER

through

the

VSE/POWER

spool-access

services

interface.

The

JCL

Host

Command

Environment

You

can

use

the

JCL

host

command

environment

to

issue

a

JCL

command

in

a

much

simpler

way

than

with

the

conditional

job

control

language.

This

host

command

environment

is

invoked

via

the

command

ADDRESS

JCL.

REXX

General

Concepts

Chapter

2.

REXX

General

Concepts

25

See

Chapter

12,

“JCL

Command

Environment,”

on

page

201

for

detailed

information.

The

LINK

and

LINKPGM

Host

Command

Environments

Loading

and

calling

a

program

is

called

linking.

REXX/VSE

provides

the

LINK

and

LINKPGM

host

command

environments

to

let

you

load

and

call

non-REXX

programs.

These

programs

must

be

phases

from

the

active

PHASE

search

chain.

LINK

and

LINKPGM

offer

different

ways

to

provide

parameters.

See

Chapter

13,

“Host

Command

Environments

for

Loading

and

Calling

Programs,”

on

page

205

for

detailed

information.

The

CONSOLE

Host

Command

Environment

The

CONSOLE

host

command

environment

allows

to

activate

and

deactivate

one

or

more

VSE/ESA

console

sessions.

Having

activated

a

VSE/ESA

console

session,

VSE/ESA

console

commands

can

be

imbedded

into

a

REXX

program.

A

GETMSG

function

receives

command

responses

and

console

messages.

See

Chapter

14,

“REXX/VSE

Console

Automation,”

on

page

217

for

detailed

information.

REXX

General

Concepts

26

REXX/VSE

Reference

Chapter

3.

Keyword

Instructions

A

keyword

instruction

is

one

or

more

clauses,

the

first

of

which

starts

with

a

keyword

that

identifies

the

instruction.

Some

keyword

instructions

affect

the

flow

of

control,

while

others

provide

services

to

the

programmer.

Some

keyword

instructions,

like

DO,

can

include

nested

instructions.

In

the

syntax

diagrams

on

the

following

pages,

symbols

(words)

in

capitals

denote

keywords

or

subkeywords;

other

words

(such

as

expression)

denote

a

collection

of

tokens

as

defined

previously.

Note,

however,

that

the

keywords

and

subkeywords

are

not

case

dependent;

the

symbols

if,

If,

and

iF

all

have

the

same

effect.

Note

also

that

you

can

usually

omit

most

of

the

clause

delimiters

(;)

shown

because

they

are

implied

by

the

end

of

a

line.

As

explained

in

“Keyword

Instructions”

on

page

18,

a

keyword

instruction

is

recognized

only

if

its

keyword

is

the

first

token

in

a

clause,

and

if

the

second

token

does

not

start

with

an

=

character

(implying

an

assignment)

or

a

colon

(implying

a

label).

The

keywords

ELSE,

END,

OTHERWISE,

THEN,

and

WHEN

are

recognized

in

the

same

situation.

Note

that

any

clause

that

starts

with

a

keyword

defined

by

REXX

cannot

be

a

command.

Therefore,

arg(fred)

rest

is

an

ARG

keyword

instruction,

not

a

command

that

starts

with

a

call

to

the

ARG

built-in

function.

A

syntax

error

results

if

the

keywords

are

not

in

their

correct

positions

in

a

DO,

IF,

or

SELECT

instruction.

(The

keyword

THEN

is

also

recognized

in

the

body

of

an

IF

or

WHEN

clause.)

In

other

contexts,

keywords

are

not

reserved

and

can

be

used

as

labels

or

as

the

names

of

variables

(though

this

is

generally

not

recommended).

Certain

other

keywords,

known

as

subkeywords,

are

reserved

within

the

clauses

of

individual

instructions.

For

example,

the

symbols

VALUE

and

WITH

are

subkeywords

in

the

ADDRESS

and

PARSE

instructions,

respectively.

For

details,

see

the

description

of

each

instruction.

For

a

general

discussion

on

reserved

keywords,

see

page

141.

Blanks

adjacent

to

keywords

have

no

effect

other

than

to

separate

the

keyword

from

the

subsequent

token.

One

or

more

blanks

following

VALUE

are

required

to

separate

the

expression

from

the

subkeyword

in

the

example

following:

ADDRESS

VALUE

expression

However,

no

blank

is

required

after

the

VALUE

subkeyword

in

the

following

example,

although

it

would

add

to

the

readability:

ADDRESS

VALUE’ENVIR’||number

©

Copyright

IBM

Corp.

1988,

2004

27

ADDRESS

��

ADDRESS

environment

expression

expression1

VALUE

;

��

ADDRESS

temporarily

or

permanently

changes

the

destination

of

commands.

A

command

is

a

clause

that

is

not

a

REXX

assignment

or

another

REXX

instruction.

Commands

are

strings

sent

to

an

external

environment.

You

can

send

commands

by

specifying

clauses

consisting

of

only

an

expression

(see

“Commands

to

External

Environments”

on

page

22)

or

by

using

the

ADDRESS

instruction.

REXX/VSE

provides

the

following

host

command

environments:

v

VSE

(for

REXX/VSE

commands).

This

is

the

default.

In

this

environment,

you

can

use

REXX/VSE

commands

but

not

POWER

commands.

v

POWER

(for

VSE/POWER

spool-access

services

requests—GET,

CTL,

GCM,

and

PUT).

In

this

environment,

you

can

use

both

REXX/VSE

and

POWER

commands.

v

JCL.

In

this

environment,

you

can

issue

a

JCL

command

in

a

much

simpler

way

than

with

the

conditional

VSE

job

control

language.

You

can

issue

JCL

commands

via

a

REXX

program.

v

Environments

for

linking

to

a

program

–

LINK

(See

“The

LINK

Host

Command

Environment”

on

page

206

for

details.)

–

LINKPGM

(See

“The

LINKPGM

Host

Command

Environment”

on

page

208).

v

CONSOLE.

In

this

environment,

you

can

manage

VSE/ESA

console

sessions.

“Commands

to

External

Environments”

on

page

22

describes

how

to

enter

commands

to

the

host.

To

send

a

single

command

to

a

specified

environment,

code

an

environment,

a

literal

string

or

a

single

symbol,

which

is

taken

to

be

a

constant,

followed

by

an

expression.

(The

environment

name

is

the

name

of

an

external

procedure

or

process

that

can

process

commands.)

The

expression

is

evaluated,

and

the

resulting

string

is

routed

to

the

environment

to

be

processed

as

a

command.

(Enclose

in

quotation

marks

any

part

of

the

expression

you

do

not

want

to

be

evaluated.)

After

execution

of

the

command,

environment

is

set

back

to

whatever

it

was

before,

thus

temporarily

changing

the

destination

for

a

single

command.

The

special

variable

RC

is

set,

just

as

it

would

be

for

other

commands.

(See

page

23.)

Errors

and

failures

in

commands

processed

in

this

way

are

trapped

or

traced

as

usual.

Example:

ADDRESS

LINK

"routine

p1

p2"

ADDRESS

JCL

"MAP"

/*

VSE

environment

*/

If

you

specify

only

environment,

a

lasting

change

of

destination

occurs:

all

commands

that

follow

are

routed

to

the

specified

command

environment,

until

the

next

ADDRESS

instruction

is

processed.

The

previously

selected

environment

is

saved.

Example:

Address

VSE

"QBUF"

"MAKEBUF"

Similarly,

you

can

use

the

VALUE

form

to

make

a

lasting

change

to

the

environment.

Here

expression1

(which

may

be

simply

a

variable

name)

is

evaluated,

and

the

result

forms

the

name

of

the

environment.

ADDRESS

28

REXX/VSE

Reference

You

can

omit

the

subkeyword

VALUE

if

expression1

does

not

begin

with

a

literal

string

or

symbol

(that

is,

if

it

starts

with

a

special

character,

such

as

an

operator

character

or

parenthesis).

Example:

ADDRESS

(’ENVIR’||number)

/*

Same

as

ADDRESS

VALUE

’ENVIR’||number

*/

With

no

arguments,

commands

are

routed

back

to

the

environment

that

was

selected

before

the

previous

lasting

change

of

environment

was

made,

and

the

current

environment

name

is

saved.

After

changing

the

environment,

repeated

execution

of

ADDRESS

alone,

therefore,

switches

the

command

destination

between

two

environments

alternately.

The

two

environment

names

are

automatically

saved

across

internal

and

external

subroutine

and

function

calls.

See

the

CALL

instruction

(page

31)

for

more

details.

The

address

setting

is

the

currently

selected

environment

name.

You

can

retrieve

the

current

address

setting

by

using

the

ADDRESS

built-in

function

(see

page

65).

REXX/VSE

provides

host

command

environments

that

you

can

use

with

the

ADDRESS

instruction.

After

the

environment

processes

the

host

command,

a

return

code

from

the

command

is

set

in

the

REXX

special

variable

RC.

The

return

code

may

be

a

-3,

which

indicates

that

the

environment

could

not

locate

the

command

you

specified.

For

more

information

about

the

environments

you

can

use

with

the

ADDRESS

instruction

and

the

return

codes

set

in

the

special

variable

RC,

see

“The

VSE

Host

Command

Environment”

on

page

25.

You

can

provide

your

own

environments

or

routines

that

handle

command

processing

in

each

environment.

For

more

information,

see

“Host

Command

Environment

Table”

on

page

404.

ARG

��

ARG

template_list

;

��

ARG

retrieves

the

argument

strings

provided

to

a

program

or

internal

routine

and

assigns

them

to

variables.

It

is

a

short

form

of

the

instruction:

��

PARSE

UPPER

ARG

template_list

;

��

The

template_list

is

often

a

single

template

but

can

be

several

templates

separated

by

commas.

If

specified,

each

template

is

a

list

of

symbols

separated

by

blanks

or

patterns

or

both.

Unless

a

subroutine

or

internal

function

is

being

processed,

the

strings

passed

as

parameters

to

the

program

are

parsed

into

variables

according

to

the

rules

described

in

the

section

on

parsing

(page

109).

If

a

subroutine

or

internal

function

is

being

processed,

the

data

used

will

be

the

argument

strings

that

the

caller

passes

to

the

routine.

In

either

case,

the

language

processor

translates

the

passed

strings

to

uppercase

(that

is,

lowercase

a–z

to

uppercase

A–Z)

before

processing

them.

Use

the

PARSE

ARG

instruction

if

you

do

not

want

uppercase

translation.

ADDRESS

Chapter

3.

Keyword

Instructions

29

You

can

use

the

ARG

and

PARSE

ARG

instructions

repeatedly

on

the

same

source

string

or

strings

(typically

with

different

templates).

The

source

string

does

not

change.

The

only

restrictions

on

the

length

or

content

of

the

data

parsed

are

those

the

caller

imposes.

Example:

/*

String

passed

is

"Easy

Rider"

*/

Arg

adjective

noun

.

/*

Now:

ADJECTIVE

contains

’EASY’

*/

/*

NOUN

contains

’RIDER’

*/

If

you

expect

more

than

one

string

to

be

available

to

the

program

or

routine,

you

can

use

a

comma

in

the

parsing

template_list

so

each

template

is

selected

in

turn.

Example:

/*

Function

is

called

by

FRED(’data

X’,1,5)

*/

Fred:

Arg

string,

num1,

num2

/*

Now:

STRING

contains

’DATA

X’

*/

/*

NUM1

contains

’1’

*/

/*

NUM2

contains

’5’

*/

Notes:

1.

The

ARG

built-in

function

can

also

retrieve

or

check

the

argument

strings

to

a

REXX

program

or

internal

routine.

See

page

65.

2.

The

source

of

the

data

being

processed

is

also

made

available

on

entry

to

the

program.

See

the

PARSE

instruction

(SOURCE

option)

on

page

47

for

details.

ARG

30

REXX/VSE

Reference

CALL

��

CALL

,

name

expression

OFF

ERROR

FAILURE

HALT

ON

ERROR

FAILURE

NAME

trapname

HALT

;

��

CALL

calls

a

routine

(if

you

specify

name)

or

controls

the

trapping

of

certain

conditions

(if

you

specify

ON

or

OFF).

To

control

trapping,

you

specify

OFF

or

ON

and

the

condition

you

want

to

trap.

OFF

turns

off

the

specified

condition

trap.

ON

turns

on

the

specified

condition

trap.

All

information

on

condition

traps

is

contained

in

Chapter

7,

“Conditions

and

Condition

Traps,”

on

page

131.

To

call

a

routine,

specify

name,

a

literal

string

or

symbol

that

is

taken

as

a

constant.

The

name

must

be

a

symbol,

which

is

treated

literally,

or

a

literal

string.

The

routine

called

can

be:

An

internal

routine

A

function

or

subroutine

that

is

in

the

same

program

as

the

CALL

instruction

or

function

call

that

calls

it.

A

built-in

routine

A

function

(which

may

be

called

as

a

subroutine)

that

is

defined

as

part

of

the

REXX

language.

An

external

routine

A

function

or

subroutine

that

is

neither

built-in

nor

in

the

same

program

as

the

CALL

instruction

or

function

call

that

calls

it.

If

name

is

a

string

(that

is,

you

specify

name

in

quotation

marks),

the

search

for

internal

routines

is

bypassed,

and

only

a

built-in

function

or

an

external

routine

is

called.

Note

that

the

names

of

built-in

functions

(and

generally

the

names

of

external

routines,

too)

are

in

uppercase;

therefore,

you

should

uppercase

the

name

in

the

literal

string.

The

called

routine

can

optionally

return

a

result,

and

when

it

does,

the

CALL

instruction

is

functionally

identical

with

the

clause:

��

result=name(

,

expression

)

;

��

If

the

called

routine

does

not

return

a

result,

then

you

will

get

an

error

if

you

call

it

as

a

function

(as

previously

shown).

If

the

subroutine

returns

a

result,

the

result

is

stored

in

the

REXX

special

variable

RESULT,

not

the

special

variable

RC.

The

REXX

special

variable

RC

is

set

when

you

enter

host

commands

from

a

REXX

program

(see

page

24),

but

RC

is

not

set

when

you

use

the

CALL

instruction.

See

Chapter

9,

“Reserved

Keywords,

Special

Variables,

and

Command

Names,”

on

page

141

for

descriptions

of

the

three

REXX

special

variables

RESULT,

RC,

and

SIGL.

CALL

Chapter

3.

Keyword

Instructions

31

REXX/VSE

supports

specifying

up

to

20

expressions,

separated

by

commas.

The

expressions

are

evaluated

in

order

from

left

to

right

and

form

the

argument

strings

during

execution

of

the

routine.

Any

ARG

or

PARSE

ARG

instruction

or

ARG

built-in

function

in

the

called

routine

accesses

these

strings

rather

than

any

previously

active

in

the

calling

program,

until

control

returns

to

the

CALL

instruction.

You

can

omit

expressions,

if

appropriate,

by

including

extra

commas.

The

CALL

then

causes

a

branch

to

the

routine

called

name,

using

exactly

the

same

mechanism

as

function

calls.

(See

Chapter

4,

“Functions,”

on

page

61.)

The

search

order

is

in

the

section

on

functions

(see

“Search

Order”

on

page

62)

but

briefly

is

as

follows:

Internal

routines:

These

are

sequences

of

instructions

inside

the

same

program,

starting

at

the

label

that

matches

name

in

the

CALL

instruction.

If

you

specify

the

routine

name

in

quotation

marks,

then

an

internal

routine

is

not

considered

for

that

search

order.

You

can

use

SIGNAL

and

CALL

together

to

call

an

internal

routine

whose

name

is

determined

at

the

time

of

execution;

this

is

known

as

a

multi-way

call

(see

page

55).

The

RETURN

instruction

completes

the

execution

of

an

internal

routine.

Built-in

routines:

These

are

routines

built

into

the

language

processor

for

providing

various

functions.

They

always

return

a

string

that

is

the

result

of

the

routine.

(See

page

63.)

External

routines:

Users

can

write

or

use

routines

that

are

external

to

the

language

processor

and

the

calling

program.

You

can

code

an

external

routine

in

REXX

or

in

any

language

that

supports

the

system-dependent

interfaces.

For

information

about

using

the

system-dependent

interfaces,

see

“External

Functions

and

Subroutines

and

Function

Packages”

on

page

348.

For

information

about

the

search

order

REXX/VSE

uses

to

locate

external

routines,

see

“Search

Order”

on

page

62.

If

the

CALL

instruction

calls

an

external

routine

written

in

REXX

as

a

subroutine,

you

can

retrieve

any

argument

strings

with

the

ARG

or

PARSE

ARG

instructions

or

the

ARG

built-in

function.

During

execution

of

an

internal

routine,

all

variables

previously

known

are

generally

accessible.

However,

the

PROCEDURE

instruction

can

set

up

a

local

variables

environment

to

protect

the

subroutine

and

caller

from

each

other.

The

EXPOSE

option

on

the

PROCEDURE

instruction

can

expose

selected

variables

to

a

routine.

Calling

an

external

program

as

a

subroutine

is

similar

to

calling

an

internal

routine.

The

external

routine,

however,

is

an

implicit

PROCEDURE

in

that

all

the

caller’s

variables

are

always

hidden.

The

status

of

internal

values

(NUMERIC

settings,

and

so

forth)

start

with

their

defaults

(rather

than

inheriting

those

of

the

caller).

In

addition,

you

can

use

EXIT

to

return

from

the

routine.

When

control

reaches

an

internal

routine

the

line

number

of

the

CALL

instruction

is

available

in

the

variable

SIGL

(in

the

caller’s

variable

environment).

This

may

be

used

as

a

debug

aid,

as

it

is,

therefore,

possible

to

find

out

how

control

reached

a

routine.

Note

that

if

the

internal

routine

uses

the

PROCEDURE

instruction,

then

it

needs

to

EXPOSE

SIGL

to

get

access

to

the

line

number

of

the

CALL.

Eventually

the

subroutine

should

process

a

RETURN

instruction,

and

at

that

point

control

returns

to

the

clause

following

the

original

CALL.

If

the

RETURN

instruction

specified

an

expression,

the

variable

RESULT

is

set

to

the

value

of

that

expression.

Otherwise,

the

variable

RESULT

is

dropped

(becomes

uninitialized).

An

internal

routine

can

include

calls

to

other

internal

routines,

as

well

as

recursive

calls

to

itself.

Example:

/*

Recursive

subroutine

execution...

*/

arg

z

call

factorial

z

say

z’!

=’

result

exit

CALL

32

REXX/VSE

Reference

factorial:

procedure

/*

Calculate

factorial

by

*/

arg

n

/*

recursive

invocation.

*/

if

n=0

then

return

1

call

factorial

n-1

return

result

*

n

During

internal

subroutine

(and

function)

execution,

all

important

pieces

of

information

are

automatically

saved

and

are

then

restored

upon

return

from

the

routine.

These

are:

v

The

status

of

DO

loops

and

other

structures:

Executing

a

SIGNAL

while

within

a

subroutine

is

safe

because

DO

loops,

and

so

forth,

that

were

active

when

the

subroutine

was

called

are

not

ended.

(But

those

currently

active

within

the

subroutine

are

ended.)

v

Trace

action:

After

a

subroutine

is

debugged,

you

can

insert

a

TRACE

Off

at

the

beginning

of

it,

and

this

does

not

affect

the

tracing

of

the

caller.

Conversely,

if

you

simply

wish

to

debug

a

subroutine,

you

can

insert

a

TRACE

Results

at

the

start

and

tracing

is

automatically

restored

to

the

conditions

at

entry

(for

example,

Off)

upon

return.

Similarly,

?

(interactive

debug)

and

!

(command

inhibition)

are

saved

across

routines.

v

NUMERIC

settings:

The

DIGITS,

FUZZ,

and

FORM

of

arithmetic

operations

(in

“NUMERIC”

on

page

44)

are

saved

and

are

then

restored

on

return.

A

subroutine

can,

therefore,

set

the

precision,

and

so

forth,

that

it

needs

to

use

without

affecting

the

caller.

v

ADDRESS

settings:

The

current

and

previous

destinations

for

commands

(see

“ADDRESS”

on

page

28)

are

saved

and

are

then

restored

on

return.

v

Condition

traps:

(CALL

ON

and

SIGNAL

ON)

are

saved

and

then

restored

on

return.

This

means

that

CALL

ON,

CALL

OFF,

SIGNAL

ON,

and

SIGNAL

OFF

can

be

used

in

a

subroutine

without

affecting

the

conditions

the

caller

set

up.

v

Condition

information:

This

information

describes

the

state

and

origin

of

the

current

trapped

condition.

The

CONDITION

built-in

function

returns

this

information.

See

“CONDITION”

on

page

68.

v

Elapsed-time

clocks:

A

subroutine

inherits

the

elapsed-time

clock

from

its

caller

(see

“TIME”

on

page

86),

but

because

the

time

clock

is

saved

across

routine

calls,

a

subroutine

or

internal

function

can

independently

restart

and

use

the

clock

without

affecting

its

caller.

For

the

same

reason,

a

clock

started

within

an

internal

routine

is

not

available

to

the

caller.

v

OPTIONS

settings:

ETMODE

and

EXMODE

are

saved

and

are

then

restored

on

return.

For

more

information,

see

“OPTIONS”

on

page

45.

Implementation

maximum:

The

total

nesting

of

control

structures,

which

includes

internal

routine

calls,

may

not

exceed

a

depth

of

250.

CALL

Chapter

3.

Keyword

Instructions

33

DO

��

DO

repetitor

conditional

;

instruction

END

name

;

��

repetitor:

name=expri

TO

exprt

BY

exprb

FOR

exprf

FOREVER

exprr

conditional:

WHILE

exprw

UNTIL

expru

DO

groups

instructions

together

and

optionally

processes

them

repetitively.

During

repetitive

execution,

a

control

variable

(name)

can

be

stepped

through

some

range

of

values.

Syntax

Notes:

v

The

exprr,

expri,

exprb,

exprt,

and

exprf

options

(if

present)

are

any

expressions

that

evaluate

to

a

number.

The

exprr

and

exprf

options

are

further

restricted

to

result

in

a

positive

whole

number

or

zero.

If

necessary,

the

numbers

are

rounded

according

to

the

setting

of

NUMERIC

DIGITS.

v

The

exprw

or

expru

options

(if

present)

can

be

any

expression

that

evaluates

to

1

or

0.

v

The

TO,

BY,

and

FOR

phrases

can

be

in

any

order,

if

used,

and

are

evaluated

in

the

order

in

which

they

are

written.

v

The

instruction

can

be

any

instruction,

including

assignments,

commands,

and

keyword

instructions

(including

any

of

the

more

complex

constructs

such

as

IF,

SELECT,

and

the

DO

instruction

itself).

v

The

subkeywords

WHILE

and

UNTIL

are

reserved

within

a

DO

instruction,

in

that

they

cannot

be

used

as

symbols

in

any

of

the

expressions.

Similarly,

TO,

BY,

and

FOR

cannot

be

used

in

expri,

exprt,

exprb,

or

exprf.

FOREVER

is

also

reserved,

but

only

if

it

immediately

follows

the

keyword

DO

and

an

equal

sign

does

not

follow

it.

v

The

exprb

option

defaults

to

1,

if

relevant.

Simple

DO

Group

If

you

specify

neither

repetitor

nor

conditional,

the

construct

merely

groups

a

number

of

instructions

together.

These

are

processed

one

time.

In

the

following

example,

the

instructions

are

processed

one

time.

Example:

/*

The

two

instructions

between

DO

and

END

are

both

*/

/*

processed

if

A

has

the

value

"3".

*/

If

a=3

then

Do

a=a+2

Say

’Smile!’

End

DO

34

REXX/VSE

Reference

Repetitive

DO

Loops

If

a

DO

instruction

has

a

repetitor

phrase

or

a

conditional

phrase

or

both,

the

group

of

instructions

forms

a

repetitive

DO

loop.

The

instructions

are

processed

according

to

the

repetitor

phrase,

optionally

modified

by

the

conditional

phrase.

(See

“Conditional

Phrases

(WHILE

and

UNTIL)”

on

page

36).

Simple

Repetitive

Loops

A

simple

repetitive

loop

is

a

repetitive

DO

loop

in

which

the

repetitor

phrase

is

an

expression

that

evaluates

to

a

count

of

the

iterations.

If

repetitor

is

omitted

but

there

is

a

conditional

or

if

the

repetitor

is

FOREVER,

the

group

of

instructions

is

nominally

processed

“forever”,

that

is,

until

the

condition

is

satisfied

or

a

REXX

instruction

is

processed

that

ends

the

loop

(for

example,

LEAVE).

Note:

For

a

discussion

on

conditional

phrases,

see

“Conditional

Phrases

(WHILE

and

UNTIL)”

on

page

36.

In

the

simple

form

of

a

repetitive

loop,

exprr

is

evaluated

immediately

(and

must

result

in

a

positive

whole

number

or

zero),

and

the

loop

is

then

processed

that

many

times.

Example:

/*

This

displays

"Hello"

five

times

*/

Do

5

say

’Hello’

end

Note

that,

similar

to

the

distinction

between

a

command

and

an

assignment,

if

the

first

token

of

exprr

is

a

symbol

and

the

second

token

is

(or

starts

with)

=,

the

controlled

form

of

repetitor

is

expected.

Controlled

Repetitive

Loops

The

controlled

form

specifies

name,

a

control

variable

that

is

assigned

an

initial

value

(the

result

of

expri,

formatted

as

though

0

had

been

added)

before

the

first

execution

of

the

instruction

list.

The

variable

is

then

stepped

(by

adding

the

result

of

exprb)

before

the

second

and

subsequent

times

that

the

instruction

list

is

processed.

The

instruction

list

is

processed

repeatedly

while

the

end

condition

(determined

by

the

result

of

exprt)

is

not

met.

If

exprb

is

positive

or

0,

the

loop

is

ended

when

name

is

greater

than

exprt.

If

negative,

the

loop

is

ended

when

name

is

less

than

exprt.

The

expri,

exprt,

and

exprb

options

must

result

in

numbers.

They

are

evaluated

only

one

time,

before

the

loop

begins

and

before

the

control

variable

is

set

to

its

initial

value.

The

default

value

for

exprb

is

1.

If

exprt

is

omitted,

the

loop

runs

indefinitely

unless

some

other

condition

stops

it.

Example:

Do

I=3

to

-2

by

-1

/*

Displays:

*/

say

i

/*

3

*/

end

/*

2

*/

/*

1

*/

/*

0

*/

/*

-1

*/

/*

-2

*/

The

numbers

do

not

have

to

be

whole

numbers:

Example:

I=0.3

/*

Displays:

*/

Do

Y=I

to

I+4

by

0.7

/*

0.3

*/

say

Y

/*

1.0

*/

DO

Chapter

3.

Keyword

Instructions

35

end

/*

1.7

*/

/*

2.4

*/

/*

3.1

*/

/*

3.8

*/

The

control

variable

can

be

altered

within

the

loop,

and

this

may

affect

the

iteration

of

the

loop.

Altering

the

value

of

the

control

variable

is

not

usually

considered

good

programming

practice,

though

it

may

be

appropriate

in

certain

circumstances.

Note

that

the

end

condition

is

tested

at

the

start

of

each

iteration

(and

after

the

control

variable

is

stepped,

on

the

second

and

subsequent

iterations).

Therefore,

if

the

end

condition

is

met

immediately,

the

group

of

instructions

can

be

skipped

entirely.

Note

also

that

the

control

variable

is

referred

to

by

name.

If

(for

example)

the

compound

name

A.I

is

used

for

the

control

variable,

altering

I

within

the

loop

causes

a

change

in

the

control

variable.

The

execution

of

a

controlled

loop

can

be

bounded

further

by

a

FOR

phrase.

In

this

case,

you

must

specify

exprf,

and

it

must

evaluate

to

a

positive

whole

number

or

zero.

This

acts

just

like

the

repetition

count

in

a

simple

repetitive

loop,

and

sets

a

limit

to

the

number

of

iterations

around

the

loop

if

no

other

condition

stops

it.

Like

the

TO

and

BY

expressions,

it

is

evaluated

only

one

time—when

the

DO

instruction

is

first

processed

and

before

the

control

variable

receives

its

initial

value.

Like

the

TO

condition,

the

FOR

condition

is

checked

at

the

start

of

each

iteration.

Example:

Do

Y=0.3

to

4.3

by

0.7

for

3

/*

Displays:

*/

say

Y

/*

0.3

*/

end

/*

1.0

*/

/*

1.7

*/

In

a

controlled

loop,

the

name

describing

the

control

variable

can

be

specified

on

the

END

clause.

This

name

must

match

name

in

the

DO

clause

in

all

respects

except

case

(note

that

no

substitution

for

compound

variables

is

carried

out);

a

syntax

error

results

if

it

does

not.

This

enables

the

nesting

of

loops

to

be

checked

automatically,

with

minimal

overhead.

Example:

Do

K=1

to

10

...

...

End

k

/*

Checks

that

this

is

the

END

for

K

loop

*/

Note:

The

NUMERIC

settings

may

affect

the

successive

values

of

the

control

variable,

because

REXX

arithmetic

rules

apply

to

the

computation

of

stepping

the

control

variable.

Conditional

Phrases

(WHILE

and

UNTIL)

A

conditional

phrase

can

modify

the

iteration

of

a

repetitive

DO

loop.

It

may

cause

the

termination

of

a

loop.

It

can

follow

any

of

the

forms

of

repetitor

(none,

FOREVER,

simple,

or

controlled).

If

you

specify

WHILE

or

UNTIL,

exprw

or

expru,

respectively,

is

evaluated

each

time

around

the

loop

using

the

latest

values

of

all

variables

(and

must

evaluate

to

either

0

or

1),

and

the

loop

is

ended

if

exprw

evaluates

to

0

or

expru

evaluates

to

1.

For

a

WHILE

loop,

the

condition

is

evaluated

at

the

top

of

the

group

of

instructions.

For

an

UNTIL

loop,

the

condition

is

evaluated

at

the

bottom—before

the

control

variable

has

been

stepped.

Example:

Do

I=1

to

10

by

2

until

i>6

say

i

end

/*

Displays:

"1"

"3"

"5"

"7"

*/

DO

36

REXX/VSE

Reference

Note:

Using

the

LEAVE

or

ITERATE

instructions

can

also

modify

the

execution

of

repetitive

loops.

Figure

2.

Concept

of

a

DO

Loop

DO

Chapter

3.

Keyword

Instructions

37

DROP

��

DROP

name

(name)

;

��

DROP

“unassigns”

variables,

that

is,

restores

them

to

their

original

uninitialized

state.

If

name

is

not

enclosed

in

parentheses,

it

identifies

a

variable

you

want

to

drop

and

must

be

a

symbol

that

is

a

valid

variable

name,

separated

from

any

other

name

by

one

or

more

blanks

or

comments.

If

parentheses

enclose

a

single

name,

then

its

value

is

used

as

a

subsidiary

list

of

variables

to

drop.

(Blanks

are

not

necessary

either

inside

or

outside

the

parentheses,

but

you

can

add

them

if

desired.)

This

subsidiary

list

must

follow

the

same

rules

as

the

original

list

(that

is,

be

valid

variable

names,

separated

by

blanks)

except

that

no

parentheses

are

allowed.

Variables

are

dropped

in

sequence

from

left

to

right.

It

is

not

an

error

to

specify

a

name

more

than

one

time

or

to

DROP

a

variable

that

is

not

known.

If

an

exposed

variable

is

named

(see

“PROCEDURE”

on

page

49),

the

variable

in

the

older

generation

is

dropped.

Example:

j=4

Drop

a

z.3

z.j

/*

Drops

the

variables:

A,

Z.3,

and

Z.4

*/

/*

so

that

reference

to

them

returns

their

names.

*/

Here,

a

variable

name

in

parentheses

is

used

as

a

subsidiary

list.

Example:

mylist=’c

d

e’

drop

(mylist)

f

/*

Drops

the

variables

C,

D,

E,

and

F

*/

/*

Does

not

drop

MYLIST

*/

Specifying

a

stem

(that

is,

a

symbol

that

contains

only

one

period,

as

the

last

character),

drops

all

variables

starting

with

that

stem.

Example:

Drop

z.

/*

Drops

all

variables

with

names

starting

with

Z.

*/

DROP

38

REXX/VSE

Reference

EXIT

��

EXIT

expression

;

��

EXIT

leaves

a

program

unconditionally.

Optionally

EXIT

returns

a

character

string

to

the

caller.

The

program

is

stopped

immediately,

even

if

an

internal

routine

is

currently

being

run.

If

no

internal

routine

is

active,

RETURN

(see

page

53)

and

EXIT

are

identical

in

their

effect

on

the

program

that

is

being

run.

If

you

specify

expression,

it

is

evaluated

and

the

string

resulting

from

the

evaluation

is

passed

back

to

the

caller

when

the

program

stops.

Example:

j=3

Exit

j*4

/*

Would

exit

with

the

string

’12’

*/

If

you

do

not

specify

expression,

no

data

is

passed

back

to

the

caller.

If

the

program

was

called

as

an

external

function,

this

is

detected

as

an

error—either

immediately

(if

RETURN

was

used),

or

on

return

to

the

caller

(if

EXIT

was

used).

“Running

off

the

end”

of

the

program

is

always

equivalent

to

the

instruction

EXIT,

in

that

it

stops

the

whole

program

and

returns

no

result

string.

Note:

If

the

program

was

called

through

a

command

interface,

an

attempt

is

made

to

convert

the

returned

value

to

a

return

code

acceptable

by

the

host.

If

the

conversion

fails,

it

is

deemed

to

be

a

failure

of

the

host

interface

and

thus

is

not

subject

to

trapping

with

SIGNAL

ON

SYNTAX.

The

returned

string

must

be

a

whole

number

whose

value

fits

in

a

general

register

(that

is,

must

be

in

the

range

-2**31

through

2**31-1).

Further

processing

of

this

value

depends

on

the

method

of

invocation

of

the

REXX

procedure

(see

“Calling

REXX

Directly

with

the

JCL

EXEC

Command”

on

page

333).

EXIT

Chapter

3.

Keyword

Instructions

39

IF

��

IF

expression

;

THEN

;

instruction

ELSE

instruction

;

��

IF

conditionally

processes

an

instruction

or

group

of

instructions

depending

on

the

evaluation

of

the

expression.

The

expression

is

evaluated

and

must

result

in

0

or

1.

The

instruction

after

the

THEN

is

processed

only

if

the

result

is

1

(true).

If

you

specify

an

ELSE,

the

instruction

after

the

ELSE

is

processed

only

if

the

result

of

the

evaluation

is

0

(false).

Example:

if

answer=’YES’

then

say

’OK!’

else

say

’Why

not?’

Remember

that

if

the

ELSE

clause

is

on

the

same

line

as

the

last

clause

of

the

THEN

part,

you

need

a

semicolon

before

the

ELSE.

Example:

if

answer=’YES’

then

say

’OK!’;

else

say

’Why

not?’

The

ELSE

binds

to

the

nearest

IF

at

the

same

level.

You

can

use

the

NOP

instruction

to

eliminate

errors

and

possible

confusion

when

IF

constructs

are

nested,

as

in

the

following

example.

Example:

If

answer

=

’YES’

Then

If

name

=

’FRED’

Then

say

’OK,

Fred.’

Else

nop

Else

say

’Why

not?’

Notes:

1.

The

instruction

can

be

any

assignment,

command,

or

keyword

instruction,

including

any

of

the

more

complex

constructs

such

as

DO,

SELECT,

or

the

IF

instruction

itself.

A

null

clause

is

not

an

instruction,

so

putting

an

extra

semicolon

(or

label)

after

the

THEN

or

ELSE

is

not

equivalent

to

putting

a

dummy

instruction

(as

it

would

be

in

PL/I).

The

NOP

instruction

is

provided

for

this

purpose.

2.

The

symbol

THEN

cannot

be

used

within

expression,

because

the

keyword

THEN

is

treated

differently,

in

that

it

need

not

start

a

clause.

This

allows

the

expression

on

the

IF

clause

to

be

ended

by

the

THEN,

without

a

;

being

required.

If

this

were

not

so,

people

who

are

accustomed

to

other

computer

languages

would

experience

considerable

difficulties.

IF

40

REXX/VSE

Reference

INTERPRET

��

INTERPRET

expression

;

��

INTERPRET

processes

instructions

that

have

been

built

dynamically

by

evaluating

expression.

The

expression

is

evaluated

and

is

then

processed

(interpreted)

just

as

though

the

resulting

string

were

a

line

inserted

into

the

program

(and

bracketed

by

a

DO;

and

an

END;).

Any

instructions

(including

INTERPRET

instructions)

are

allowed,

but

note

that

constructions

such

as

DO...END

and

SELECT...END

must

be

complete.

For

example,

a

string

of

instructions

being

interpreted

cannot

contain

a

LEAVE

or

ITERATE

instruction

(valid

only

within

a

repetitive

DO

loop)

unless

it

also

contains

the

whole

repetitive

DO...END

construct.

A

semicolon

is

implied

at

the

end

of

the

expression

during

execution,

if

one

was

not

supplied.

Example:

data=’FRED’

interpret

data

’=

4’

/*

Builds

the

string

"FRED

=

4"

and

*/

/*

Processes:

FRED

=

4;

*/

/*

Thus

the

variable

FRED

is

set

to

"4"

*/

Example:

data=’do

3;

say

"Hello

there!";

end’

interpret

data

/*

Displays:

*/

/*

Hello

there!

*/

/*

Hello

there!

*/

/*

Hello

there!

*/

Notes:

1.

Label

clauses

are

not

permitted

in

an

interpreted

character

string.

2.

If

you

are

new

to

the

concept

of

the

INTERPRET

instruction

and

are

getting

results

that

you

do

not

understand,

you

may

find

that

executing

it

with

TRACE

R

or

TRACE

I

in

effect

is

helpful.

Example:

/*

Here

is

a

small

REXX

program.

*/

Trace

Int

name=’Kitty’

indirect=’name’

interpret

’say

"Hello"’

indirect’"!"’

When

this

is

run,

it

gives

the

trace:

kitty

3

-

name=’Kitty’

>L>

"Kitty"

4

-

indirect=’name’

>L>

"name"

5

-

interpret

’say

"Hello"’

indirect’"!"’

>L>

"say

"Hello""

>V>

"name"

>O>

"say

"Hello"

name"

>L>

""!""

>O>

"say

"Hello"

name"!""

-

say

"Hello"

name"!"

>L>

"Hello"

>V>

"Kitty"

INTERPRET

Chapter

3.

Keyword

Instructions

41

>O>

"Hello

Kitty"

>L>

"!"

>O>

"Hello

Kitty!"

Hello

Kitty!

Here,

lines

3

and

4

set

the

variables

used

in

line

5.

Execution

of

line

5

then

proceeds

in

two

stages.

First

the

string

to

be

interpreted

is

built

up,

using

a

literal

string,

a

variable

(INDIRECT),

and

another

literal

string.

The

resulting

pure

character

string

is

then

interpreted,

just

as

though

it

were

actually

part

of

the

original

program.

Because

it

is

a

new

clause,

it

is

traced

as

such

(the

second

-

trace

flag

under

line

5)

and

is

then

processed.

Again

a

literal

string

is

concatenated

to

the

value

of

a

variable

(NAME)

and

another

literal,

and

the

final

result

(Hello

Kitty!)

is

then

displayed.

3.

For

many

purposes,

you

can

use

the

VALUE

function

(see

page

89)

instead

of

the

INTERPRET

instruction.

The

following

line

could,

therefore,

have

replaced

line

5

in

the

last

example:

say

"Hello"

value(indirect)"!"

INTERPRET

is

usually

required

only

in

special

cases,

such

as

when

two

or

more

statements

are

to

be

interpreted

together,

or

when

an

expression

is

to

be

evaluated

dynamically.

ITERATE

��

ITERATE

name

;

��

ITERATE

alters

the

flow

within

a

repetitive

DO

loop

(that

is,

any

DO

construct

other

than

that

with

a

simple

DO).

Execution

of

the

group

of

instructions

stops,

and

control

is

passed

to

the

DO

instruction.

The

control

variable

(if

any)

is

incremented

and

tested,

as

usual,

and

the

group

of

instructions

is

processed

again,

unless

the

DO

instruction

ends

the

loop.

The

name

is

a

symbol,

taken

as

a

constant.

If

name

is

not

specified,

ITERATE

steps

the

innermost

active

repetitive

loop.

If

name

is

specified,

it

must

be

the

name

of

the

control

variable

of

a

currently

active

loop

(which

may

be

the

innermost),

and

this

is

the

loop

that

is

stepped.

Any

active

loops

inside

the

one

selected

for

iteration

are

ended

(as

though

by

a

LEAVE

instruction).

Example:

do

i=1

to

4

if

i=2

then

iterate

say

i

end

/*

Displays

the

numbers:

"1"

"3"

"4"

*/

Notes:

1.

If

specified,

name

must

match

the

symbol

naming

the

control

variable

in

the

DO

clause

in

all

respects

except

case.

No

substitution

for

compound

variables

is

carried

out

when

the

comparison

is

made.

2.

A

loop

is

active

if

it

is

currently

being

processed.

If

a

subroutine

is

called

(or

an

INTERPRET

instruction

is

processed)

during

execution

of

a

loop,

the

loop

becomes

inactive

until

the

subroutine

has

returned

or

the

INTERPRET

instruction

has

completed.

ITERATE

cannot

be

used

to

step

an

inactive

loop.

3.

If

more

than

one

active

loop

uses

the

same

control

variable,

ITERATE

selects

the

innermost

loop.

INTERPRET

42

REXX/VSE

Reference

LEAVE

��

LEAVE

name

;

��

LEAVE

causes

an

immediate

exit

from

one

or

more

repetitive

DO

loops

(that

is,

any

DO

construct

other

than

a

simple

DO).

Processing

of

the

group

of

instructions

is

ended,

and

control

is

passed

to

the

instruction

following

the

END

clause.

The

control

variable

(if

any)

will

contain

the

value

it

had

when

the

LEAVE

instruction

was

processed.

The

name

is

a

symbol,

taken

as

a

constant.

If

name

is

not

specified,

LEAVE

ends

the

innermost

active

repetitive

loop.

If

name

is

specified,

it

must

be

the

name

of

the

control

variable

of

a

currently

active

loop

(which

may

be

the

innermost),

and

that

loop

(and

any

active

loops

inside

it)

is

then

ended.

Control

then

passes

to

the

clause

following

the

END

that

matches

the

DO

clause

of

the

selected

loop.

Example:

do

i=1

to

5

say

i

if

i=3

then

leave

end

/*

Displays

the

numbers:

"1"

"2"

"3"

*/

Notes:

1.

If

specified,

name

must

match

the

symbol

naming

the

control

variable

in

the

DO

clause

in

all

respects

except

case.

No

substitution

for

compound

variables

is

carried

out

when

the

comparison

is

made.

2.

A

loop

is

active

if

it

is

currently

being

processed.

If

a

subroutine

is

called

(or

an

INTERPRET

instruction

is

processed)

during

execution

of

a

loop,

the

loop

becomes

inactive

until

the

subroutine

has

returned

or

the

INTERPRET

instruction

has

completed.

LEAVE

cannot

be

used

to

end

an

inactive

loop.

3.

If

more

than

one

active

loop

uses

the

same

control

variable,

LEAVE

selects

the

innermost

loop.

LEAVE

Chapter

3.

Keyword

Instructions

43

NOP

��

NOP

;

��

NOP

is

a

dummy

instruction

that

has

no

effect.

It

can

be

useful

as

the

target

of

a

THEN

or

ELSE

clause:

Example:

Select

when

a=c

then

nop

/*

Do

nothing

*/

when

a>c

then

say

’A

>

C’

otherwise

say

’A

<

C’

end

Note:

Putting

an

extra

semicolon

instead

of

the

NOP

would

merely

insert

a

null

clause,

which

would

be

ignored.

The

second

WHEN

clause

would

be

seen

as

the

first

instruction

expected

after

the

THEN,

and

would,

therefore,

be

treated

as

a

syntax

error.

NOP

is

a

true

instruction,

however,

and

is,

therefore,

a

valid

target

for

the

THEN

clause.

NUMERIC

��

NUMERIC

DIGITS

expression1

SCIENTIFIC

FORM

ENGINEERING

expression2

VALUE

FUZZ

expression3

;

��

NUMERIC

changes

the

way

in

which

a

program

carries

out

arithmetic

operations.

The

options

of

this

instruction

are

described

in

detail

on

pages

123-130,

but

in

summary:

NUMERIC

DIGITS

controls

the

precision

to

which

arithmetic

operations

and

arithmetic

built-in

functions

are

evaluated.

If

you

omit

expression1,

the

precision

defaults

to

9

digits.

Otherwise,

expression1

must

evaluate

to

a

positive

whole

number

and

must

be

larger

than

the

current

NUMERIC

FUZZ

setting.

There

is

no

limit

to

the

value

for

DIGITS

(except

the

amount

of

storage

available),

but

note

that

high

precisions

are

likely

to

require

a

good

deal

of

processing

time.

It

is

recommended

that

you

use

the

default

value

wherever

possible.

You

can

retrieve

the

current

NUMERIC

DIGITS

setting

with

the

DIGITS

built-in

function.

See

“DIGITS”

on

page

75.

NUMERIC

FORM

controls

which

form

of

exponential

notation

REXX

uses

for

the

result

of

arithmetic

operations

and

arithmetic

built-in

functions.

This

may

be

either

SCIENTIFIC

(in

which

case

only

one,

nonzero

digit

appears

before

the

decimal

point)

or

ENGINEERING

(in

which

case

the

power

of

10

is

always

a

multiple

of

3).

The

default

is

SCIENTIFIC.

The

subkeywords

SCIENTIFIC

or

ENGINEERING

set

the

FORM

directly,

or

it

is

taken

from

the

result

of

evaluating

the

expression

(expression2)

that

follows

VALUE.

The

result

in

this

case

must

be

either

SCIENTIFIC

or

ENGINEERING.

You

can

omit

the

NOP

44

REXX/VSE

Reference

subkeyword

VALUE

if

expression2

does

not

begin

with

a

symbol

or

a

literal

string

(that

is,

if

it

starts

with

a

special

character,

such

as

an

operator

character

or

parenthesis).

You

can

retrieve

the

current

NUMERIC

FORM

setting

with

the

FORM

built-in

function.

See

“FORM”

on

page

77.

NUMERIC

FUZZ

controls

how

many

digits,

at

full

precision,

are

ignored

during

a

numeric

comparison

operation.

(See

page

128.)

If

you

omit

expression3,

the

default

is

0

digits.

Otherwise,

expression3

must

evaluate

to

0

or

a

positive

whole

number,

rounded

if

necessary

according

to

the

current

NUMERIC

DIGITS

setting,

and

must

be

smaller

than

the

current

NUMERIC

DIGITS

setting.

NUMERIC

FUZZ

temporarily

reduces

the

value

of

NUMERIC

DIGITS

by

the

NUMERIC

FUZZ

value

during

every

numeric

comparison.

The

numbers

are

subtracted

under

a

precision

of

DIGITS

minus

FUZZ

digits

during

the

comparison

and

are

then

compared

with

0.

You

can

retrieve

the

current

NUMERIC

FUZZ

setting

with

the

FUZZ

built-in

function.

See

“FUZZ”

on

page

78.

Note:

The

three

numeric

settings

are

automatically

saved

across

internal

and

external

subroutine

and

function

calls.

See

the

CALL

instruction

(page

31)

for

more

details.

OPTIONS

��

OPTIONS

expression

;

��

OPTIONS

passes

special

requests

or

parameters

to

the

language

processor.

For

example,

these

may

be

language

processor

options

or

perhaps

define

a

special

character

set.

The

expression

is

evaluated,

and

the

result

is

examined

one

word

at

a

time.

The

language

processor

converts

the

words

to

uppercase.

If

the

language

processor

recognizes

the

words,

then

they

are

obeyed.

Words

that

are

not

recognized

are

ignored

and

assumed

to

be

instructions

to

a

different

processor.

The

language

processor

recognizes

the

following

words:

ETMODE

specifies

that

literal

strings

and

symbols

and

comments

containing

DBCS

characters

are

checked

for

being

valid

DBCS

strings.

If

you

use

this

option,

it

must

be

the

first

instruction

of

the

program.

If

the

expression

is

an

external

function

call,

for

example

OPTIONS

’GETETMOD’(),

and

the

program

contains

DBCS

literal

strings,

enclose

the

name

of

the

function

in

quotation

marks

to

ensure

that

the

entire

program

is

not

scanned

before

the

option

takes

effect.

It

is

not

recommended

to

use

internal

function

calls

to

set

ETMODE

because

of

the

possibility

of

errors

in

interpreting

DBCS

literal

strings

in

the

program.

NOETMODE

specifies

that

literal

strings

and

symbols

and

comments

containing

DBCS

characters

are

not

checked

for

being

valid

DBCS

strings.

NOETMODE

is

the

default.

The

language

processor

ignores

this

option

unless

it

is

the

first

instruction

in

a

program.

EXMODE

specifies

that

instructions,

operators,

and

functions

handle

DBCS

data

in

mixed

strings

on

a

logical

character

basis.

DBCS

data

integrity

is

maintained.

NOEXMODE

specifies

that

any

data

in

strings

is

handled

on

a

byte

basis.

The

integrity

of

DBCS

characters,

if

any,

may

be

lost.

NOEXMODE

is

the

default.

NUMERIC

Chapter

3.

Keyword

Instructions

45

Notes:

1.

Because

of

the

language

processor’s

scanning

procedures,

you

must

place

an

OPTIONS

’ETMODE’

instruction

as

the

first

instruction

in

a

program

containing

DBCS

characters

in

literal

strings,

symbols,

or

comments.

If

you

do

not

place

OPTIONS

’ETMODE’

as

the

first

instruction

and

you

use

it

later

in

the

program,

you

receive

error

message

ARX0033I.

If

you

do

place

it

as

the

first

instruction

of

your

program,

all

subsequent

uses

are

ignored.

If

the

expression

contains

anything

that

would

start

a

label

search,

all

clauses

tokenized

during

the

label

search

process

are

tokenized

within

the

current

setting

of

ETMODE.

Therefore,

if

this

is

the

first

statement

in

the

program,

the

default

is

NOETMODE.

2.

To

ensure

proper

scanning

of

a

program

containing

DBCS

literals

and

DBCS

comments,

enter

the

words

ETMODE,

NOETMODE,

EXMODE,

and

NOEXMODE

as

literal

strings

(that

is,

enclosed

in

quotation

marks)

in

the

OPTIONS

instruction.

3.

The

EXMODE

setting

is

saved

and

restored

across

subroutine

and

function

calls.

4.

To

distinguish

DBCS

characters

from

1-byte

EBCDIC

characters,

sequences

of

DBCS

characters

are

enclosed

with

a

shift-out

(SO)

character

and

a

shift-in

(SI)

character.

The

hexadecimal

values

of

the

SO

and

SI

characters

are

X'0E'

and

X'0F',

respectively.

5.

When

you

specify

OPTIONS

’ETMODE’,

DBCS

characters

within

a

literal

string

are

excluded

from

the

search

for

a

closing

quotation

mark

in

literal

strings.

6.

The

words

ETMODE,

NOETMODE,

EXMODE,

and

NOEXMODE

can

appear

several

times

within

the

result.

The

one

that

takes

effect

is

determined

by

the

last

valid

one

specified

between

the

pairs

ETMODE-NOETMODE

and

EXMODE-NOEXMODE.

PARSE

��

PARSE

UPPER

ARG

EXTERNAL

NUMERIC

PULL

SOURCE

VALUE

WITH

expression

VAR

name

VERSION

template_list

;

��

PARSE

assigns

data

(from

various

sources)

to

one

or

more

variables

according

to

the

rules

of

parsing.

(See

Chapter

5,

“Parsing,”

on

page

109.)

The

template_list

is

often

a

single

template

but

may

be

several

templates

separated

by

commas.

If

specified,

each

template

is

a

list

of

symbols

separated

by

blanks

or

patterns

or

both.

Each

template

is

applied

to

a

single

source

string.

Specifying

multiple

templates

is

never

a

syntax

error,

but

only

the

PARSE

ARG

variant

can

supply

more

than

one

non-null

source

string.

See

page

117

for

information

on

parsing

multiple

source

strings.

If

you

do

not

specify

a

template,

no

variables

are

set

but

action

is

taken

to

prepare

the

data

for

parsing,

if

necessary.

Thus

for

PARSE

PULL,

a

data

string

is

removed

from

the

queue,

and

for

PARSE

VALUE,

expression

is

evaluated.

For

PARSE

VAR,

the

specified

variable

is

accessed.

If

it

does

not

have

a

value,

the

NOVALUE

condition

is

raised,

if

it

is

enabled.

If

you

specify

the

UPPER

option,

the

data

to

be

parsed

is

first

translated

to

uppercase

(that

is,

lowercase

a–z

to

uppercase

A–Z).

Otherwise,

no

uppercase

translation

takes

place

during

the

parsing.

The

following

list

describes

the

data

for

each

variant

of

the

PARSE

instruction.

OPTIONS

46

REXX/VSE

Reference

PARSE

ARG

parses

the

string

or

strings

passed

to

a

program

or

internal

routine

as

input

arguments.

(See

the

ARG

instruction

on

page

29

for

details

and

examples.)

Note:

You

can

also

retrieve

or

check

the

argument

strings

to

a

REXX

program

or

internal

routine

with

the

ARG

built-in

function.

PARSE

EXTERNAL

reads

from

the

current

input

stream.

ASSGN(STDIN)

returns

the

name

of

the

current

input

stream.

PARSE

EXTERNAL

returns

a

field

based

on

the

record

that

is

read.

If

the

current

input

stream

is

SYSIPT,

REXX/VSE

reads

SYSIPT

data

until

encountering

an

end-of-data

indicator,

such

as

/*.

If

SYSIPT

has

no

data,

then

PARSE

EXTERNAL

returns

a

null

string.

If

the

input

stream

is

SYSLOG,

then

REXX/VSE

solicits

input

from

the

operator’s

console.

The

operator

receives

a

message

containing

the

partition

number

and

is

asked

to

supply

some

input

to

the

program.

(If

you

are

sending

output

to

the

console,

code

a

pertinent

SAY

instruction

before

the

PARSE

EXTERNAL.)

PARSE

NUMERIC

The

current

numeric

controls

(as

set

by

the

NUMERIC

instruction,

see

page

44)

are

available.

These

controls

are

in

the

order

DIGITS

FUZZ

FORM.

Example:

Parse

Numeric

Var1

After

this

instruction,

Var1

would

be

equal

to:

9

0

SCIENTIFIC.

See

“NUMERIC”

on

page

44

and

the

built-in

functions

“DIGITS”

on

page

75,

“FORM”

on

page

77,

and

“FUZZ”

on

page

78.

PARSE

PULL

parses

the

next

string

from

the

external

data

queue.

If

the

external

data

queue

is

empty,

PARSE

PULL

reads

a

line

from

the

current

input

stream

and

the

program

pauses,

if

necessary,

until

a

line

is

complete.

ASSGN(STDIN)

returns

the

name

of

the

current

input

stream.

If

the

current

input

stream

is

SYSLOG,

the

PULL

instruction

gets

input

from

the

operator’s

console.

The

operator

receives

the

partition

number

and

is

asked

to

supply

some

input

to

the

program.

(If

you

are

sending

output

to

the

console,

code

a

pertinent

SAY

instruction

before

the

PARSE

PULL.)

You

can

add

data

to

the

head

or

tail

of

the

queue

by

using

the

PUSH

and

QUEUE

instructions,

respectively.

You

can

find

the

number

of

lines

currently

in

the

queue

with

the

QUEUED

built-in

function.

(See

page

81.)

The

queue

remains

active

as

long

as

the

language

processor

is

active.

for

the

life

of

the

job.

Other

programs

in

the

system

can

alter

the

queue

and

use

it

as

a

means

of

communication

with

programs

written

in

REXX.

See

also

the

PULL

instruction

on

page

51.

PULL

and

PARSE

PULL

read

from

the

data

stack.

In

REXX/VSE,

if

the

data

stack

is

empty,

PULL

and

PARSE

PULL

read

from

the

current

input

stream.

ASSGN(STDIN)

returns

the

name

of

the

current

input

stream.

If

the

input

stream

is

SYSIPT

REXX/VSE

reads

SYSIPT

data

until

encountering

an

end-of-data

indicator,

such

as

/*.

If

SYSIPT

has

no

data,

PULL

and

PARSE

PULL

return

a

null

string.

PARSE

SOURCE

parses

data

describing

the

source

of

the

program

running.

The

language

processor

returns

a

string

that

is

fixed

(does

not

change)

while

the

program

is

running.

The

string

parsed

has

the

following

general

structure:

system_id

how_called

program_name

additional_tokens

system_id

This

is

VSE.

how_called

The

string

COMMAND,

FUNCTION,

or

SUBROUTINE,

depending

on

whether

the

program

was

called

as

a

host

command

(for

example

as

a

host

command

from

ADDRESS

VSE),

a

function

call

in

an

expression,

or

through

the

CALL

instruction.

program_name

The

name

of

the

program

in

uppercase.

This

is

the

member

name

only

(no

library

or

sublibrary

name).

If

the

name

is

not

known,

this

token

is

a

question

mark

(?).

PARSE

Chapter

3.

Keyword

Instructions

47

additional_tokens

Note

that

for

all

of

the

additional

tokens,

if

the

information

is

not

known,

the

token

is

a

question

mark.

v

A

string

indicating

the

active

chain

from

which

the

program

was

loaded,

for

example

PROC.

v

The

name

of

the

file

from

which

the

program

was

loaded.

This

is

in

the

format:

library.sublibrary.membername.membertype.

v

Program

name

as

called,

not

translated

to

uppercase.

This

is

the

name

exactly

as

it

was

passed

to

the

language

processor.

v

Initial

(default)

environment

name

in

uppercase.

v

The

name

of

the

address

space

in

uppercase.

This

is

from

the

ADDRSPN

field

in

the

parameters

module.

v

The

token

from

the

PARSETOK

field

in

the

parameters

module

(see

page

396).

For

example,

the

string

parsed

might

look

like

one

of

the

following:

VSE

COMMAND

PARSE

PROC

LIZH.PROC.PARSE.PROC

PARSE

VSE

VSE

?

PARSE

VALUE

parses

the

data

that

is

the

result

of

evaluating

expression.

If

you

specify

no

expression,

then

the

null

string

is

used.

Note

that

WITH

is

a

subkeyword

in

this

context

and

cannot

be

used

as

a

symbol

within

expression.

Thus,

for

example:

PARSE

VALUE

time()

WITH

hours

’:’

mins

’:’

secs

gets

the

current

time

and

splits

it

into

its

constituent

parts.

PARSE

VAR

name

parses

the

value

of

the

variable

name.

The

name

must

be

a

symbol

that

is

valid

as

a

variable

name

(that

is,

it

cannot

start

with

a

period

or

a

digit).

Note

that

the

variable

name

is

not

changed

unless

it

appears

in

the

template,

so

that

for

example:

PARSE

VAR

string

word1

string

removes

the

first

word

from

string,

puts

it

in

the

variable

word1,

and

assigns

the

remainder

back

to

string.

Similarly

PARSE

UPPER

VAR

string

word1

string

in

addition

translates

the

data

from

string

to

uppercase

before

it

is

parsed.

PARSE

VERSION

parses

information

describing

the

language

level

and

the

date

of

the

language

processor.

This

information

consists

of

five

blank-delimited

words:

1.

A

word

describing

the

language,

which

is

the

string

″REXX370″

2.

The

language

level

description,

for

example,

3.48.

3.

Three

tokens

describing

the

language

processor

release

date,

for

example,

″31

May

1993″.

3

May

1993.

The

date,

month,

and

year

are

in

the

format

dd

mon

yyyy,

the

same

format

as

the

default

for

the

DATE

function.

PARSE

48

REXX/VSE

Reference

PROCEDURE

��

PROCEDURE

EXPOSE

name

(name)

;

��

PROCEDURE,

within

an

internal

routine

(subroutine

or

function),

protects

variables

by

making

them

unknown

to

the

instructions

that

follow

it.

After

a

RETURN

instruction

is

processed,

the

original

variables

environment

is

restored

and

any

variables

used

in

the

routine

(that

were

not

exposed)

are

dropped.

(An

exposed

variable

is

one

belonging

to

a

caller

of

a

routine

that

the

PROCEDURE

instruction

has

exposed.

When

the

routine

refers

to

or

alters

the

variable,

the

original

(caller’s)

copy

of

the

variable

is

used.)

An

internal

routine

need

not

include

a

PROCEDURE

instruction;

in

this

case

the

variables

it

is

manipulating

are

those

the

caller

″owns.″

If

used,

the

PROCEDURE

instruction

must

be

the

first

instruction

processed

after

the

CALL

or

function

invocation;

that

is,

it

must

be

the

first

instruction

following

the

label.

If

you

use

the

EXPOSE

option,

any

variable

specified

by

name

is

exposed.

Any

reference

to

it

(including

setting

and

dropping)

refers

to

the

variables

environment

the

caller

owns.

Hence,

the

values

of

existing

variables

are

accessible,

and

any

changes

are

persistent

even

on

RETURN

from

the

routine.

If

name

is

not

enclosed

in

parentheses,

it

identifies

a

variable

you

want

to

expose

and

must

be

a

symbol

that

is

a

valid

variable

name,

separated

from

any

other

name

with

one

or

more

blanks.

If

parentheses

enclose

a

single

name,

then,

after

the

variable

name

is

exposed,

the

value

of

name

is

immediately

used

as

a

subsidiary

list

of

variables.

(Blanks

are

not

necessary

either

inside

or

outside

the

parentheses,

but

you

can

add

them

if

desired.)

This

subsidiary

list

must

follow

the

same

rules

as

the

original

list

(that

is,

valid

variable

names,

separated

by

blanks)

except

that

no

parentheses

are

allowed.

Variables

are

exposed

in

sequence

from

left

to

right.

It

is

not

an

error

to

specify

a

name

more

than

one

time,

or

to

specify

a

name

that

the

caller

has

not

used

as

a

variable.

Any

variables

in

the

main

program

that

are

not

exposed

are

still

protected.

Therefore,

some

limited

set

of

the

caller’s

variables

can

be

made

accessible,

and

these

variables

can

be

changed

(or

new

variables

in

this

set

can

be

created).

All

these

changes

are

visible

to

the

caller

upon

RETURN

from

the

routine.

Example:

/*

This

is

the

main

REXX

program

*/

j=1;

z.1=’a’

call

toft

say

j

k

m

/*

Displays

"1

7

M"

*/

exit

/*

This

is

a

subroutine

*/

toft:

procedure

expose

j

k

z.j

say

j

k

z.j

/*

Displays

"1

K

a"

*/

k=7;

m=3

/*

Note:

M

is

not

exposed

*/

return

Note

that

if

Z.J

in

the

EXPOSE

list

had

been

placed

before

J,

the

caller’s

value

of

J

would

not

have

been

visible

at

that

time,

so

Z.1

would

not

have

been

exposed.

The

variables

in

a

subsidiary

list

are

also

exposed

from

left

to

right.

Example:

PROCEDURE

Chapter

3.

Keyword

Instructions

49

/*

This

is

the

main

REXX

program

*/

j=1;k=6;m=9

a

=’j

k

m’

call

test

exit

/*

This

is

a

subroutine

*/

test:

procedure

expose

(a)

/*

Exposes

A,

J,

K,

and

M

*/

say

a

j

k

m

/*

Displays

"j

k

m

1

6

9"

*/

return

You

can

use

subsidiary

lists

to

more

easily

expose

a

number

of

variables

at

one

time

or,

with

the

VALUE

built-in

function,

to

manipulate

dynamically

named

variables.

Example:

/*

This

is

the

main

REXX

program

*/

c=11;

d=12;

e=13

Showlist=’c

d’

/*

but

not

E

*/

call

Playvars

say

c

d

e

f

/*

Displays

"11

New

13

9"

*/

exit

/*

This

is

a

subroutine

*/

Playvars:

procedure

expose

(showlist)

f

say

word(showlist,2)

/*

Displays

"d"

*/

say

value(word(showlist,2),’New’)

/*

Displays

"12"

and

sets

new

value

*/

say

value(word(showlist,2))

/*

Displays

"New"

*/

e=8

/*

E

is

not

exposed

*/

f=9

/*

F

was

explicitly

exposed

*/

return

Specifying

a

stem

as

name

exposes

this

stem

and

all

possible

compound

variables

whose

names

begin

with

that

stem.

(See

page

21

for

information

about

stems.)

Example:

/*

This

is

the

main

REXX

program

*/

a.=11;

i=13;

j=15

i

=

i

+

1

C.5

=

’FRED’

call

lucky7

say

a.

a.1

i

j

c.

c.5

say

’You

should

see

11

7

14

15

C.

FRED’

exit

lucky7:Procedure

Expose

i

j

a.

c.

/*

This

exposes

I,

J,

and

all

variables

whose

*/

/*

names

start

with

A.

or

C.

*/

A.1=’7’

/*

This

sets

A.1

in

the

caller’s

*/

/*

environment,

even

if

it

did

not

*/

/*

previously

exist.

*/

return

Variables

may

be

exposed

through

several

generations

of

routines,

if

desired,

by

ensuring

that

they

are

included

on

all

intermediate

PROCEDURE

instructions.

See

the

CALL

instruction

and

function

descriptions

on

pages

31

and

61

for

details

and

examples

of

how

routines

are

called.

PROCEDURE

50

REXX/VSE

Reference

PULL

��

PULL

template_list

;

��

PULL

reads

a

string

from

the

head

of

the

external

data

queue.

It

is

just

a

short

form

of

the

instruction:

��

PARSE

UPPER

PULL

template_list

;

��

The

current

head-of-queue

is

read

as

one

string.

Without

a

template_list

specified,

no

further

action

is

taken

(and

the

string

is

thus

effectively

discarded).

If

specified,

a

template_list

is

usually

a

single

template,

which

is

a

list

of

symbols

separated

by

blanks

or

patterns

or

both.

(The

template_list

can

be

several

templates

separated

by

commas,

but

PULL

parses

only

one

source

string;

if

you

specify

several

comma-separated

templates,

variables

in

templates

other

than

the

first

one

are

assigned

the

null

string.)

The

string

is

translated

to

uppercase

(that

is,

lowercase

a–z

to

uppercase

A–Z)

and

then

parsed

into

variables

according

to

the

rules

described

in

the

section

on

parsing

(page

109).

Use

the

PARSE

PULL

instruction

if

you

do

not

desire

uppercase

translation.

The

REXX/VSE

implementation

of

the

external

data

queue

is

the

data

stack.

REXX

programs

can

use

the

data

stack.

In

REXX/VSE,

if

the

data

stack

is

empty,

PULL

reads

from

the

current

input

stream.

ASSGN(STDIN)

returns

the

name

of

the

current

input

stream.

If

the

current

input

stream

is

SYSIPT,

REXX/VSE

reads

SYSIPT

data

until

encountering

an

end-of-data

indicator,

such

as

/*.

If

SYSIPT

has

no

data,

the

PULL

instruction

returns

a

null

string.

If

the

current

input

stream

is

SYSLOG,

then

REXX/VSE

solicits

input

from

the

operator’s

console.

The

operator

receives

a

message

containing

the

partition

number

and

is

asked

to

supply

some

input

to

the

program.

(If

you

are

sending

output

to

the

console,

code

a

pertinent

SAY

instruction

before

the

PULL.)

The

length

of

each

element

you

can

place

onto

the

data

stack

can

be

up

to

one

byte

less

than

16

megabytes.

Example:

Say

’Do

you

want

to

erase

the

file?

Answer

Yes

or

No:’

Pull

answer

.

if

answer=’NO’

then

say

’The

file

will

not

be

erased.’

Here

the

dummy

placeholder,

a

period

(.),

is

used

on

the

template

to

isolate

the

first

word

the

user

enters.

The

QUEUED

built-in

function

(see

page

81)

returns

the

number

of

lines

currently

in

the

PULL

Chapter

3.

Keyword

Instructions

51

PUSH

��

PUSH

expression

;

��

PUSH

stacks

the

string

resulting

from

the

evaluation

of

expression

LIFO

(Last

In,

First

Out)

onto

the

external

data

queue.

If

you

do

not

specify

expression,

a

null

string

is

stacked.

Note:

The

REXX/VSE

implementation

of

the

external

data

queue

is

the

data

stack.

The

length

of

an

element

in

the

data

stack

can

be

up

to

one

byte

less

than

16

megabytes.

The

data

stack

contains

one

buffer

initially,

but

you

can

create

additional

buffers

using

MAKEBUF.

Example:

a=’Fred’

push

/*

Puts

a

null

line

onto

the

queue

*/

push

a

2

/*

Puts

"Fred

2"

onto

the

queue

*/

The

QUEUED

built-in

function

(described

on

page

81)

returns

the

number

of

lines

currently

in

the

external

data

queue.

QUEUE

��

QUEUE

expression

;

��

QUEUE

appends

the

string

resulting

from

expression

to

the

tail

of

the

external

data

queue.

That

is,

it

is

added

FIFO

(First

In,

First

Out).

If

you

do

not

specify

expression,

a

null

string

is

queued.

Note:

The

REXX/VSE

implementation

of

the

external

data

queue

is

the

data

stack.

The

length

of

an

element

in

the

data

stack

can

be

up

to

one

byte

less

than

16

megabytes.

The

data

stack

contains

one

buffer

initially,

but

you

can

create

additional

buffers

using

MAKEBUF.

Example:

a=’Toft’

queue

a

2

/*

Enqueues

"Toft

2"

*/

queue

/*

Enqueues

a

null

line

behind

the

last

*/

The

QUEUED

built-in

function

(described

on

page

81)

returns

the

number

of

lines

currently

in

the

external

data

queue.

PUSH

52

REXX/VSE

Reference

RETURN

��

RETURN

expression

;

��

RETURN

returns

control

(and

possibly

a

result)

from

a

REXX

program

or

internal

routine

to

the

point

of

its

invocation.

If

no

internal

routine

(subroutine

or

function)

is

active,

RETURN

and

EXIT

are

identical

in

their

effect

on

the

program

that

is

being

run.

(See

page

39.)

If

a

subroutine

is

being

run

(see

the

CALL

instruction),

expression

(if

any)

is

evaluated,

control

passes

back

to

the

caller,

and

the

REXX

special

variable

RESULT

is

set

to

the

value

of

expression.

If

expression

is

omitted,

the

special

variable

RESULT

is

dropped

(becomes

uninitialized).

The

various

settings

saved

at

the

time

of

the

CALL

(tracing,

addresses,

and

so

forth)

are

also

restored.

(See

page

31.)

If

a

function

is

being

processed,

the

action

taken

is

identical,

except

that

expression

must

be

specified

on

the

RETURN

instruction.

The

result

of

expression

is

then

used

in

the

original

expression

at

the

point

where

the

function

was

called.

See

the

description

of

functions

on

page

61

for

more

details.

If

a

PROCEDURE

instruction

was

processed

within

the

routine

(subroutine

or

internal

function),

all

variables

of

the

current

generation

are

dropped

(and

those

of

the

previous

generation

are

exposed)

after

expression

is

evaluated

and

before

the

result

is

used

or

assigned

to

RESULT.

SAY

��

SAY

expression

;

��

SAY

writes

a

line

to

the

current

output

stream.

ASSGN(STDOUT)

returns

the

name

of

the

current

output

stream.

If

the

output

stream

is

SYSLOG,

REXX/VSE

sends

the

data

to

the

operator’s

console.

(NOMSGIO

and

NOMSGWTO

in

the

PARMBLOCK

FLAGS

flag

byte

determine

the

REXX

processing

rules

that

affect

sending

this

data.

“Flags

and

Corresponding

Masks”

on

page

397

describes

the

flags.)

Along

with

the

actual

output,

REXX/VSE

sends

the

partition

number

of

the

job

producing

the

output.

Note:

VSE/ESA

replaces

any

non-displayable

character

with

a

blank

if

SYSLOG

is

receiving

the

output.

The

result

of

expression

may

be

of

any

length.

If

you

omit

expression,

the

null

string

is

written.

Example:

data=100

Say

data

’divided

by

4

=>’

data/4

/*

Displays:

"100

divided

by

4

=>

25"

*/

RETURN

Chapter

3.

Keyword

Instructions

53

SELECT

��

SELECT;

WHEN

expression

THEN

instruction

;

;

�

�

OTHERWISE

;

instruction

END

;

��

SELECT

conditionally

calls

one

of

several

alternative

instructions.

Each

expression

after

a

WHEN

is

evaluated

in

turn

and

must

result

in

0

or

1.

If

the

result

is

1,

the

instruction

following

the

associated

THEN

(which

may

be

a

complex

instruction

such

as

IF,

DO,

or

SELECT)

is

processed

and

control

then

passes

to

the

END.

If

the

result

is

0,

control

passes

to

the

next

WHEN

clause.

If

none

of

the

WHEN

expressions

evaluates

to

1,

control

passes

to

the

instructions,

if

any,

after

OTHERWISE.

In

this

situation,

the

absence

of

an

OTHERWISE

causes

an

error

(but

note

that

you

can

omit

the

instruction

list

that

follows

OTHERWISE).

Example:

balance=100

check=50

balance

=

balance

-

check

Select

when

balance

>

0

then

say

’Congratulations!

You

still

have’

balance

’dollars

left.’

when

balance

=

0

then

do

say

’Warning,

Balance

is

now

zero!

STOP

all

spending.’

say

"You

cut

it

close

this

month!

Hope

you

do

not

have

any"

say

"checks

left

outstanding."

end

Otherwise

say

"You

have

just

overdrawn

your

account."

say

"Your

balance

now

shows"

balance

"dollars."

say

"Oops!

Hope

the

bank

does

not

close

your

account."

end

/*

Select

*/

Notes:

1.

The

instruction

can

be

any

assignment,

command,

or

keyword

instruction,

including

any

of

the

more

complex

constructs

such

as

DO,

IF,

or

the

SELECT

instruction

itself.

2.

A

null

clause

is

not

an

instruction,

so

putting

an

extra

semicolon

(or

label)

after

a

THEN

clause

is

not

equivalent

to

putting

a

dummy

instruction.

The

NOP

instruction

is

provided

for

this

purpose.

3.

The

symbol

THEN

cannot

be

used

within

expression,

because

the

keyword

THEN

is

treated

differently,

in

that

it

need

not

start

a

clause.

This

allows

the

expression

on

the

WHEN

clause

to

be

ended

by

the

THEN

without

a

;

(delimiter)

being

required.

SELECT

54

REXX/VSE

Reference

SIGNAL

��

SIGNAL

labelname

expression

VALUE

OFF

ERROR

FAILURE

HALT

NOVALUE

SYNTAX

ON

ERROR

FAILURE

NAME

trapname

HALT

NOVALUE

SYNTAX

;

��

SIGNAL

causes

an

unusual

change

in

the

flow

of

control

(if

you

specify

labelname

or

VALUE

expression),

or

controls

the

trapping

of

certain

conditions

(if

you

specify

ON

or

OFF).

To

control

trapping,

you

specify

OFF

or

ON

and

the

condition

you

want

to

trap.

OFF

turns

off

the

specified

condition

trap.

ON

turns

on

the

specified

condition

trap.

All

information

on

condition

traps

is

contained

in

Chapter

7,

“Conditions

and

Condition

Traps,”

on

page

131.

To

change

the

flow

of

control,

a

label

name

is

derived

from

labelname

or

taken

from

the

result

of

evaluating

the

expression

after

VALUE.

The

labelname

you

specify

must

be

a

literal

string

or

symbol

that

is

taken

as

a

constant.

If

you

use

a

symbol

for

labelname,

the

search

is

independent

of

alphabetic

case.

If

you

use

a

literal

string,

the

characters

should

be

in

uppercase.

This

is

because

the

language

processor

translates

all

labels

to

uppercase,

regardless

of

how

you

enter

them

in

the

program.

Similarly,

for

SIGNAL

VALUE,

the

expression

must

evaluate

to

a

string

in

uppercase

or

the

language

processor

does

not

find

the

label.

You

can

omit

the

subkeyword

VALUE

if

expression

does

not

begin

with

a

symbol

or

literal

string

(that

is,

if

it

starts

with

a

special

character,

such

as

an

operator

character

or

parenthesis).

All

active

pending

DO,

IF,

SELECT,

and

INTERPRET

instructions

in

the

current

routine

are

then

ended

(that

is,

they

cannot

be

resumed).

Control

then

passes

to

the

first

label

in

the

program

that

matches

the

given

name,

as

though

the

search

had

started

from

the

top

of

the

program.

Example:

Signal

fred;

/*

Transfer

control

to

label

FRED

below

*/

....

....

Fred:

say

’Hi!’

Because

the

search

effectively

starts

at

the

top

of

the

program,

if

duplicates

are

present,

control

always

passes

to

the

first

occurrence

of

the

label

in

the

program.

When

control

reaches

the

specified

label,

the

line

number

of

the

SIGNAL

instruction

is

assigned

to

the

special

variable

SIGL.

This

can

aid

debugging

because

you

can

use

SIGL

to

determine

the

source

of

a

transfer

of

control

to

a

label.

Using

SIGNAL

VALUE

The

VALUE

form

of

the

SIGNAL

instruction

allows

a

branch

to

a

label

whose

name

is

determined

at

the

time

of

execution.

This

can

safely

effect

a

multi-way

CALL

(or

function

call)

to

internal

routines

because

any

DO

loops,

and

so

forth,

in

the

calling

routine

are

protected

against

termination

by

the

call

mechanism.

SIGNAL

Chapter

3.

Keyword

Instructions

55

Example:

fred=’PETE’

call

multiway

fred,

7

....

....

exit

Multiway:

procedure

arg

label

.

/*

One

word,

uppercase

*/

/*

Can

add

checks

for

valid

labels

here

*/

signal

value

label

/*

Transfer

control

to

wherever

*/

....

Pete:

say

arg(1)

’!’

arg(2)

/*

Displays:

"PETE

!

7"

*/

return

TRACE

TRACE

controls

the

tracing

action

(that

is,

how

much

is

sent

to

the

output

stream)

during

processing

of

a

REXX

program.

(Tracing

describes

some

or

all

of

the

clauses

in

a

program,

producing

descriptions

of

clauses

as

they

are

processed.)

TRACE

is

mainly

used

for

debugging.

Its

syntax

is

more

concise

than

that

of

other

REXX

instructions

because

TRACE

is

usually

entered

manually

during

interactive

debugging.

(This

is

a

form

of

tracing

in

which

the

user

can

interact

with

the

language

processor

while

the

program

is

running.)

For

this

use,

economy

of

key

strokes

is

especially

convenient.

(In

a

batch

environment,

the

interaction

is

between

the

current

input

stream

and

the

program.

ASSGN(STDOUT)

returns

the

name

of

the

current

output

stream,

and

ASSGN(STDIN)

returns

the

name

of

the

current

input

stream.

Tracing

and

interactive

debug

use

the

same

input

and

output

streams.)

TRACE

writes

to

the

current

output

stream.

If

the

output

stream

is

SYSLOG,

REXX/VSE

sends

the

data

to

the

operator’s

console.

Along

with

the

actual

output,

REXX/VSE

sends

the

partition

number

of

the

job

producing

the

output.

If

specified,

the

number

must

be

a

whole

number.

The

string

or

expression

evaluates

to:

��

TRACE

number

Normal

All

Commands

?

Error

!

Failure

Intermediates

Labels

Off

Results

Scan

;

��

Or,

alternatively:

��

TRACE

string

symbol

expression

VALUE

;

��

SIGNAL

56

REXX/VSE

Reference

v

A

numeric

option

v

One

of

the

valid

prefix

or

alphabetic

character

(word)

options

described

later

v

Null.

The

symbol

is

taken

as

a

constant,

and

is,

therefore:

v

A

numeric

option

v

One

of

the

valid

prefix

or

alphabetic

character

(word)

options

described

later.

The

option

that

follows

TRACE

or

the

result

of

evaluating

expression

determines

the

tracing

action.

You

can

omit

the

subkeyword

VALUE

if

expression

does

not

begin

with

a

symbol

or

a

literal

string

(that

is,

if

it

starts

with

a

special

character,

such

as

an

operator

or

parenthesis).

Alphabetic

Character

(Word)

Options

Although

you

can

enter

the

word

in

full,

only

the

capitalized

and

highlighted

letter

is

needed;

all

characters

following

it

are

ignored.

That

is

why

these

are

referred

to

as

alphabetic

character

options.

TRACE

actions

correspond

to

the

alphabetic

character

options

as

follows:

All

Traces

(that

is,

displays)

all

clauses

before

execution.

Commands

Traces

all

commands

before

execution.

If

the

command

results

in

an

error

or

failure,3

then

tracing

also

displays

the

return

code

from

the

command.

Error

Traces

any

command

resulting

in

an

error

or

failure3

after

execution,

together

with

the

return

code

from

the

command.

Failure

Traces

any

command

resulting

in

a

failure3

after

execution,

together

with

the

return

code

from

the

command.

This

is

the

same

as

the

Normal

option.

Intermediates

Traces

all

clauses

before

execution.

Also

traces

intermediate

results

during

evaluation

of

expressions

and

substituted

names.

Labels

Traces

only

labels

passed

during

execution.

This

is

especially

useful

with

debug

mode,

when

the

language

processor

pauses

after

each

label.

It

also

helps

the

user

to

note

all

internal

subroutine

calls

and

transfers

of

control

because

of

the

SIGNAL

instruction.

Normal

Traces

any

command

resulting

in

a

negative

return

code

after

execution,

together

with

the

return

code

from

the

command.

This

is

the

default

setting.

Off

Traces

nothing

and

resets

the

special

prefix

options

(described

later)

to

OFF.

Results

Traces

all

clauses

before

execution.

Displays

final

results

(contrast

with

Intermediates,

preceding)

of

evaluating

an

expression.

Also

displays

values

assigned

during

PULL,

ARG,

and

PARSE

instructions.

This

setting

is

recommended

for

general

debugging.

Scan

Traces

all

remaining

clauses

in

the

data

without

them

being

processed.

Basic

checking

(for

missing

ENDs

and

so

forth)

is

carried

out,

and

the

trace

is

formatted

as

usual.

This

is

valid

only

if

the

TRACE

S

clause

itself

is

not

nested

in

any

other

instruction

(including

INTERPRET

or

interactive

debug)

or

in

an

internal

routine.

Prefix

Options

The

prefixes

!

and

?

are

valid

either

alone

or

with

one

of

the

alphabetic

character

options.

You

can

specify

both

prefixes,

in

any

order,

on

one

TRACE

instruction.

You

can

specify

a

prefix

more

than

one

time,

if

desired.

Each

occurrence

of

a

prefix

on

an

instruction

reverses

the

action

of

the

previous

prefix.

The

prefix(es)

must

immediately

precede

the

option

(no

intervening

blanks).

The

prefixes

!

and

?

modify

tracing

and

execution

as

follows:

3. See

page

23

for

definitions

of

error

and

failure.

TRACE

Chapter

3.

Keyword

Instructions

57

?

Controls

interactive

debug.

During

usual

execution,

a

TRACE

option

with

a

prefix

of

?

causes

interactive

debug

to

be

switched

on.

(See

“Interactive

Debugging

of

Programs”

on

page

323

for

full

details

of

this

facility.)

While

interactive

debug

is

on,

interpretation

pauses

after

most

clauses

that

are

traced.

(If

you

are

working

from

the

operator’s

console,

these

pauses

occur.

If

you

are

using

files

for

input

and

output,

interactive

debug

reads

the

next

line

instead

of

pausing.

The

term

pause

is

used

generically

in

this

description.

It

means

the

activity

that

is

usual

for

the

input

stream

you

are

using.

Similarly,

this

description

mentions

information

you

enter;

this

means

information

you

input

using

the

method

appropriate

for

your

current

input

stream.)

For

example,

the

instruction

TRACE

?E

makes

the

language

processor

pause

for

input

after

executing

any

command

that

returns

an

error

(that

is,

a

nonzero

return

code).

If

the

current

input

stream

provides

a

null

string

as

input,

processing

continues

to

the

next

instructon.

(If

the

current

input

stream

is

SYSIPT,

the

language

processor

strips

trailing

blanks.)

The

current

input

stream

can

also

provide

an

instruction

for

execution.

When

interactive

debug

is

starting,

a

message

indicating

this

is

sent

to

the

current

output

stream.

While

interactive

debug

is

active,

it

reads

from

the

current

input

stream.

(If

the

current

input

stream

is

a

file,

it

is

read

one

line

at

a

time,

and

a

null

string

is

returned

when

there

are

no

more

lines

to

read.

If

the

current

input

stream

is

SYSLOG,

interactive

debug

reads

from

the

operator’s

console.)

Any

TRACE

instructions

in

the

program

being

traced

are

ignored.

(This

is

so

that

you

are

not

taken

out

of

interactive

debug

unexpectedly.)

You

can

switch

off

interactive

debug

in

several

ways:

v

Entering

TRACE

O

turns

off

all

tracing.

v

Entering

TRACE

with

no

options

restores

the

defaults—it

turns

off

interactive

debug

but

continues

tracing

with

TRACE

Normal

(which

traces

any

failing

command

after

execution)

in

effect.

v

Entering

TRACE

?

turns

off

interactive

debug

and

continues

tracing

with

the

current

option.

v

Entering

a

TRACE

instruction

with

a

?

prefix

before

the

option

turns

off

interactive

debug

and

continues

tracing

with

the

new

option.

Using

the

?

prefix,

therefore,

switches

you

alternately

in

or

out

of

interactive

debug.

(Because

the

language

processor

ignores

any

further

TRACE

statements

in

your

program

after

you

are

in

interactive

debug,

use

CALL

TRACE

’?’

to

turn

off

interactive

debug.)

Note:

You

can

start

interactive

debug

by

using

the

TS

immediate

command

in

a

REXX

program

or

by

specifying

TS

on

a

call

to

ARXIC

from

a

non-REXX

program.

See

Chapter

10,

“REXX/VSE

Commands,”

on

page

143

for

more

information

about

immediate

commands

and

“TS”

on

page

169

for

more

information

about

TS.

!

Inhibits

host

command

execution.

During

regular

execution,

a

TRACE

instruction

with

a

prefix

of

!

suspends

execution

of

all

subsequent

host

commands.

For

example,

TRACE

!C

causes

commands

to

be

traced

but

not

processed.

As

each

command

is

bypassed,

the

REXX

special

variable

RC

is

set

to

0.

You

can

use

this

action

for

debugging

potentially

destructive

programs.

(Note

that

this

does

not

inhibit

any

commands

entered

manually

while

in

interactive

debug.

These

are

always

processed.)

You

can

switch

off

command

inhibition,

when

it

is

in

effect,

by

issuing

a

TRACE

instruction

with

a

prefix

!.

Repeated

use

of

the

!

prefix,

therefore,

switches

you

alternately

in

or

out

of

command

inhibition

mode.

Or,

you

can

turn

off

command

inhibition

at

any

time

by

issuing

TRACE

O

or

TRACE

with

no

options.

Numeric

Options

If

interactive

debug

is

active

and

if

the

option

specified

is

a

positive

whole

number

(or

an

expression

that

evaluates

to

a

positive

whole

number),

that

number

indicates

the

number

of

debug

pauses

to

be

skipped

over.

(See

separate

section

in

“Interactive

Debugging

of

Programs”

on

page

323,

for

further

information.)

However,

if

the

option

is

a

negative

whole

number

(or

an

expression

that

evaluates

to

a

negative

whole

TRACE

58

REXX/VSE

Reference

number),

all

tracing,

including

debug

pauses,

is

temporarily

inhibited

for

the

specified

number

of

clauses.

For

example,

TRACE

-100

means

that

the

next

100

clauses

that

would

usually

be

traced

are

not,

in

fact,

displayed.

After

that,

tracing

resumes

as

before.

Tracing

Tips

1.

When

a

loop

is

being

traced,

the

DO

clause

itself

is

traced

on

every

iteration

of

the

loop.

2.

You

can

retrieve

the

trace

actions

currently

in

effect

by

using

the

TRACE

built-in

function

(see

“TRACE”

on

page

88).

3.

If

available

at

the

time

of

execution,

comments

associated

with

a

traced

clause

are

included

in

the

trace,

as

are

comments

in

a

null

clause,

if

you

specify

TRACE

A,

R,

I,

or

S.

4.

Commands

traced

before

execution

always

have

the

final

value

of

the

command

(that

is,

the

string

passed

to

the

environment),

and

the

clause

generating

it

produced

in

the

traced

output.

5.

Trace

actions

are

automatically

saved

across

subroutine

and

function

calls.

See

the

CALL

instruction

(page

31)

for

more

details.

A

Typical

Example

One

of

the

most

common

traces

you

will

use

is:

TRACE

?R

/*

Interactive

debug

is

switched

on

if

it

was

off,

*/

/*

and

tracing

Results

of

expressions

begins.

*/

Format

of

TRACE

Output

Every

clause

traced

appears

with

automatic

formatting

(indentation)

according

to

its

logical

depth

of

nesting

and

so

forth.

The

language

processor

may

replace

any

control

codes

in

the

encoding

of

data

(for

example,

EBCDIC

values

less

than

’40’x)

with

a

question

mark

(?)

to

avoid

console

interference.

Results

(if

requested)

are

indented

an

extra

two

spaces

and

are

enclosed

in

double

quotation

marks

so

that

leading

and

trailing

blanks

are

apparent.

A

line

number

precedes

the

first

clause

traced

on

any

line.

If

the

line

number

is

greater

than

99999,

the

language

processor

truncates

it

on

the

left,

and

the

?

prefix

indicates

the

truncation.

For

example,

the

line

number

100354

appears

as

?00354.

All

lines

displayed

during

tracing

have

a

three-character

prefix

to

identify

the

type

of

data

being

traced.

These

can

be:

-

Identifies

the

source

of

a

single

clause,

that

is,

the

data

actually

in

the

program.

+++

Identifies

a

trace

message.

This

may

be

the

nonzero

return

code

from

a

command,

the

prompt

message

when

interactive

debug

is

entered,

an

indication

of

a

syntax

error

when

in

interactive

debug,

or

the

traceback

clauses

after

a

syntax

error

in

the

program

(see

below).

>>>

Identifies

the

result

of

an

expression

(for

TRACE

R)

or

the

value

assigned

to

a

variable

during

parsing,

or

the

value

returned

from

a

subroutine

call.

>.>

Identifies

the

value

“assigned”

to

a

placeholder

during

parsing

(see

page

110).

The

following

prefixes

are

used

only

if

TRACE

Intermediates

is

in

effect:

>C>

The

data

traced

is

the

name

of

a

compound

variable,

traced

after

substitution

and

before

use,

provided

that

the

name

had

the

value

of

a

variable

substituted

into

it.

>F>

The

data

traced

is

the

result

of

a

function

call.

>L>

The

data

traced

is

a

literal

(string,

uninitialized

variable,

or

constant

symbol).

>O>

The

data

traced

is

the

result

of

an

operation

on

two

terms.

>P>

The

data

traced

is

the

result

of

a

prefix

operation.

>V>

The

data

traced

is

the

contents

of

a

variable.

TRACE

Chapter

3.

Keyword

Instructions

59

If

no

option

is

specified

on

a

TRACE

instruction,

or

if

the

result

of

evaluating

the

expression

is

null,

the

default

tracing

actions

are

restored.

The

defaults

are

TRACE

N

,

command

inhibition

(!)

off,

and

interactive

debug

(?)

off.

Following

a

syntax

error

that

SIGNAL

ON

SYNTAX

does

not

trap,

the

clause

in

error

is

always

traced.

Any

CALL

or

INTERPRET

or

function

invocations

active

at

the

time

of

the

error

are

also

traced.

If

an

attempt

to

transfer

control

to

a

label

that

could

not

be

found

caused

the

error,

that

label

is

also

traced.

The

special

trace

prefix

+++

identifies

these

traceback

lines.

UPPER

��

UPPER

variable

;

��

UPPER

translates

the

contents

of

one

or

more

variables

to

uppercase.

The

variables

are

translated

in

sequence

from

left

to

right.

The

variable

is

a

symbol,

separated

from

any

other

variables

by

one

or

more

blanks

or

comments.

Specify

only

simple

symbols

and

compound

symbols.

(See

page

20.)

Using

this

instruction

is

more

convenient

than

repeatedly

invoking

the

TRANSLATE

built-in

function.

Example:

a1=’Hello’;

b1=’there’

Upper

a1

b1

say

a1

b1

/*

Displays

"HELLO

THERE"

*/

An

error

is

signalled

if

a

constant

symbol

or

a

stem

is

encountered.

Using

an

uninitialized

variable

is

not

an

error,

and

has

no

effect,

except

that

it

is

trapped

if

the

NOVALUE

condition

(SIGNAL

ON

NOVALUE)

is

enabled.

For

more

complete

information,

see

the

VM/ESA:

REXX/VM

Reference,

SC24-5770.

TRACE

60

REXX/VSE

Reference

Chapter

4.

Functions

A

function

is

an

internal,

built-in,

or

external

routine

that

returns

a

single

result

string.

(A

subroutine

is

a

function

that

is

an

internal,

built-in,

or

external

routine

that

may

or

may

not

return

a

result

and

that

is

called

with

the

CALL

instruction.)

Syntax

A

function

call

is

a

term

in

an

expression

that

calls

a

routine

that

carries

out

some

procedures

and

returns

a

string.

This

string

replaces

the

function

call

in

the

continuing

evaluation

of

the

expression.

You

can

include

function

calls

to

internal

and

external

routines

in

an

expression

anywhere

that

a

data

term

(such

as

a

string)

would

be

valid,

using

the

notation:

��

function_name(

,

expression

)

��

The

function_name

is

a

literal

string

or

a

single

symbol,

which

is

taken

to

be

a

constant.

There

can

be

up

to

an

implementation-defined

maximum

number

of

expressions,

separated

by

commas,

between

the

parentheses.

In

REXX/VSE,

the

implementation

maximum

is

up

to

20

expressions.

These

expressions

are

called

the

arguments

to

the

function.

Each

argument

expression

may

include

further

function

calls.

Note

that

the

left

parenthesis

must

be

adjacent

to

the

name

of

the

function,

with

no

blank

in

between,

or

the

construct

is

not

recognized

as

a

function

call.

(A

blank

operator

would

be

assumed

at

this

point

instead.)

Only

a

comment

(which

has

no

effect)

can

appear

between

the

name

and

the

left

parenthesis.

The

arguments

are

evaluated

in

turn

from

left

to

right

and

the

resulting

strings

are

all

then

passed

to

the

function.

This

then

runs

some

operation

(usually

dependent

on

the

argument

strings

passed,

though

arguments

are

not

mandatory)

and

eventually

returns

a

single

character

string.

This

string

is

then

included

in

the

original

expression

just

as

though

the

entire

function

reference

had

been

replaced

by

the

name

of

a

variable

whose

value

is

that

returned

data.

For

example,

the

function

SUBSTR

is

built-in

to

the

language

processor

(see

page

85)

and

could

be

used

as:

N1=’abcdefghijk’

Z1=’Part

of

N1

is:

’substr(N1,2,7)

/*

Sets

Z1

to

’Part

of

N1

is:

bcdefgh’

*/

A

function

may

have

a

variable

number

of

arguments.

You

need

to

specify

only

those

that

are

required.

For

example,

SUBSTR(’ABCDEF’,4)

would

return

DEF.

Functions

and

Subroutines

The

function

calling

mechanism

is

identical

with

that

for

subroutines.

The

only

difference

between

functions

and

subroutines

is

that

functions

must

return

data,

whereas

subroutines

need

not.

The

following

types

of

routines

can

be

called

as

functions:

Internal

If

the

routine

name

exists

as

a

label

in

the

program,

the

current

processing

status

is

saved,

so

that

it

is

later

possible

to

return

to

the

point

of

invocation

to

resume

execution.

Control

is

then

passed

to

the

first

label

in

the

program

that

matches

the

name.

As

with

a

routine

called

by

the

CALL

instruction,

various

other

status

information

(TRACE

and

©

Copyright

IBM

Corp.

1988,

2004

61

NUMERIC

settings

and

so

forth)

is

saved

too.

See

the

CALL

instruction

(page

31)

for

details

about

this.

You

can

use

SIGNAL

and

CALL

together

to

call

an

internal

routine

whose

name

is

determined

at

the

time

of

execution;

this

is

known

as

a

multi-way

call

(see

page

55).

If

you

are

calling

an

internal

routine

as

a

function,

you

must

specify

an

expression

in

any

RETURN

instruction

to

return

from

it.

This

is

not

necessary

if

it

is

called

as

a

subroutine.

Example:

/*

Recursive

internal

function

execution...

*/

arg

x

say

x’!

=’

factorial(x)

exit

factorial:

procedure

/*

Calculate

factorial

by

*/

arg

n

/*

recursive

invocation.

*/

if

n=0

then

return

1

return

factorial(n-1)

*

n

FACTORIAL

is

unusual

in

that

it

calls

itself

(this

is

recursive

invocation).

The

PROCEDURE

instruction

ensures

that

a

new

variable

n

is

created

for

each

invocation.

Note:

When

there

is

a

search

for

a

routine,

the

language

processor

currently

scans

the

statements

in

the

REXX

program

to

locate

the

internal

label.

During

the

search,

the

language

processor

may

encounter

a

syntax

error.

As

a

result,

a

syntax

error

may

be

raised

on

a

statement

different

from

the

original

line

being

processed.

Built-in

These

functions

are

always

available

and

are

defined

in

the

next

section

of

this

manual.

(See

pages

63—94.)

External

You

can

write

or

use

functions

that

are

external

to

your

program

and

to

the

language

processor.

An

external

routine

can

be

written

in

any

language

(including

REXX)

that

supports

the

system-dependent

interfaces

the

language

processor

uses

to

call

it.

You

can

call

a

REXX

program

as

a

function

and,

in

this

case,

pass

more

than

one

argument

string.

The

ARG

or

PARSE

ARG

instructions

or

the

ARG

built-in

function

can

retrieve

these

argument

strings.

When

called

as

a

function,

a

program

must

return

data

to

the

caller.

For

information

about

writing

external

functions

and

subroutines

and

the

system

dependent

interfaces,

see

“External

Functions

and

Subroutines

and

Function

Packages”

on

page

348.

Notes:

1.

Calling

an

external

REXX

program

as

a

function

is

similar

to

calling

an

internal

routine.

The

external

routine

is,

however,

an

implicit

PROCEDURE

in

that

all

the

caller’s

variables

are

always

hidden

and

the

status

of

internal

values

(NUMERIC

settings

and

so

forth)

start

with

their

defaults

(rather

than

inheriting

those

of

the

caller).

2.

Other

REXX

programs

can

be

called

as

functions.

You

can

use

either

EXIT

or

RETURN

to

leave

the

called

REXX

program,

and

in

either

case

you

must

specify

an

expression.

3.

With

care,

you

can

use

the

INTERPRET

instruction

to

process

a

function

with

a

variable

function

name.

However,

you

should

avoid

this

if

possible

because

it

reduces

the

clarity

of

the

program.

Search

Order

The

search

order

for

functions

is:

internal

routines

take

precedence,

then

built-in

functions,

and

finally

external

functions.

Internal

routines

are

not

used

if

the

function

name

is

given

as

a

literal

string

(that

is,

specified

in

quotation

marks);

in

this

case

the

function

must

be

built-in

or

external.

This

lets

you

usurp

the

name

of,

say,

a

built-in

function

to

extend

its

capabilities,

yet

still

be

able

to

call

the

built-in

function

when

needed.

Functions

62

REXX/VSE

Reference

Example:

/*

This

internal

DATE

function

modifies

the

*/

/*

default

for

the

DATE

function

to

standard

date.

*/

date:

procedure

arg

in

if

in=’’

then

in=’Standard’

return

’DATE’(in)

Built-in

functions

have

uppercase

names,

and

so

the

name

in

the

literal

string

must

be

in

uppercase

for

the

search

to

succeed,

as

in

the

example.

The

same

is

usually

true

of

external

functions.

The

search

order

for

external

functions

and

subroutines

follows.

1.

Check

the

following

function

packages

defined

for

the

language

processor

environment:

v

User

function

packages

v

Local

function

packages

v

System

function

packages.

2.

If

a

match

to

the

function

name

is

not

found,

the

function

search

order

flag

(FUNCSOFL)

is

checked.

The

FUNCSOFL

flag

(see

page

398)

indicates

whether

to

search

the

active

PHASE

chain

or

the

PROC

chain

first.

If

the

flag

is

off,

check

the

active

PHASE

chain.

If

a

match

to

the

function

name

is

not

found,

search

the

PROC

chain.

If

the

flag

is

on,

search

the

PROC

chain.

If

a

match

to

the

function

name

is

not

found,

check

the

active

PHASE

chain.

Note:

By

default,

the

FUNCSOFL

flag

is

off,

which

indicates

searching

the

active

PHASE

chain

before

searching

for

a

REXX

program.

Errors

During

Execution

If

an

external

or

built-in

function

detects

an

error

of

any

kind,

the

language

processor

is

informed,

and

a

syntax

error

results.

Execution

of

the

clause

that

included

the

function

call

is,

therefore,

ended.

Similarly,

if

an

external

function

fails

to

return

data

correctly,

the

language

processor

detects

this

and

reports

it

as

an

error.

If

a

syntax

error

occurs

during

the

execution

of

an

internal

function,

it

can

be

trapped

(using

SIGNAL

ON

SYNTAX)

and

recovery

may

then

be

possible.

If

the

error

is

not

trapped,

the

program

is

ended.

Built-in

Functions

REXX

provides

a

rich

set

of

built-in

functions,

including

character

manipulation,

conversion,

and

information

functions.

In

addition

to

the

functions

SAA

REXX

provides,

REXX/VSE

has

six

additional

built-in

functions:

EXTERNALS,

FIND,

INDEX,

JUSTIFY,

LINESIZE,

and

USERID.

If

you

plan

to

write

REXX

programs

that

run

on

other

SAA

environments,

note

that

these

functions

are

not

available

to

all

the

environments.

In

this

section,

these

six

built-in

functions

are

identified

as

non-SAA

functions.

In

addition

to

the

built-in

functions,

REXX/VSE

also

provides

external

functions

that

you

can

use

to

perform

different

tasks.

“External

Functions”

on

page

96

describes

these

functions.

The

following

are

general

notes

on

the

built-in

functions:

v

The

parentheses

in

a

function

are

always

needed,

even

if

no

arguments

are

required.

The

first

parenthesis

must

follow

the

name

of

the

function

with

no

space

in

between.

v

The

built-in

functions

work

internally

with

NUMERIC

DIGITS

9

and

NUMERIC

FUZZ

0

and

are

unaffected

by

changes

to

the

NUMERIC

settings,

except

where

stated.

v

Any

argument

named

as

a

string

may

be

a

null

string.

Functions

Chapter

4.

Functions

63

v

If

an

argument

specifies

a

length,

it

must

be

a

positive

whole

number

or

zero.

If

it

specifies

a

start

character

or

word

in

a

string,

it

must

be

a

positive

whole

number,

unless

otherwise

stated.

v

Where

the

last

argument

is

optional,

you

can

always

include

a

comma

to

indicate

you

have

omitted

it;

for

example,

DATATYPE(1,),

like

DATATYPE(1),

would

return

NUM.

v

If

you

specify

a

pad

character,

it

must

be

exactly

one

character

long.

(A

pad

character

extends

a

string,

usually

on

the

right.

For

an

example,

see

the

LEFT

built-in

function

on

page

79.)

v

If

a

function

has

an

option

you

can

select

by

specifying

the

first

character

of

a

string,

that

character

can

be

in

upper-

or

lowercase.

v

A

number

of

the

functions

described

in

this

chapter

support

DBCS.

A

complete

list

and

descriptions

of

these

functions

are

in

Chapter

22,

“Double-Byte

Character

Set

(DBCS)

Support,”

on

page

481.

ABBREV

(Abbreviation)

��

ABBREV(information,info

,length

)

��

returns

1

if

info

is

equal

to

the

leading

characters

of

information

and

the

length

of

info

is

not

less

than

length.

Returns

0

if

either

of

these

conditions

is

not

met.

If

you

specify

length,

it

must

be

a

positive

whole

number

or

zero.

The

default

for

length

is

the

number

of

characters

in

info.

Here

are

some

examples:

ABBREV(’Print’,’Pri’)

->

1

ABBREV(’PRINT’,’Pri’)

->

0

ABBREV(’PRINT’,’PRI’,4)

->

0

ABBREV(’PRINT’,’PRY’)

->

0

ABBREV(’PRINT’,’’)

->

1

ABBREV(’PRINT’,’’,1)

->

0

Note:

A

null

string

always

matches

if

a

length

of

0

(or

the

default)

is

used.

This

allows

a

default

keyword

to

be

selected

automatically

if

desired;

for

example:

say

’Enter

option:’;

pull

option

.

select

/*

keyword1

is

to

be

the

default

*/

when

abbrev(’keyword1’,option)

then

...

when

abbrev(’keyword2’,option)

then

...

...

otherwise

nop;

end;

ABS

(Absolute

Value)

��

ABS(number)

��

returns

the

absolute

value

of

number.

The

result

has

no

sign

and

is

formatted

according

to

the

current

NUMERIC

settings.

Here

are

some

examples:

ABS(’12.3’)

->

12.3

ABS(’

-0.307’)

->

0.307

Functions

64

REXX/VSE

Reference

ADDRESS

��

ADDRESS()

��

returns

the

name

of

the

environment

to

which

commands

are

currently

being

submitted.

See

the

ADDRESS

instruction

(page

28)

for

more

information.

Trailing

blanks

are

removed

from

the

result.

Here

are

some

examples:

ADDRESS()

->

’VSE’

/*

default

under

VSE

*/

ADDRESS()

->

’POWER’

/*

assumes

address

change

*/

ARG

(Argument)

��

ARG(

n

,option

)

��

returns

an

argument

string

or

information

about

the

argument

strings

to

a

program

or

internal

routine.

If

you

do

not

specify

n,

the

number

of

arguments

passed

to

the

program

or

internal

routine

is

returned.

If

you

specify

only

n,

the

nth

argument

string

is

returned.

If

the

argument

string

does

not

exist,

the

null

string

is

returned.

The

n

must

be

a

positive

whole

number.

If

you

specify

option,

ARG

tests

for

the

existence

of

the

nth

argument

string.

The

following

are

valid

options.

(Only

the

capitalized

and

highlighted

letter

is

needed;

all

characters

following

it

are

ignored.)

Exists

returns

1

if

the

nth

argument

exists;

that

is,

if

it

was

explicitly

specified

when

the

routine

was

called.

Returns

0

otherwise.

Omitted

returns

1

if

the

nth

argument

was

omitted;

that

is,

if

it

was

not

explicitly

specified

when

the

routine

was

called.

Returns

0

otherwise.

Here

are

some

examples:

/*

following

"Call

name;"

(no

arguments)

*/

ARG()

->

0

ARG(1)

->

’’

ARG(2)

->

’’

ARG(1,’e’)

->

0

ARG(1,’O’)

->

1

/*

following

"Call

name

’a’,,’b’;"

*/

ARG()

->

3

ARG(1)

->

’a’

ARG(2)

->

’’

ARG(3)

->

’b’

ARG(n)

->

’’

/*

for

n>=4

*/

ARG(1,’e’)

->

1

ARG(2,’E’)

->

0

ARG(2,’O’)

->

1

ARG(3,’o’)

->

0

ARG(4,’o’)

->

1

Functions

Chapter

4.

Functions

65

Notes:

1.

The

number

of

argument

strings

is

the

largest

number

n

for

which

ARG(n,’e’)

would

return

1

or

0

if

there

are

no

explicit

argument

strings.

That

is,

it

is

the

position

of

the

last

explicitly

specified

argument

string.

2.

Programs

called

as

commands

can

have

only

0

or

1

argument

strings.

The

program

has

0

argument

strings

if

it

is

called

with

the

name

only

and

has

1

argument

string

if

anything

else

(including

blanks)

is

included

with

the

command.

3.

You

can

retrieve

and

directly

parse

the

argument

strings

to

a

program

or

internal

routine

with

the

ARG

or

PARSE

ARG

instructions.

(See

pages

29,

46,

and

109.)

ASSGN

ASSGN

is

an

external

function.

See

page

97

for

a

description.

BITAND

(Bit

by

Bit

AND)

��

BITAND(string1

,

string2

,pad

)

��

returns

a

string

composed

of

the

two

input

strings

logically

ANDed

together,

bit

by

bit.

(The

encodings

of

the

strings

are

used

in

the

logical

operation.)

The

length

of

the

result

is

the

length

of

the

longer

of

the

two

strings.

If

no

pad

character

is

provided,

the

AND

operation

stops

when

the

shorter

of

the

two

strings

is

exhausted,

and

the

unprocessed

portion

of

the

longer

string

is

appended

to

the

partial

result.

If

pad

is

provided,

it

extends

the

shorter

of

the

two

strings

on

the

right

before

carrying

out

the

logical

operation.

The

default

for

string2

is

the

zero

length

(null)

string.

Here

are

some

examples:

BITAND(’12’x)

->

’12’x

BITAND(’73’x,’27’x)

->

’23’x

BITAND(’13’x,’5555’x)

->

’1155’x

BITAND(’13’x,’5555’x,’74’x)

->

’1154’x

BITAND(’pQrS’,,’BF’x)

->

’pqrs’

/*

EBCDIC

*/

BITOR

(Bit

by

Bit

OR)

��

BITOR(string1

,

string2

,pad

)

��

returns

a

string

composed

of

the

two

input

strings

logically

inclusive-ORed

together,

bit

by

bit.

(The

encodings

of

the

strings

are

used

in

the

logical

operation.)

The

length

of

the

result

is

the

length

of

the

longer

of

the

two

strings.

If

no

pad

character

is

provided,

the

OR

operation

stops

when

the

shorter

of

the

two

strings

is

exhausted,

and

the

unprocessed

portion

of

the

longer

string

is

appended

to

the

partial

result.

If

pad

is

provided,

it

extends

the

shorter

of

the

two

strings

on

the

right

before

carrying

out

the

logical

operation.

The

default

for

string2

is

the

zero

length

(null)

string.

Here

are

some

examples:

BITOR(’12’x)

->

’12’x

BITOR(’15’x,’24’x)

->

’35’x

BITOR(’15’x,’2456’x)

->

’3556’x

Functions

66

REXX/VSE

Reference

BITOR(’15’x,’2456’x,’F0’x)

->

’35F6’x

BITOR(’1111’x,,’4D’x)

->

’5D5D’x

BITOR(’Fred’,,’40’x)

->

’FRED’

/*

EBCDIC

*/

BITXOR

(Bit

by

Bit

Exclusive

OR)

��

BITXOR(string1

,

string2

,pad

)

��

returns

a

string

composed

of

the

two

input

strings

logically

eXclusive-ORed

together,

bit

by

bit.

(The

encodings

of

the

strings

are

used

in

the

logical

operation.)

The

length

of

the

result

is

the

length

of

the

longer

of

the

two

strings.

If

no

pad

character

is

provided,

the

XOR

operation

stops

when

the

shorter

of

the

two

strings

is

exhausted,

and

the

unprocessed

portion

of

the

longer

string

is

appended

to

the

partial

result.

If

pad

is

provided,

it

extends

the

shorter

of

the

two

strings

on

the

right

before

carrying

out

the

logical

operation.

The

default

for

string2

is

the

zero

length

(null)

string.

Here

are

some

examples:

BITXOR(’12’x)

->

’12’x

BITXOR(’12’x,’22’x)

->

’30’x

BITXOR(’1211’x,’22’x)

->

’3011’x

BITXOR(’1111’x,’444444’x)

->

’555544’x

BITXOR(’1111’x,’444444’x,’40’x)

->

’555504’x

BITXOR(’1111’x,,’4D’x)

->

’5C5C’x

BITXOR(’C711’x,’222222’x,’

’)

->

’E53362’x

/*

EBCDIC

*/

B2X

(Binary

to

Hexadecimal)

��

B2X(binary_string)

��

returns

a

string,

in

character

format,

that

represents

binary_string

converted

to

hexadecimal.

The

binary_string

is

a

string

of

binary

(0

or

1)

digits.

It

can

be

of

any

length.

You

can

optionally

include

blanks

in

binary_string

(at

four-digit

boundaries

only,

not

leading

or

trailing)

to

aid

readability;

they

are

ignored.

The

returned

string

uses

uppercase

alphabetics

for

the

values

A–F,

and

does

not

include

blanks.

If

binary_string

is

the

null

string,

B2X

returns

a

null

string.

If

the

number

of

binary

digits

in

binary_string

is

not

a

multiple

of

four,

then

up

to

three

0

digits

are

added

on

the

left

before

the

conversion

to

make

a

total

that

is

a

multiple

of

four.

Here

are

some

examples:

B2X(’11000011’)

->

’C3’

B2X(’10111’)

->

’17’

B2X(’101’)

->

’5’

B2X(’1

1111

0000’)

->

’1F0’

You

can

combine

B2X

with

the

functions

X2D

and

X2C

to

convert

a

binary

number

into

other

forms.

For

example:

X2D(B2X(’10111’))

->

’23’

/*

decimal

23

*/

Functions

Chapter

4.

Functions

67

CENTER/CENTRE

��

CENTER(

CENTRE(

string,length

,pad

)

��

returns

a

string

of

length

length

with

string

centered

in

it,

with

pad

characters

added

as

necessary

to

make

up

length.

The

length

must

be

a

positive

whole

number

or

zero.

The

default

pad

character

is

blank.

If

the

string

is

longer

than

length,

it

is

truncated

at

both

ends

to

fit.

If

an

odd

number

of

characters

are

truncated

or

added,

the

right-hand

end

loses

or

gains

one

more

character

than

the

left-hand

end.

Here

are

some

examples:

CENTER(abc,7)

->

’

ABC

’

CENTER(abc,8,’-’)

->

’--ABC---’

CENTRE(’The

blue

sky’,8)

->

’e

blue

s’

CENTRE(’The

blue

sky’,7)

->

’e

blue

’

Note:

To

avoid

errors

because

of

the

difference

between

British

and

American

spellings,

this

function

can

be

called

either

CENTRE

or

CENTER.

COMPARE

��

COMPARE(string1,string2

,pad

)

��

returns

0

if

the

strings,

string1

and

string2,

are

identical.

Otherwise,

returns

the

position

of

the

first

character

that

does

not

match.

The

shorter

string

is

padded

on

the

right

with

pad

if

necessary.

The

default

pad

character

is

a

blank.

Here

are

some

examples:

COMPARE(’abc’,’abc’)

->

0

COMPARE(’abc’,’ak’)

->

2

COMPARE(’ab

’,’ab’)

->

0

COMPARE(’ab

’,’ab’,’

’)

->

0

COMPARE(’ab

’,’ab’,’x’)

->

3

COMPARE(’ab--

’,’ab’,’-’)

->

5

CONDITION

��

CONDITION(

option

)

��

returns

the

condition

information

associated

with

the

current

trapped

condition.

(See

Chapter

7,

“Conditions

and

Condition

Traps,”

on

page

131

for

a

description

of

condition

traps.)

You

can

request

the

following

pieces

of

information:

v

The

name

of

the

current

trapped

condition

v

Any

descriptive

string

associated

with

that

condition

v

The

instruction

processed

as

a

result

of

the

condition

trap

(CALL

or

SIGNAL)

v

The

status

of

the

trapped

condition.

Functions

68

REXX/VSE

Reference

To

select

the

information

to

return,

use

the

following

options.

(Only

the

capitalized

and

highlighted

letter

is

needed;

all

characters

following

it

are

ignored.)

Condition

name

returns

the

name

of

the

current

trapped

condition.

Description

returns

any

descriptive

string

associated

with

the

current

trapped

condition.

See

page

134

for

the

list

of

possible

strings.

If

no

description

is

available,

returns

a

null

string.

Instruction

returns

either

CALL

or

SIGNAL,

the

keyword

for

the

instruction

processed

when

the

current

condition

was

trapped.

This

is

the

default

if

you

omit

option.

Status

returns

the

status

of

the

current

trapped

condition.

This

can

change

during

processing,

and

is

either:

ON

-

the

condition

is

enabled

OFF

-

the

condition

is

disabled

DELAY

-

any

new

occurrence

of

the

condition

is

delayed

or

ignored.

If

no

condition

has

been

trapped,

then

the

CONDITION

function

returns

a

null

string

in

all

four

cases.

Here

are

some

examples:

CONDITION()

->

’CALL’

/*

perhaps

*/

CONDITION(’C’)

->

’FAILURE’

CONDITION(’I’)

->

’CALL’

CONDITION(’D’)

->

’FailureTest’

CONDITION(’S’)

->

’OFF’

/*

perhaps

*/

Note:

The

CONDITION

function

returns

condition

information

that

is

saved

and

restored

across

subroutine

calls

(including

those

a

CALL

ON

condition

trap

causes).

Therefore,

after

a

subroutine

called

with

CALL

ON

trapname

has

returned,

the

current

trapped

condition

reverts

to

the

condition

that

was

current

before

the

CALL

took

place

(which

may

be

none).

CONDITION

returns

the

values

it

returned

before

the

condition

was

trapped.

COPIES

��

COPIES(string,n)

��

returns

n

concatenated

copies

of

string.

The

n

must

be

a

positive

whole

number

or

zero.

Here

are

some

examples:

COPIES(’abc’,3)

->

’abcabcabc’

COPIES(’abc’,0)

->

’’

Functions

Chapter

4.

Functions

69

C2D

(Character

to

Decimal)

��

C2D(string

,n

)

��

returns

the

decimal

value

of

the

binary

representation

of

string.

If

the

result

cannot

be

expressed

as

a

whole

number,

an

error

results.

That

is,

the

result

must

not

have

more

digits

than

the

current

setting

of

NUMERIC

DIGITS.

If

you

do

not

specify

n,

string

is

processed

as

an

unsigned

binary

number.

If

string

is

null,

returns

0.

Here

are

some

examples:

C2D(’09’X)

->

9

C2D(’81’X)

->

129

C2D(’FF81’X)

->

65409

C2D(’’)

->

0

C2D(’a’)

->

129

/*

EBCDIC

*/

If

you

specify

n,

the

string

is

taken

as

a

signed

number

expressed

in

n

characters.

The

number

is

positive

if

the

leftmost

bit

is

off,

and

negative,

in

two’s

complement

notation,

if

the

leftmost

bit

is

on.

In

both

cases,

it

is

converted

to

a

whole

number,

which

may,

therefore,

be

negative.

The

string

is

padded

on

the

left

with

’00’x

characters

(note,

not

″sign-extended″),

or

truncated

on

the

left

to

n

characters.

This

padding

or

truncation

is

as

though

RIGHT(string,n,’00’x)

had

been

processed.

If

n

is

0,

C2D

always

returns

0.

Here

are

some

examples:

C2D(’81’X,1)

->

-127

C2D(’81’X,2)

->

129

C2D(’FF81’X,2)

->

-127

C2D(’FF81’X,1)

->

-127

C2D(’FF7F’X,1)

->

127

C2D(’F081’X,2)

->

-3967

C2D(’F081’X,1)

->

-127

C2D(’0031’X,0)

->

0

Implementation

maximum:

The

input

string

cannot

have

more

than

250

characters

that

are

significant

in

forming

the

final

result.

Leading

sign

characters

(’00’x

and

’FF’x)

do

not

count

toward

this

total.

C2X

(Character

to

Hexadecimal)

��

C2X(string)

��

returns

a

string,

in

character

format,

that

represents

string

converted

to

hexadecimal.

The

returned

string

contains

twice

as

many

bytes

as

the

input

string.

For

example,

on

an

EBCDIC

system,

C2X(1)

returns

F1

because

the

EBCDIC

representation

of

the

character

1

is

’F1’X.

The

string

returned

uses

uppercase

alphabetics

for

the

values

A–F

and

does

not

include

blanks.

The

string

can

be

of

any

length.

If

string

is

null,

returns

a

null

string.

Here

are

some

examples:

C2X(’72s’)

->

’F7F2A2’

/*

’C6F7C6F2C1F2’X

in

EBCDIC

*/

C2X(’0123’X)

->

’0123’

/*

’F0F1F2F3’X

in

EBCDIC

*/

Functions

70

REXX/VSE

Reference

DATATYPE

��

DATATYPE(string

,type

)

��

returns

NUM

if

you

specify

only

string

and

if

string

is

a

valid

REXX

number

that

can

be

added

to

0

without

error;

returns

CHAR

if

string

is

not

a

valid

number.

If

you

specify

type,

returns

1

if

string

matches

the

type;

otherwise

returns

0.

If

string

is

null,

the

function

returns

0

(except

when

type

is

X,

which

returns

1

for

a

null

string).

The

following

are

valid

types.

(Only

the

capitalized

and

highlighted

letter

is

needed;

all

characters

following

it

are

ignored.

Note

that

for

the

hexadecimal

option,

you

must

start

your

string

specifying

the

name

of

the

option

with

x

rather

than

h.)

Alphanumeric

returns

1

if

string

contains

only

characters

from

the

ranges

a–z,

A–Z,

and

0–9.

Binary

returns

1

if

string

contains

only

the

characters

0

or

1

or

both.

C

returns

1

if

string

is

a

mixed

SBCS/DBCS

string.

Dbcs

returns

1

if

string

is

a

DBCS-only

string

enclosed

by

SO

and

SI

bytes.

Lowercase

returns

1

if

string

contains

only

characters

from

the

range

a–z.

Mixed

case

returns

1

if

string

contains

only

characters

from

the

ranges

a–z

and

A–Z.

Number

returns

1

if

string

is

a

valid

REXX

number.

Symbol

returns

1

if

string

contains

only

characters

that

are

valid

in

REXX

symbols.

(See

page

11.)

Note

that

both

uppercase

and

lowercase

alphabetics

are

permitted.

Uppercase

returns

1

if

string

contains

only

characters

from

the

range

A–Z.

Whole

number

returns

1

if

string

is

a

REXX

whole

number

under

the

current

setting

of

NUMERIC

DIGITS.

heXadecimal

returns

1

if

string

contains

only

characters

from

the

ranges

a–f,

A–F,

0–9,

and

blank

(as

long

as

blanks

appear

only

between

pairs

of

hexadecimal

characters).

Also

returns

1

if

string

is

a

null

string,

which

is

a

valid

hexadecimal

string.

Here

are

some

examples:

DATATYPE(’

12

’)

->

’NUM’

DATATYPE(’’)

->

’CHAR’

DATATYPE(’123*’)

->

’CHAR’

DATATYPE(’12.3’,’N’)

->

1

DATATYPE(’12.3’,’W’)

->

0

DATATYPE(’Fred’,’M’)

->

1

DATATYPE(’’,’M’)

->

0

DATATYPE(’Fred’,’L’)

->

0

DATATYPE(’?20K’,’s’)

->

1

DATATYPE(’BCd3’,’X’)

->

1

DATATYPE(’BC

d3’,’X’)

->

1

Note:

The

DATATYPE

function

tests

the

meaning

or

type

of

characters

in

a

string,

independent

of

the

encoding

of

those

characters

(for

example,

ASCII

or

EBCDIC).

Functions

Chapter

4.

Functions

71

DATE

��

DATE

(

)

(1)

Group

1

output_date_format

��

Group

1:

,

input_date

Group

2

,

,

output_separator_char

Group

2:

,

input_date_format

Group

3

Group

3:

,

output_separator_char

,

input_separator_char

Notes:

1 If

the

Century

or

Julian

format

is

specified,

then

no

other

options

are

permitted.

These

two

formats

are

provided

for

compatibility

with

programs

written

for

releases

prior

to

VSE/ESA

Version

2

Release

2.2.

It

is

recommended

that

they

not

be

used

for

new

programs.

returns,

by

default,

the

local

date

in

the

format:

dd

mon

yyyy

(day,

month,

year—for

example,

25

Dec

1998),

with

no

leading

zero

or

blank

on

the

day.

Otherwise,

the

string

input_date

is

converted

to

the

format

specified

by

output_date_format.

input_date_format

can

be

specified

to

define

the

current

format

of

input_date.

The

default

for

input_date_format

and

output_date_format

is

Normal.

input_separator_char

and

output_separator__char

can

be

specified

to

define

the

separator

character

for

the

input

and

output

dates,

respectively.

Any

single

non-alphanumeric

character

is

valid.

See

note

3

on

page

74

for

more

information.

You

can

use

the

following

options

to

obtain

specific

date

formats.

(Only

the

bold

character

is

needed;

all

characters

following

it

are

ignored.)

Base

the

number

of

complete

days

(that

is,

not

including

the

current

day)

since

and

including

the

base

date,

1

January

0001,

in

the

format:

dddddd

(no

leading

zeros

or

blanks).

The

expression

DATE(’B’)//7

returns

a

number

in

the

range

0–6

that

corresponds

to

the

current

day

of

the

week,

where

0

is

Monday

and

6

is

Sunday.

Thus,

this

function

can

be

used

to

determine

the

day

of

the

week.

Note

that

REXX/VSE

supports

US

English

only.

Note:

The

base

date

of

1

January

0001

is

determined

by

extending

the

current

Gregorian

calendar

backward

(365

days

each

year,

with

an

extra

day

every

year

that

is

divisible

by

4

except

century

years

that

are

not

divisible

by

400).

It

does

not

take

into

account

any

errors

in

the

calendar

system

that

created

the

Gregorian

calendar

originally.

Century

the

number

of

days,

including

the

current

day,

since

and

including

January

1

of

the

last

Functions

72

REXX/VSE

Reference

year

that

is

a

multiple

of

100

in

the

form:

ddddd

(no

leading

zeros).

Example:

A

call

to

DATE(C)

on

March

13

1992

returns

33675,

the

number

of

days

from

1

January

1900

to

13

March

1992.

Similarly,

a

call

to

DATE(C)

on

2

January

2000

returns

2,

the

number

of

days

from

1

January

2000

to

2

January

2000.

Note:

When

the

Century

option

is

used

for

input,

the

output

may

change,

depending

on

the

current

century.

For

example,

if

DATE(’S’,’1’,C)

was

entered

on

any

day

between

1

January

1900

and

31

December

1999,

the

result

would

be

19000101.

However,

if

DATE(’S’,’1’,C)

was

entered

on

any

day

between

1

January

2000

and

31

December

2099,

the

result

would

be

20000101.

It

is

important

to

understand

the

above,

and

code

accordingly.

Days

the

number

of

days,

including

the

current

day,

so

far

in

this

year

in

the

format:

ddd

(no

leading

zeros

or

blanks).

European

date

in

the

format:

dd/mm/yy

Julian

date

in

the

format:

yyddd.

Month

full

English

name

of

the

current

month,

for

example,

August.

Only

valid

for

output_date_format.

Normal

date

in

the

format:

dd

mon

yyyy.

This

is

the

default.

(dd

cannot

have

any

leading

zeros

or

blanks;

yyyy

must

have

leading

zeros

but

cannot

have

any

leading

blanks).

The

abbreviated

form

of

the

month

name

is

used

(for

example,

″Jan″,

″Feb″,

and

so

on).

Ordered

date

in

the

format:

yy/mm/dd

(suitable

for

sorting,

and

so

forth).

Standard

date

in

the

format:

yyyymmdd

(suitable

for

sorting,

and

so

forth).

Usa

date

in

the

format:

mm/dd/yy.

Weekday

the

English

name

for

the

day

of

the

week

in

mixed

case,

for

example,

Tuesday.

Only

valid

for

output_date_format.

Here

are

some

examples,

assuming

today

is

13

March

1992:

DATE()

->

’13

Mar

1992’

DATE(,’19960527’,’S’)

->

’27

May

1996’

DATE(’B’)

->

’727269’

DATE(’B’,’27

May

1996’,)

->

’728805’

DATE(’B’,’27*May*1996’,,,’*’)

->

’728805’

DATE(’C’)

->

’33675’

DATE(’E’)

->

’13/03/92’

DATE(’E’,,,’+’)

->

’13+03+92’

DATE(’E’,’081698’,’U’,,’’)

->

’16/08/98’

DATE(’J’)

->

’92073’

DATE(’M’)

->

’March’

DATE(’N’)

->

’13

Mar

1992’

DATE(’N’,’35488’,’C’)

->

’28

Feb

1997’

DATE(’O’)

->

’92/03/13’

DATE(’S’)

->

’19920313’

DATE(’S’,,)

->

’19920313’

DATE(’S’,,,’-’)

->

’1992-03-13’

DATE(’U’)

->

’03/13/92’

DATE(’U’,’96/05/27’,’O’)

->

’05/27/96’

DATE(’U’,’97059’,’J’)

->

’02/28/97’

DATE(’U’,’1.Feb.1998,’N’,’+’,’.’)

->

’02+01+98’

DATE(’U’,’1998-08-16’,’S’,’’,’-’)

->

’081698’

DATE(’W’)

->

’Friday’

Notes:

1.

The

first

call

to

DATE

or

TIME

in

one

clause

causes

a

time

stamp

to

be

made

that

is

then

used

for

all

calls

to

these

functions

in

that

clause.

Therefore,

multiple

calls

to

any

of

the

DATE

or

TIME

functions

or

both

in

a

single

expression

or

clause

are

guaranteed

to

be

consistent

with

each

other.

Functions

Chapter

4.

Functions

73

2.

Input

dates

given

in

2-digit

year

formats

are

interpreted

as

being

within

a

100

year

window

as

calculated

by:

(current_year

-

50)

=

low

end

of

window

(current_year

+

49)

=

high

end

of

window

3.

input_separator_char

and

outputy_separator_char

apply

to

the

following

formats,

and

have

the

following

default

values:

Format

Name

Format

Structure

Default

Separator

Value

European

dd/mm/yy

’/’

Normal

dd

mon

yyyy

’

’

Ordered

yy/mm/dd

’/’

Standard

yyyymmdd

’’

Usa

mm/dd/yy

’/’

Note

that

Null

is

a

valid

value

for

input_separator_char

and

output_separator_char.

DBCS

(Double-Byte

Character

Set

Functions)

The

following

are

all

part

of

DBCS

processing

functions.

See

page

481.

DBADJUST

DBRIGHT

DBUNBRACKET

DBBRACKET

DBRLEFT

DBVALIDATE

DBCENTER

DBRRIGHT

DBWIDTH

DBCJUSTIFY

DBTODBCS

DBLEFT

DBTOSBCS

DELSTR

(Delete

String)

��

DELSTR(string,n

,length

)

��

returns

string

after

deleting

the

substring

that

begins

at

the

nth

character

and

is

of

length

characters.

If

you

omit

length,

or

if

length

is

greater

than

the

number

of

characters

from

n

to

the

end

of

string,

the

function

deletes

the

rest

of

string

(including

the

nth

character).

The

length

must

be

The

n

must

be

a

positive

whole

number.

If

n

is

greater

than

the

length

of

string,

the

function

returns

string

unchanged.

Here

are

some

examples:

DELSTR(’abcd’,3)

->

’ab’

DELSTR(’abcde’,3,2)

->

’abe’

DELSTR(’abcde’,6)

->

’abcde’

Functions

74

REXX/VSE

Reference

DELWORD

(Delete

Word)

��

DELWORD(string,n

,length

)

��

returns

string

after

deleting

the

substring

that

starts

at

the

nth

word

and

is

of

length

blank-delimited

words.

If

you

omit

length,

or

if

length

is

greater

than

the

number

of

words

from

n

to

the

end

of

string,

the

function

deletes

the

remaining

words

in

string

(including

the

nth

word).

The

length

must

be

a

positive

whole

number

or

zero.

The

n

must

be

a

positive

whole

number.

If

n

is

greater

than

the

number

of

words

in

string,

the

function

returns

string

unchanged.

The

string

deleted

includes

any

blanks

following

the

final

word

involved

but

none

of

the

blanks

preceding

the

first

word

involved.

Here

are

some

examples:

DELWORD(’Now

is

the

time’,2,2)

->

’Now

time’

DELWORD(’Now

is

the

time

’,3)

->

’Now

is

’

DELWORD(’Now

is

the

time’,5)

->

’Now

is

the

time’

DELWORD(’Now

is

the

time’,3,1)

->

’Now

is

time’

DIGITS

��

DIGITS()

��

returns

the

current

setting

of

NUMERIC

DIGITS.

See

the

NUMERIC

instruction

on

page

44

for

more

information.

Here

is

an

example:

DIGITS()

->

9

/*

by

default

*/

D2C

(Decimal

to

Character)

��

D2C(wholenumber

,n

)

��

returns

a

string,

in

character

format,

that

represents

wholenumber,

a

decimal

number,

converted

to

binary.

If

you

specify

n,

it

is

the

length

of

the

final

result

in

characters;

after

conversion,

the

input

string

is

sign-extended

to

the

required

length.

If

the

number

is

too

big

to

fit

into

n

characters,

then

the

result

is

truncated

on

the

left.

The

n

must

be

a

positive

whole

number

or

zero.

If

you

omit

n,

wholenumber

must

be

a

positive

whole

number

or

zero,

and

the

result

length

is

as

needed.

Therefore,

the

returned

result

has

no

leading

’00’x

characters.

Here

are

some

examples:

D2C(9)

->

’

’

/*

’09’x

is

unprintable

in

EBCDIC

*/

D2C(129)

->

’a’

/*

’81’x

is

an

EBCDIC

’a’

*/

D2C(129,1)

->

’a’

/*

’81’x

is

an

EBCDIC

’a’

*/

D2C(129,2)

->

’

a’

/*

’0081’x

is

EBCDIC

’

a’

*/

D2C(257,1)

->

’

’

/*

’01’x

is

unprintable

in

EBCDIC

*/

D2C(-127,1)

->

’a’

/*

’81’x

is

EBCDIC

’a’

*/

Functions

Chapter

4.

Functions

75

D2C(-127,2)

->

’

a’

/*

’FF’x

is

unprintable

EBCDIC;

*/

/*

’81’x

is

EBCDIC

’a’

*/

D2C(-1,4)

->

’

’

/*

’FFFFFFFF’x

is

unprintable

in

EBCDIC

*/

D2C(12,0)

->

’’

/*

’’

is

a

null

string

*/

Implementation

maximum:

The

output

string

may

not

have

more

than

250

significant

characters,

though

a

longer

result

is

possible

if

it

has

additional

leading

sign

characters

(’00’x

and

’FF’x).

D2X

(Decimal

to

Hexadecimal)

��

D2X(wholenumber

,n

)

��

returns

a

string,

in

character

format,

that

represents

wholenumber,

a

decimal

number,

converted

to

hexadecimal.

The

returned

string

uses

uppercase

alphabetics

for

the

values

A–F

and

does

not

include

blanks.

If

you

specify

n,

it

is

the

length

of

the

final

result

in

characters;

after

conversion

the

input

string

is

sign-extended

to

the

required

length.

If

the

number

is

too

big

to

fit

into

n

characters,

it

is

truncated

on

the

left.

The

n

must

be

a

positive

whole

number

or

zero.

If

you

omit

n,

wholenumber

must

be

a

positive

whole

number

or

zero,

and

the

returned

result

has

no

leading

zeros.

Here

are

some

examples:

D2X(9)

->

’9’

D2X(129)

->

’81’

D2X(129,1)

->

’1’

D2X(129,2)

->

’81’

D2X(129,4)

->

’0081’

D2X(257,2)

->

’01’

D2X(-127,2)

->

’81’

D2X(-127,4)

->

’FF81’

D2X(12,0)

->

’’

Implementation

maximum:

The

output

string

may

not

have

more

than

500

significant

hexadecimal

characters,

though

a

longer

result

is

possible

if

it

has

additional

leading

sign

characters

(0

and

F).

ERRORTEXT

��

ERRORTEXT(n)

��

returns

the

REXX

error

message

associated

with

error

number

n.

The

n

must

be

in

the

range

0–99,

and

any

other

value

is

an

error.

Returns

the

null

string

if

n

is

in

the

allowed

range

but

is

not

a

defined

REXX

error

number.

See

VSE/ESA

Messages

and

Codes

for

a

complete

description

of

error

numbers

and

messages.

Here

are

some

examples:

ERRORTEXT(16)

->

’Label

not

found’

ERRORTEXT(60)

->

’’

Functions

76

REXX/VSE

Reference

EXTERNALS

This

is

a

non-SAA

built-in

function.

See

page

94

for

a

description.

FIND

WORDPOS

is

the

preferred

built-in

function

for

this

type

of

word

search;

see

page

91

for

a

complete

description.

FIND

is

a

non-SAA

built-in

function.

See

page

94

for

a

description.

FORM

��

FORM()

��

returns

the

current

setting

of

NUMERIC

FORM.

See

the

NUMERIC

instruction

on

page

44

for

more

information.

Here

is

an

example:

FORM()

->

’SCIENTIFIC’

/*

by

default

*/

FORMAT

��

FORMAT(number

,

before

,

after

,

expp

,expt

)

��

returns

number,

rounded

and

formatted.

The

number

is

first

rounded

according

to

standard

REXX

rules,

just

as

though

the

operation

number+0

had

been

carried

out.

The

result

is

precisely

that

of

this

operation

if

you

specify

only

number.

If

you

specify

any

other

options,

the

number

is

formatted

as

follows.

The

before

and

after

options

describe

how

many

characters

are

used

for

the

integer

and

decimal

parts

of

the

result,

respectively.

If

you

omit

either

or

both

of

these,

the

number

of

characters

used

for

that

part

is

as

needed.

If

before

is

not

large

enough

to

contain

the

integer

part

of

the

number

(plus

the

sign

for

a

negative

number),

an

error

results.

If

before

is

larger

than

needed

for

that

part,

the

number

is

padded

on

the

left

with

blanks.

If

after

is

not

the

same

size

as

the

decimal

part

of

the

number,

the

number

is

rounded

(or

extended

with

zeros)

to

fit.

Specifying

0

causes

the

number

to

be

rounded

to

an

integer.

Here

are

some

examples:

FORMAT(’3’,4)

->

’

3’

FORMAT(’1.73’,4,0)

->

’

2’

FORMAT(’1.73’,4,3)

->

’

1.730’

FORMAT(’-.76’,4,1)

->

’

-0.8’

FORMAT(’3.03’,4)

->

’

3.03’

FORMAT(’

-

12.73’,,4)

->

’-12.7300’

FORMAT(’

-

12.73’)

->

’-12.73’

FORMAT(’0.000’)

->

’0’

Functions

Chapter

4.

Functions

77

The

first

three

arguments

are

as

described

previously.

In

addition,

expp

and

expt

control

the

exponent

part

of

the

result,

which,

by

default,

is

formatted

according

to

the

current

NUMERIC

settings

of

DIGITS

and

FORM.

The

expp

sets

the

number

of

places

for

the

exponent

part;

the

default

is

to

use

as

many

as

needed

(which

may

be

zero).

The

expt

sets

the

trigger

point

for

use

of

exponential

notation.

The

default

is

the

current

setting

of

NUMERIC

DIGITS.

If

expp

is

0,

no

exponent

is

supplied,

and

the

number

is

expressed

in

simple

form

with

added

zeros

as

necessary.

If

expp

is

not

large

enough

to

contain

the

exponent,

an

error

results.

If

the

number

of

places

needed

for

the

integer

or

decimal

part

exceeds

expt

or

twice

expt,

respectively,

exponential

notation

is

used.

If

expt

is

0,

exponential

notation

is

always

used

unless

the

exponent

would

be

0.

(If

expp

is

0,

this

overrides

a

0

value

of

expt.)

If

the

exponent

would

be

0

when

a

nonzero

expp

is

specified,

then

expp+2

blanks

are

supplied

for

the

exponent

part

of

the

result.

If

the

exponent

would

be

0

and

expp

is

not

specified,

simple

form

is

used.

Here

are

some

examples:

FORMAT(’12345.73’,,,2,2)

->

’1.234573E+04’

FORMAT(’12345.73’,,3,,0)

->

’1.235E+4’

FORMAT(’1.234573’,,3,,0)

->

’1.235’

FORMAT(’12345.73’,,,3,6)

->

’12345.73’

FORMAT(’1234567e5’,,3,0)

->

’123456700000.000’

FUZZ

��

FUZZ()

��

returns

the

current

setting

of

NUMERIC

FUZZ.

See

the

NUMERIC

instruction

on

page

44

for

more

information.

Here

is

an

example:

FUZZ()

->

0

/*

by

default

*/

INDEX

POS

is

the

preferred

built-in

function

for

obtaining

the

position

of

one

string

in

another;

see

page

81

for

a

complete

description.

INDEX

is

a

non-SAA

built-in

function.

See

page

95

for

a

description.

INSERT

��

INSERT(new,target

,

n

,

length

,pad

)

��

inserts

the

string

new,

padded

or

truncated

to

length

length,

into

the

string

target

after

the

nth

character.

The

default

value

for

n

is

0,

which

means

insert

before

the

beginning

of

the

string.

If

specified,

n

and

length

must

be

positive

whole

numbers

or

zero.

If

n

is

greater

than

the

length

of

the

target

string,

padding

is

added

before

the

string

new

also.

The

default

value

for

length

is

the

length

of

new.

If

length

is

less

than

the

length

of

the

string

new,

then

INSERT

truncates

new

to

length

length.

The

default

pad

character

is

a

blank.

Functions

78

REXX/VSE

Reference

Here

are

some

examples:

INSERT(’

’,’abcdef’,3)

->

’abc

def’

INSERT(’123’,’abc’,5,6)

->

’abc

123

’

INSERT(’123’,’abc’,5,6,’+’)

->

’abc++123+++’

INSERT(’123’,’abc’)

->

’123abc’

INSERT(’123’,’abc’,,5,’-’)

->

’123--abc’

JUSTIFY

This

is

a

non-SAA

built-in

function.

See

page

95

for

a

description.

LASTPOS

(Last

Position)

��

LASTPOS(needle,haystack

,start

)

��

returns

the

position

of

the

last

occurrence

of

one

string,

needle,

in

another,

haystack.

(See

also

the

POS

function.)

Returns

0

if

needle

is

the

null

string

or

is

not

found.

By

default

the

search

starts

at

the

last

character

of

haystack

and

scans

backward.

You

can

override

this

by

specifying

start,

the

point

at

which

the

backward

scan

starts.

start

must

be

a

positive

whole

number

and

defaults

to

LENGTH(haystack)

if

larger

than

that

value

or

omitted.

Here

are

some

examples:

LASTPOS(’

’,’abc

def

ghi’)

->

8

LASTPOS(’

’,’abcdefghi’)

->

0

LASTPOS(’xy’,’efgxyz’)

->

4

LASTPOS(’

’,’abc

def

ghi’,7)

->

4

LEFT

��

LEFT(string,length

,pad

)

��

returns

a

string

of

length

length,

containing

the

leftmost

length

characters

of

string.

The

string

returned

is

padded

with

pad

characters

(or

truncated)

on

the

right

as

needed.

The

default

pad

character

is

a

blank.

length

must

be

a

positive

whole

number

or

zero.

The

LEFT

function

is

exactly

equivalent

to:

��

SUBSTR(string,1,length

,pad

)

��

Here

are

some

examples:

LEFT(’abc

d’,8)

->

’abc

d

’

LEFT(’abc

d’,8,’.’)

->

’abc

d...’

LEFT(’abc

def’,7)

->

’abc

de’

Functions

Chapter

4.

Functions

79

LENGTH

��

LENGTH(string)

��

returns

the

length

of

string.

Here

are

some

examples:

LENGTH(’abcdefgh’)

->

8

LENGTH(’abc

defg’)

->

8

LENGTH(’’)

->

0

LINESIZE

This

is

a

non-SAA

built-in

function.

See

page

96

for

a

description.

MAX

(Maximum)

��

MAX(

,

number

)

��

returns

the

largest

number

from

the

list

specified,

formatted

according

to

the

current

NUMERIC

settings.

Here

are

some

examples:

MAX(12,6,7,9)

->

12

MAX(17.3,19,17.03)

->

19

MAX(-7,-3,-4.3)

->

-3

MAX(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,MAX(20,21))

->

21

Implementation

maximum:

You

can

specify

up

to

20

numbers,

and

can

nest

calls

to

MAX

if

more

arguments

are

needed.

MIN

(Minimum)

��

MIN(

,

number

)

��

returns

the

smallest

number

from

the

list

specified,

formatted

according

to

the

current

NUMERIC

settings.

Here

are

some

examples:

MIN(12,6,7,9)

->

6

MIN(17.3,19,17.03)

->

17.03

MIN(-7,-3,-4.3)

->

-7

MIN(21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,MIN(2,1))

->

1

Implementation

maximum:

You

can

specify

up

to

20

numbers,

and

can

nest

calls

to

MIN

if

more

arguments

are

needed.

Functions

80

REXX/VSE

Reference

OUTTRAP

OUTTRAP

is

an

external

function.

See

page

99.

OVERLAY

��

OVERLAY(new,target

,

n

,

length

,pad

)

��

returns

the

string

target,

which,

starting

at

the

nth

character,

is

overlaid

with

the

string

new,

padded

or

truncated

to

length

length.

(The

overlay

may

extend

beyond

the

end

of

the

original

target

string.)

If

you

specify

length,

it

must

be

a

positive

whole

number

or

zero.

The

default

value

for

length

is

the

length

of

new.

If

n

is

greater

than

the

length

of

the

target

string,

padding

is

added

before

the

new

string.

The

default

pad

character

is

a

blank,

and

the

default

value

for

n

is

1.

If

you

specify

n,

it

must

be

a

positive

whole

number.

Here

are

some

examples:

OVERLAY(’

’,’abcdef’,3)

->

’ab

def’

OVERLAY(’.’,’abcdef’,3,2)

->

’ab.

ef’

OVERLAY(’qq’,’abcd’)

->

’qqcd’

OVERLAY(’qq’,’abcd’,4)

->

’abcqq’

OVERLAY(’123’,’abc’,5,6,’+’)

->

’abc+123+++’

POS

(Position)

��

POS(needle,haystack

,start

)

��

returns

the

position

of

one

string,

needle,

in

another,

haystack.

(See

also

the

INDEX

and

LASTPOS

functions.)

Returns

0

if

needle

is

the

null

string

or

is

not

found

or

if

start

is

greater

than

the

length

of

haystack.

By

default

the

search

starts

at

the

first

character

of

haystack

(that

is,

the

value

of

start

is

1).

You

can

override

this

by

specifying

start

(which

must

be

a

positive

whole

number),

the

point

at

which

the

search

starts.

Here

are

some

examples:

POS(’day’,’Saturday’)

->

6

POS(’x’,’abc

def

ghi’)

->

0

POS(’

’,’abc

def

ghi’)

->

4

POS(’

’,’abc

def

ghi’,5)

->

8

QUEUED

��

QUEUED()

��

returns

the

number

of

lines

remaining

in

the

external

data

queue

when

the

function

is

called.

The

REXX/VSE

implementation

of

the

external

data

queue

is

the

data

stack.

Functions

Chapter

4.

Functions

81

Here

is

an

example:

QUEUED()

->

5

/*

Perhaps

*/

RANDOM

��

RANDOM(

max

min

,

max

,seed

)

��

returns

a

quasi-random

nonnegative

whole

number

in

the

range

min

to

max

inclusive.

If

you

specify

max

or

min

or

both,

max

minus

min

cannot

exceed

100000.

The

min

and

max

default

to

0

and

999,

respectively.

To

start

a

repeatable

sequence

of

results,

use

a

specific

seed

as

the

third

argument,

as

described

in

Note

1.

This

seed

must

be

a

positive

whole

number

ranging

from

0

to

999999999.

Here

are

some

examples:

RANDOM()

->

305

RANDOM(5,8)

->

7

RANDOM(2)

->

0

/*

0

to

2

*/

RANDOM(,,1983)

->

123

/*

reproducible

*/

Notes:

1.

To

obtain

a

predictable

sequence

of

quasi-random

numbers,

use

RANDOM

a

number

of

times,

but

specify

a

seed

only

the

first

time.

For

example,

to

simulate

40

throws

of

a

6-sided,

unbiased

die:

sequence

=

RANDOM(1,6,12345)

/*

any

number

would

*/

/*

do

for

a

seed

*/

do

39

sequence

=

sequence

RANDOM(1,6)

end

say

sequence

The

numbers

are

generated

mathematically,

using

the

initial

seed,

so

that

as

far

as

possible

they

appear

to

be

random.

Running

the

program

again

produces

the

same

sequence;

using

a

different

initial

seed

almost

certainly

produces

a

different

sequence.

If

you

do

not

supply

a

seed,

the

first

time

RANDOM

is

called,

an

arbitrary

seed

is

used.

Hence,

your

program

usually

gives

different

results

each

time

it

is

run.

2.

The

random

number

generator

is

global

for

an

entire

program;

the

current

seed

is

not

saved

across

internal

routine

calls.

REVERSE

��

REVERSE(string)

��

returns

string,

swapped

end

for

end.

Here

are

some

examples:

REVERSE(’ABc.’)

->

’.cBA’

REVERSE(’XYZ

’)

->

’

ZYX’

Functions

82

REXX/VSE

Reference

RIGHT

��

RIGHT(string,length

,pad

)

��

returns

a

string

of

length

length

containing

the

rightmost

length

characters

of

string.

The

string

returned

is

padded

with

pad

characters

(or

truncated)

on

the

left

as

needed.

The

default

pad

character

is

a

blank.

The

length

must

be

a

positive

whole

number

or

zero.

Here

are

some

examples:

RIGHT(’abc

d’,8)

->

’

abc

d’

RIGHT(’abc

def’,5)

->

’c

def’

RIGHT(’12’,5,’0’)

->

’00012’

REXXIPT

REXXIPT

is

an

external

function.

See

page

102.

REXXMSG

REXXMSG

is

an

external

function.

See

page

103.

SETLANG

SETLANG

is

an

external

function.

See

page

104.

SIGN

��

SIGN(number)

��

returns

a

number

that

indicates

the

sign

of

number.

The

number

is

first

rounded

according

to

standard

REXX

rules,

just

as

though

the

operation

number+0

had

been

carried

out.

Returns

-1

if

number

is

less

than

0;

returns

0

if

it

is

0;

and

returns

1

if

it

is

greater

than

0.

Here

are

some

examples:

SIGN(’12.3’)

->

1

SIGN(’

-0.307’)

->

-1

SIGN(0.0)

->

0

SLEEP

SLEEP

is

an

external

function.

See

page

105.

Functions

Chapter

4.

Functions

83

SOURCELINE

��

SOURCELINE(

n

)

��

returns

the

line

number

of

the

final

line

in

the

program

if

you

omit

returns

the

line

number

of

the

final

line

in

the

program

if

you

omit

n,

or

returns

the

nth

line

in

the

program

if

you

specify

n.

If

specified,

n

must

be

a

positive

whole

number

and

must

not

exceed

the

number

of

the

final

line

in

the

program.

Here

are

some

examples:

SOURCELINE()

->

10

SOURCELINE(1)

->

’/*

This

is

a

10-line

REXX

program

*/’

SPACE

��

SPACE(string

,

n

,pad

)

��

returns

the

blank-delimited

words

in

string

with

n

pad

characters

between

each

word.

If

you

specify

n,

it

must

be

a

positive

whole

number

or

zero.

If

it

is

0,

all

blanks

are

removed.

Leading

and

trailing

blanks

are

always

removed.

The

default

for

n

is

1,

and

the

default

pad

character

is

a

blank.

Here

are

some

examples:

SPACE(’abc

def

’)

->

’abc

def’

SPACE(’

abc

def’,3)

->

’abc

def’

SPACE(’abc

def

’,1)

->

’abc

def’

SPACE(’abc

def

’,0)

->

’abcdef’

SPACE(’abc

def

’,2,’+’)

->

’abc++def’

STORAGE

STORAGE

is

an

external

function.

See

page

105.

STRIP

��

STRIP(string

,

option

,char

)

��

returns

string

with

leading

or

trailing

characters

or

both

removed,

based

on

the

option

you

specify.

The

following

are

valid

options.

(Only

the

capitalized

and

highlighted

letter

is

needed;

all

characters

following

it

are

ignored.)

Both

removes

both

leading

and

trailing

characters

from

string.

This

is

the

default.

Leading

removes

leading

characters

from

string.

Trailing

removes

trailing

characters

from

string.

Functions

84

REXX/VSE

Reference

The

third

argument,

char,

specifies

the

character

to

be

removed,

and

the

default

is

a

blank.

If

you

specify

char,

it

must

be

exactly

one

character

long.

Here

are

some

examples:

STRIP(’

ab

c

’)

->

’ab

c’

STRIP(’

ab

c

’,’L’)

->

’ab

c

’

STRIP(’

ab

c

’,’t’)

->

’

ab

c’

STRIP(’12.7000’,,0)

->

’12.7’

STRIP(’0012.700’,,0)

->

’12.7’

SUBSTR

(Substring)

��

SUBSTR(string,n

,

length

,pad

)

��

returns

the

substring

of

string

that

begins

at

the

nth

character

and

is

of

length

length,

padded

with

pad

if

necessary.

The

n

must

be

a

positive

whole

number.

If

n

is

greater

than

LENGTH(string),

then

only

pad

characters

are

returned.

If

you

omit

length,

the

rest

of

the

string

is

returned.

The

default

pad

character

is

a

blank.

Here

are

some

examples:

SUBSTR(’abc’,2)

->

’bc’

SUBSTR(’abc’,2,4)

->

’bc

’

SUBSTR(’abc’,2,6,’.’)

->

’bc....’

Note:

In

some

situations

the

positional

(numeric)

patterns

of

parsing

templates

are

more

convenient

for

selecting

substrings,

especially

if

more

than

one

substring

is

to

be

extracted

from

a

string.

See

also

the

LEFT

and

RIGHT

functions.

SUBWORD

��

SUBWORD(string,n

,length

)

��

returns

the

substring

of

string

that

starts

at

the

nth

word,

and

is

up

to

length

blank-delimited

words.

The

n

must

be

a

positive

whole

number.

If

you

omit

length,

it

defaults

to

the

number

of

remaining

words

in

string.

The

returned

string

never

has

leading

or

trailing

blanks,

but

includes

all

blanks

between

the

selected

words.

Here

are

some

examples:

SUBWORD(’Now

is

the

time’,2,2)

->

’is

the’

SUBWORD(’Now

is

the

time’,3)

->

’the

time’

SUBWORD(’Now

is

the

time’,5)

->

’’

Functions

Chapter

4.

Functions

85

SYMBOL

��

SYMBOL(name)

��

returns

the

state

of

the

symbol

named

by

name.

Returns

BAD

if

name

is

not

a

valid

REXX

symbol.

Returns

VAR

if

it

is

the

name

of

a

variable

(that

is,

a

symbol

that

has

been

assigned

a

value).

Otherwise

returns

LIT,

indicating

that

it

is

either

a

constant

symbol

or

a

symbol

that

has

not

yet

been

assigned

a

value

(that

is,

a

literal).

As

with

symbols

in

REXX

expressions,

lowercase

characters

in

name

are

translated

to

uppercase

and

substitution

in

a

compound

name

occurs

if

possible.

Note:

You

should

specify

name

as

a

literal

string

(or

it

should

be

derived

from

an

expression)

to

prevent

substitution

before

it

is

passed

to

the

function.

Here

are

some

examples:

/*

following:

Drop

A.3;

J=3

*/

SYMBOL(’J’)

->

’VAR’

SYMBOL(J)

->

’LIT’

/*

has

tested

"3"

*/

SYMBOL(’a.j’)

->

’LIT’

/*

has

tested

A.3

*/

SYMBOL(2)

->

’LIT’

/*

a

constant

symbol

*/

SYMBOL(’*’)

->

’BAD’

/*

not

a

valid

symbol

*/

SYSVAR

SYSVAR

is

an

external

function.

See

page

106.

TIME

��

TIME(

option

)

��

returns

the

local

time

in

the

24-hour

clock

format:

hh:mm:ss

(hours,

minutes,

and

seconds)

by

default,

for

example,

04:41:37.

You

can

use

the

following

options

to

obtain

alternative

formats,

or

to

gain

access

to

the

elapsed-time

clock.

(Only

the

capitalized

and

highlighted

letter

is

needed;

all

characters

following

it

are

ignored.)

Civil

returns

the

time

in

Civil

format:

hh:mmxx.

The

hours

may

take

the

values

1

through

12,

and

the

minutes

the

values

00

through

59.

The

minutes

are

followed

immediately

by

the

letters

am

or

pm.

This

distinguishes

times

in

the

morning

(12

midnight

through

11:59

a.m.—appearing

as

12:00am

through

11:59am)

from

noon

and

afternoon

(12

noon

through

11:59

p.m.—appearing

as

12:00pm

through

11:59pm).

The

hour

has

no

leading

zero.

The

minute

field

shows

the

current

minute

(rather

than

the

nearest

minute)

for

consistency

with

other

TIME

results.

Elapsed

returns

sssssssss.uuuuuu,

the

number

of

seconds.microseconds

since

the

elapsed-time

clock

(described

later)

was

started

or

reset.

The

number

has

no

leading

zeros

or

blanks,

and

the

setting

of

NUMERIC

DIGITS

does

not

affect

the

number.

The

fractional

part

always

has

six

digits.

Hours

returns

up

to

two

characters

giving

the

number

of

hours

since

midnight

in

the

format:

hh

(no

leading

zeros

or

blanks,

except

for

a

result

of

0).

Functions

86

REXX/VSE

Reference

Long

returns

time

in

the

format:

hh:mm:ss.uuuuuu

(uuuuuu

is

the

fraction

of

seconds,

in

microseconds).

The

first

eight

characters

of

the

result

follow

the

same

rules

as

for

the

Normal

form,

and

the

fractional

part

is

always

six

digits.

Minutes

returns

up

to

four

characters

giving

the

number

of

minutes

since

midnight

in

the

format:

mmmm

(no

leading

zeros

or

blanks,

except

for

a

result

of

0).

Normal

returns

the

time

in

the

default

format

hh:mm:ss,

as

described

previously.

The

hours

can

have

the

values

00

through

23,

and

minutes

and

seconds,

00

through

59.

All

these

are

always

two

digits.

Any

fractions

of

seconds

are

ignored

(times

are

never

rounded

up).

This

is

the

default.

Reset

returns

sssssssss.uuuuuu,

the

number

of

seconds.microseconds

since

the

elapsed-time

clock

(described

later)

was

started

or

reset

and

also

resets

the

elapsed-time

clock

to

zero.

The

number

has

no

leading

zeros

or

blanks,

and

the

setting

of

NUMERIC

DIGITS

does

not

affect

the

number.

The

fractional

part

always

has

six

digits.

Seconds

returns

up

to

five

characters

giving

the

number

of

seconds

since

midnight

in

the

format:

sssss

(no

leading

zeros

or

blanks,

except

for

a

result

of

0).

Here

are

some

examples,

assuming

that

the

time

is

4:54

p.m.:

TIME()

->

’16:54:22’

TIME(’C’)

->

’4:54pm’

TIME(’H’)

->

’16’

TIME(’L’)

->

’16:54:22.123456’

/*

Perhaps

*/

TIME(’M’)

->

’1014’

/*

54

+

60*16

*/

TIME(’N’)

->

’16:54:22’

TIME(’S’)

->

’60862’

/*

22

+

60*(54+60*16)

*/

The

elapsed-time

clock:

You

can

use

the

TIME

function

to

measure

real

(elapsed)

time

intervals.

On

the

first

call

in

a

program

to

TIME(’E’)

or

TIME(’R’),

the

elapsed-time

clock

is

started,

and

either

call

returns

0.

From

then

on,

calls

to

TIME(’E’)

and

to

TIME(’R’)

return

the

elapsed

time

since

that

first

call

or

since

the

last

call

to

TIME(’R’).

The

clock

is

saved

across

internal

routine

calls,

which

is

to

say

that

an

internal

routine

inherits

the

time

clock

its

caller

started.

Any

timing

the

caller

is

doing

is

not

affected,

even

if

an

internal

routine

resets

the

clock.

An

example

of

the

elapsed-time

clock:

time(’E’)

->

0

/*

The

first

call

*/

/*

pause

of

one

second

here

*/

time(’E’)

->

1.002345

/*

or

thereabouts

*/

/*

pause

of

one

second

here

*/

time(’R’)

->

2.004690

/*

or

thereabouts

*/

/*

pause

of

one

second

here

*/

time(’R’)

->

1.002345

/*

or

thereabouts

*/

Note:

See

the

note

under

DATE

about

consistency

of

times

within

a

single

clause.

The

elapsed-time

clock

is

synchronized

to

the

other

calls

to

TIME

and

DATE,

so

multiple

calls

to

the

elapsed-time

clock

in

a

single

clause

always

return

the

same

result.

For

the

same

reason,

the

interval

between

two

usual

TIME/DATE

results

may

be

calculated

exactly

using

the

elapsed-time

clock.

Implementation

maximum:

If

the

number

of

seconds

in

the

elapsed

time

exceeds

nine

digits

(equivalent

to

over

31.6

years),

an

error

results.

Functions

Chapter

4.

Functions

87

TRACE

��

TRACE(

option

)

��

returns

trace

actions

currently

in

effect

and,

optionally,

alters

the

setting.

If

you

specify

option,

it

selects

the

trace

setting.

It

must

be

one

of

the

valid

prefixes

?

or

!

or

one

of

the

alphabetic

character

options

associated

with

the

TRACE

instruction

(that

is,

starting

with

A,

C,

E,

F,

I,

L,

N,

O,

R,

or

S)

or

both.

(See

the

TRACE

instruction

on

page

57

for

full

details.)

Unlike

the

TRACE

instruction,

the

TRACE

function

alters

the

trace

action

even

if

interactive

debug

is

active.

Also

unlike

the

TRACE

instruction,

option

cannot

be

a

number.

Here

are

some

examples:

TRACE()

->

’?R’

/*

maybe

*/

TRACE(’O’)

->

’?R’

/*

also

sets

tracing

off

*/

TRACE(’?I’)

->

’O’

/*

now

in

interactive

debug

*/

TRANSLATE

��

TRANSLATE(string

,

tableo

,

tablei

,pad

)

��

returns

string

with

each

character

translated

to

another

character

or

unchanged.

You

can

also

use

this

function

to

reorder

the

characters

in

string.

The

output

table

is

tableo

and

the

input

translation

table

is

tablei.

TRANSLATE

searches

tablei

for

each

character

in

string.

If

the

character

is

found,

then

the

corresponding

character

in

tableo

is

used

in

the

result

string;

if

there

are

duplicates

in

tablei,

the

first

(leftmost)

occurrence

is

used.

If

the

character

is

not

found,

the

original

character

in

string

is

used.

The

result

string

is

always

the

same

length

as

string.

The

tables

can

be

of

any

length.

If

you

specify

neither

translation

table

and

omit

pad,

string

is

simply

translated

to

uppercase

(that

is,

lowercase

a–z

to

uppercase

A–Z),

but,

if

you

include

pad,

the

language

processor

translates

the

entire

string

to

pad

characters.

tablei

defaults

to

XRANGE(’00’x,’FF’x),

and

tableo

defaults

to

the

null

string

and

is

padded

with

pad

or

truncated

as

necessary.

The

default

pad

is

a

blank.

Here

are

some

examples:

TRANSLATE(’abcdef’)

->

’ABCDEF’

TRANSLATE(’abbc’,’&’,’b’)

->

’a&&c’

TRANSLATE(’abcdef’,’12’,’ec’)

->

’ab2d1f’

TRANSLATE(’abcdef’,’12’,’abcd’,’.’)

->

’12..ef’

TRANSLATE(’APQRV’,,’PR’)

->

’A

Q

V’

TRANSLATE(’APQRV’,XRANGE(’00’X,’Q’))

->

’APQ

’

TRANSLATE(’4123’,’abcd’,’1234’)

->

’dabc’

Note:

The

last

example

shows

how

to

use

the

TRANSLATE

function

to

reorder

the

characters

in

a

string.

In

the

example,

the

last

character

of

any

four-character

string

specified

as

the

second

argument

would

be

moved

to

the

beginning

of

the

string.

Functions

88

REXX/VSE

Reference

TRUNC

(Truncate)

��

TRUNC(number

,n

)

��

returns

the

integer

part

of

number

and

n

decimal

places.

The

default

n

is

0

and

returns

an

integer

with

no

decimal

point.

If

you

specify

n,

it

must

be

a

positive

whole

number

or

zero.

The

number

is

first

rounded

according

to

standard

REXX

rules,

just

as

though

the

operation

number+0

had

been

carried

out.

The

number

is

then

truncated

to

n

decimal

places

(or

trailing

zeros

are

added

if

needed

to

make

up

the

specified

length).

The

result

is

never

in

exponential

form.

Here

are

some

examples:

TRUNC(12.3)

->

12

TRUNC(127.09782,3)

->

127.097

TRUNC(127.1,3)

->

127.100

TRUNC(127,2)

->

127.00

Note:

The

number

is

rounded

according

to

the

current

setting

of

NUMERIC

DIGITS

if

necessary

before

the

function

processes

it.

USERID

USERID

is

a

non-SAA

built-in

function.

See

page

96

for

a

description.

VALUE

��

VALUE(name

,

newvalue

)

��

returns

the

value

of

the

symbol

that

name

(often

constructed

dynamically)

represents

and

optionally

assigns

it

a

new

value.

By

default,

VALUE

refers

to

the

current

REXX-variables

environment.

name

must

be

a

valid

REXX

symbol.

(You

can

confirm

this

by

using

the

SYMBOL

function.)

Lowercase

characters

in

name

are

translated

to

uppercase.

Substitution

in

a

compound

name

(see

“Compound

Symbols”

on

page

20)

occurs

if

possible.

If

you

specify

newvalue,

then

the

named

variable

is

assigned

this

new

value.

This

does

not

affect

the

result

returned;

that

is,

the

function

returns

the

value

of

name

as

it

was

before

the

new

assignment.

Here

are

some

examples:

/*

After:

Drop

A3;

A33=7;

K=3;

fred=’K’;

list.5=’Hi’

*/

VALUE(’a’k)

->

’A3’

/*

looks

up

A3

*/

VALUE(’a’k||k)

->

’7’

/*

looks

up

A33

*/

VALUE(’fred’)

->

’K’

/*

looks

up

FRED

*/

VALUE(fred)

->

’3’

/*

looks

up

K

*/

VALUE(fred,5)

->

’3’

/*

looks

up

K

and

*/

/*

then

sets

K=5

*/

VALUE(fred)

->

’5’

/*

looks

up

K

*/

VALUE(’LIST.’k)

->

’Hi’

/*

looks

up

LIST.5

*/

Note:

If

the

VALUE

function

refers

to

an

uninitialized

REXX

variable

then

the

default

value

of

the

variable

is

always

returned;

the

NOVALUE

condition

is

not

raised.

Functions

Chapter

4.

Functions

89

If

you

specify

the

name

as

a

single

literal

string,

the

symbol

is

a

constant

and

so

the

string

between

the

quotation

marks

can

usually

replace

the

whole

function

call.

(For

example,

fred=VALUE(’k’);

is

identical

with

the

assignment

fred=k;,

unless

the

NOVALUE

condition

is

being

trapped.

See

Chapter

7,

“Conditions

and

Condition

Traps,”

on

page

131.)

VERIFY

��

VERIFY(string,reference

,

option

,start

)

��

returns

a

number

that,

by

default,

indicates

whether

string

is

composed

only

of

characters

from

reference;

returns

0

if

all

characters

in

string

are

in

reference,

or

returns

the

position

of

the

first

character

in

string

not

in

reference.

The

option

can

be

either

Nomatch

(the

default)

or

Match.

(Only

the

capitalized

and

highlighted

letter

is

needed.

All

characters

following

it

are

ignored,

and

it

can

be

in

upper-

or

lowercase,

as

usual.)

If

you

specify

Match,

the

function

returns

the

position

of

the

first

character

in

string

that

is

in

reference,

or

returns

0

if

none

of

the

characters

are

found.

The

default

for

start

is

1;

thus,

the

search

starts

at

the

first

character

of

string.

You

can

override

this

by

specifying

a

different

start

point,

which

must

be

a

positive

whole

number.

If

string

is

null,

the

function

returns

0,

regardless

of

the

value

of

the

third

argument.

Similarly,

if

start

is

greater

than

LENGTH(string),

the

function

returns

0.

If

reference

is

null,

the

function

returns

0

if

you

specify

Match;

otherwise

the

function

returns

the

start

value.

Here

are

some

examples:

VERIFY(’123’,’1234567890’)

->

0

VERIFY(’1Z3’,’1234567890’)

->

2

VERIFY(’AB4T’,’1234567890’)

->

1

VERIFY(’AB4T’,’1234567890’,’M’)

->

3

VERIFY(’AB4T’,’1234567890’,’N’)

->

1

VERIFY(’1P3Q4’,’1234567890’,,3)

->

4

VERIFY(’123’,’’,N,2)

->

2

VERIFY(’ABCDE’,’’,,3)

->

3

VERIFY(’AB3CD5’,’1234567890’,’M’,4)

->

6

WORD

��

WORD(string,n)

��

returns

the

nth

blank-delimited

word

in

string

or

returns

the

null

string

if

fewer

than

n

words

are

in

string.

The

n

must

be

a

positive

whole

number.

This

function

is

exactly

equivalent

to

SUBWORD(string,n,1).

Here

are

some

examples:

WORD(’Now

is

the

time’,3)

->

’the’

WORD(’Now

is

the

time’,5)

->

’’

Functions

90

REXX/VSE

Reference

WORDINDEX

��

WORDINDEX(string,n)

��

returns

the

position

of

the

first

character

in

the

nth

blank-delimited

word

in

string

or

returns

0

if

fewer

than

n

words

are

in

string.

The

n

must

be

a

positive

whole

number.

Here

are

some

examples:

WORDINDEX(’Now

is

the

time’,3)

->

8

WORDINDEX(’Now

is

the

time’,6)

->

0

WORDLENGTH

��

WORDLENGTH(string,n)

��

returns

the

length

of

the

nth

blank-delimited

word

in

string

or

returns

0

if

fewer

than

n

words

are

in

string.

The

n

must

be

a

positive

whole

number.

Here

are

some

examples:

WORDLENGTH(’Now

is

the

time’,2)

->

2

WORDLENGTH(’Now

comes

the

time’,2)

->

5

WORDLENGTH(’Now

is

the

time’,6)

->

0

WORDPOS

(Word

Position)

��

WORDPOS(phrase,string

,start

)

��

returns

the

word

number

of

the

first

word

of

phrase

found

in

string

or

returns

0

if

phrase

contains

no

words

or

if

phrase

is

not

found.

Multiple

blanks

between

words

in

either

phrase

or

string

are

treated

as

a

single

blank

for

the

comparison,

but

otherwise

the

words

must

match

exactly.

By

default

the

search

starts

at

the

first

word

in

string.

You

can

override

this

by

specifying

start

(which

must

be

positive),

the

word

at

which

to

start

the

search.

Here

are

some

examples:

WORDPOS(’the’,’now

is

the

time’)

->

3

WORDPOS(’The’,’now

is

the

time’)

->

0

WORDPOS(’is

the’,’now

is

the

time’)

->

2

WORDPOS(’is

the’,’now

is

the

time’)

->

2

WORDPOS(’is

time

’,’now

is

the

time’)

->

0

WORDPOS(’be’,’To

be

or

not

to

be’)

->

2

WORDPOS(’be’,’To

be

or

not

to

be’,3)

->

6

Functions

Chapter

4.

Functions

91

WORDS

��

WORDS(string)

��

returns

the

number

of

blank-delimited

words

in

string.

Here

are

some

examples:

WORDS(’Now

is

the

time’)

->

4

WORDS(’

’)

->

0

XRANGE

(Hexadecimal

Range)

��

XRANGE(

start

,end

)

��

returns

a

string

of

all

valid

1-byte

encodings

(in

ascending

order)

between

and

including

the

values

start

and

end.

The

default

value

for

start

is

’00’x,

and

the

default

value

for

end

is

’FF’x.

If

start

is

greater

than

end,

the

values

wrap

from

’FF’x

to

’00’x.

If

specified,

start

and

end

must

be

single

characters.

Here

are

some

examples:

XRANGE(’a’,’f’)

->

’abcdef’

XRANGE(’03’x,’07’x)

->

’0304050607’x

XRANGE(,’04’x)

->

’0001020304’x

XRANGE(’i’,’j’)

->

’898A8B8C8D8E8F9091’x

/*

EBCDIC

*/

XRANGE(’FE’x,’02’x)

->

’FEFF000102’x

X2B

(Hexadecimal

to

Binary)

��

X2B(hexstring)

��

returns

a

string,

in

character

format,

that

represents

hexstring

converted

to

binary.

The

hexstring

is

a

string

of

hexadecimal

characters.

It

can

be

of

any

length.

Each

hexadecimal

character

is

converted

to

a

string

of

four

binary

digits.

You

can

optionally

include

blanks

in

hexstring

(at

byte

boundaries

only,

not

leading

or

trailing)

to

aid

readability;

they

are

ignored.

The

returned

string

has

a

length

that

is

a

multiple

of

four,

and

does

not

include

any

blanks.

If

hexstring

is

null,

the

function

returns

a

null

string.

Here

are

some

examples:

X2B(’C3’)

->

’11000011’

X2B(’7’)

->

’0111’

X2B(’1

C1’)

->

’000111000001’

You

can

combine

X2B

with

the

functions

D2X

and

C2X

to

convert

numbers

or

character

strings

into

binary

form.

Here

are

some

examples:

Functions

92

REXX/VSE

Reference

X2B(C2X(’C3’x))

->

’11000011’

X2B(D2X(’129’))

->

’10000001’

X2B(D2X(’12’))

->

’1100’

X2C

(Hexadecimal

to

Character)

��

X2C(hexstring)

��

returns

a

string,

in

character

format,

that

represents

hexstring

converted

to

character.

The

returned

string

is

half

as

many

bytes

as

the

original

hexstring.

hexstring

can

be

of

any

length.

If

necessary,

it

is

padded

with

a

leading

0

to

make

an

even

number

of

hexadecimal

digits.

You

can

optionally

include

blanks

in

hexstring

(at

byte

boundaries

only,

not

leading

or

trailing)

to

aid

readability;

they

are

ignored.

If

hexstring

is

null,

the

function

returns

a

null

string.

Here

are

some

examples:

X2C(’F7F2

A2’)

->

’72s’

/*

EBCDIC

*/

X2C(’F7f2a2’)

->

’72s’

/*

EBCDIC

*/

X2C(’F’)

->

’

’

/*

’0F’

is

unprintable

EBCDIC

*/

X2D

(Hexadecimal

to

Decimal)

��

X2D(hexstring

,n

)

��

returns

the

decimal

representation

of

hexstring.

The

hexstring

is

a

string

of

hexadecimal

characters.

If

the

result

cannot

be

expressed

as

a

whole

number,

an

error

results.

That

is,

the

result

must

not

have

more

digits

than

the

current

setting

of

NUMERIC

DIGITS.

You

can

optionally

include

blanks

in

hexstring

(at

byte

boundaries

only,

not

leading

or

trailing)

to

aid

readability;

they

are

ignored.

If

hexstring

is

null,

the

function

returns

0.

If

you

do

not

specify

n,

hexstring

is

processed

as

an

unsigned

binary

number.

Here

are

some

examples:

X2D(’0E’)

->

14

X2D(’81’)

->

129

X2D(’F81’)

->

3969

X2D(’FF81’)

->

65409

X2D(’c6

f0’X)

->

240

/*

EBCDIC

*/

If

you

specify

n,

the

string

is

taken

as

a

signed

number

expressed

in

n

hexadecimal

digits.

If

the

leftmost

bit

is

off,

then

the

number

is

positive;

otherwise,

it

is

a

negative

number

in

two’s

complement

notation.

In

both

cases

it

is

converted

to

a

whole

number,

which

may,

therefore,

be

negative.

If

n

is

0,

the

function

returns

0.

Functions

Chapter

4.

Functions

93

If

necessary,

hexstring

is

padded

on

the

left

with

0

characters

(note,

not

″sign-extended″),

or

truncated

on

the

left

to

n

characters.

Here

are

some

examples:

X2D(’81’,2)

->

-127

X2D(’81’,4)

->

129

X2D(’F081’,4)

->

-3967

X2D(’F081’,3)

->

129

X2D(’F081’,2)

->

-127

X2D(’F081’,1)

->

1

X2D(’0031’,0)

->

0

Implementation

maximum:

The

input

string

may

not

have

more

than

500

hexadecimal

characters

that

will

be

significant

in

forming

the

final

result.

Leading

sign

characters

(0

and

F)

do

not

count

towards

this

total.

Additional

Functions

Provided

in

REXX/VSE

In

addition

to

the

SAA-defined

built-in

functions,

REXX/VSE

provides

the

following

built-in

functions:

EXTERNALS

��

EXTERNALS()

��

always

returns

a

0.

For

example:

EXTERNALS()

->

0

/*

Always

*/

The

EXTERNALS

function

returns

the

number

of

elements

in

the

terminal

input

buffer

(system

external

event

queue).

In

REXX/VSE

there

is

no

equivalent

buffer.

Therefore,

the

EXTERNALS

function

always

returns

a

0.

FIND

WORDPOS

is

the

preferred

built-in

function

for

this

type

of

word

search.

See

page

91

for

a

complete

description.

��

FIND(string,phrase)

��

returns

the

word

number

of

the

first

word

of

phrase

found

in

string

or

returns

0

if

phrase

is

not

found

or

if

there

are

no

words

in

phrase.

The

phrase

is

a

sequence

of

blank-delimited

words.

Multiple

blanks

between

words

in

phrase

or

string

are

treated

as

a

single

blank

for

the

comparison.

Here

are

some

examples:

FIND(’now

is

the

time’,’is

the

time’)

->

2

FIND(’now

is

the

time’,’is

the’)

->

2

FIND(’now

is

the

time’,’is

time

’)

->

0

Note

that

WORDPOS

is

the

preferred

built-in

function

for

this

type

of

word

search.

For

more

complete

information,

see

the

VM/ESA:

REXX/VM

Reference,

SC24-5770.

Functions

94

REXX/VSE

Reference

INDEX

POS

is

the

preferred

built-in

function

for

obtaining

the

position

of

one

string

in

another.

See

page

81

for

a

complete

description.

��

INDEX(haystack,needle

,start

)

��

returns

the

character

position

of

one

string,

needle,

in

another,

haystack,

or

returns

0

if

the

string

needle

is

not

found

or

is

a

null

string.

By

default

the

search

starts

at

the

first

character

of

haystack

(start

has

the

value

1).

You

can

override

this

by

specifying

a

different

start

point,

which

must

be

a

positive

whole

number.

Here

are

some

examples:

INDEX(’abcdef’,’cd’)

->

3

INDEX(’abcdef’,’xd’)

->

0

INDEX(’abcdef’,’bc’,3)

->

0

INDEX(’abcabc’,’bc’,3)

->

5

INDEX(’abcabc’,’bc’,6)

->

0

Note

that

POS

is

the

preferred

built-in

function

for

obtaining

the

position

of

one

string

in

another.

For

more

complete

information,

see

the

VM/ESA:

REXX/VM

Reference,

SC24-5770.

JUSTIFY

��

JUSTIFY(string,length

,pad

)

��

returns

string

formatted

by

adding

pad

characters

between

blank-delimited

words

to

justify

to

both

margins.

This

is

done

to

width

length

(length

must

be

a

positive

whole

number

or

zero).

The

default

pad

character

is

a

blank.

The

first

step

is

to

remove

extra

blanks

as

though

SPACE(string)

had

been

run

(that

is,

multiple

blanks

are

converted

to

single

blanks,

and

leading

and

trailing

blanks

are

removed).

If

length

is

less

than

the

width

of

the

changed

string,

the

string

is

then

truncated

on

the

right

and

any

trailing

blank

is

removed.

Extra

pad

characters

are

then

added

evenly

from

left

to

right

to

provide

the

required

length,

and

the

pad

character

replaces

the

blanks

between

words.

Here

are

some

examples:

JUSTIFY(’The

blue

sky’,14)

->

’The

blue

sky’

JUSTIFY(’The

blue

sky’,8)

->

’The

blue’

JUSTIFY(’The

blue

sky’,9)

->

’The

blue’

JUSTIFY(’The

blue

sky’,9,’+’)

->

’The++blue’

For

more

complete

information,

see

the

VM/ESA:

REXX/VM

Reference,

SC24-5770.

REXX/VSE

Functions

Chapter

4.

Functions

95

LINESIZE

��

LINESIZE()

��

returns

the

width

of

the

current

output

device.

If

the

current

output

destination

is

SYSLOG,

LINESIZE

returns

66.

If

it

is

SYSLST,

LINESIZE

returns

120.

You

can

use

ASSGN(STDOUT)

to

return

the

name

of

the

current

output

device.

USERID

��

USERID()

��

returns

one

of

the

following

values:

1.

The

last

user

ID

specified

on

the

SETUID

command,

or,

if

none,

2.

The

user

ID

of

the

calling

REXX

program,

if

one

REXX

program

calls

another,

or,

if

none,

3.

The

user

ID

under

which

the

job

is

running,

or,

if

none,

4.

The

job

name.

The

USERID

function

returns

the

first

value

that

does

not

have

a

null

value.

For

example,

if

the

user

ID

specified

on

SETUID

is

null,

USERID

returns

the

user

ID

under

which

the

job

is

running.

There

are

several

ways

to

specify

the

user

ID,

not

limited

to

the

following:

v

On

the

POWER

JOB

card

v

The

logon

userid/password

passed

through

the

PWRSPL

macro

when

you

submit

a

job

from

the

interactive

interface

(ICCF)

v

On

the

REXX/VSE

command

SETUID.

(See

page

166

for

details.)

You

can

replace

the

routine

(phase)

that

is

called

to

determine

the

value

the

USERID

function

returns.

This

is

known

as

the

user

ID

replaceable

routine;

and

“User

ID

Routine”

on

page

468

describes

it.

See

Chapter

21,

“Replaceable

Routines

and

Exits,”

on

page

443

for

details

about

replaceable

routines

and

any

exceptions

to

this

rule.

For

more

complete

information,

see

the

VM/ESA:

REXX/VM

Reference,

SC24-5770.

External

Functions

You

can

use

the

following

external

functions

to

perform

different

tasks:

v

ASSGN

v

LOCKMGR

(see

note)

v

MERGE

(see

note)

v

OPERMSG

(see

note)

v

OUTTRAP

v

PAUSEMSG

(see

note)

v

REXXIPT

v

REXXMSG

v

SETLANG

v

SLEEP

v

SORTSTEM

(see

note)

v

STORAGE.

REXX/VSE

Functions

96

REXX/VSE

Reference

v

SYSVAR

Note:

These

are

functions

packaged

with

REXX

Console

Automation.

Some

more

functions

which

allow

a

REXX

program

to

work

with

the

REXX

console

are

described

in

the

section

“Console-related

REXX

Functions”

on

page

229.

This

section

describes

external

functions.

For

general

information

about

the

syntax

of

function

calls,

see

“Syntax”

on

page

61.

Chapter

18,

“Customizing

Services”

describes

customization

and

language

processor

environments

in

more

detail.

ASSGN

��

ASSGN(

STDIN

)

,

SYSIPT

,

SYSLOG

,

filename

STDOUT

,

SYSLST

,

SYSLOG

,

filename

��

ASSGN

returns

the

name

of

the

current

input

or

output

stream

and,

optionally,

changes

it.

You

can

use

ASSGN(STDIN)

or

ASSGN(STDOUT)

to

return

the

name

of

the

current

input

or

output

stream,

respectively.

If

you

specify

one

of

the

optional

items,

ASSGN

returns

the

name

of

the

current

stream

and

changes

the

current

stream

to

the

value

you

specified.

If

you

specify

filename,

this

is

the

name

of

the

input

or

output

file.

The

filename

must

be

1

to

8

characters.

Notes:

1.

Using

SYSLST

with

STDIN

or

using

SYSIPT

with

STDOUT

results

in

REXX

error

40,

Invalid

call

to

routine.

2.

You

must

provide

your

own

I/O

replaceable

routine

unless

you

use

one

of

the

following

file

names:

v

SYSLOG

v

SYSIPT

v

SYSLST

v

SYSxxx

(where

xxx

is

numeric)

If

you

specify

a

system

file

SYSxxx

you

might

receive

an

error

by

the

I/O

replaceable

routine

ARXINOUT.

See

“Input/Output

Routine”

on

page

450

for

a

list

of

supported

file

names.

v

Any

other

7-character

name.

Otherwise,

you

receive

an

error.

See

“Input/Output

Routine”

on

page

450

for

information

about

supplying

a

replaceable

routine.

You

need

to

open

a

SAM

file

(using

EXECIO...(OPEN)

before

reading

from

or

writing

to

the

file.

SYSIPT,

SYSLST,

and

SAM

files

you

have

opened

use

the

replaceable

routine

ARXINOUT.

3.

SAM

file

names

can

be

1

to

7

characters.

PARSE

EXTERNAL,

PARSE

PULL,

PULL,

SAY,

TRACE,

and

error

messages

use

the

current

input

and

output

streams.

The

INDD

field

in

the

module

name

table

specifies

the

default

input

stream

(SYSIPT),

and

the

OUTDD

field

specifies

the

default

output

stream

(SYSLST).

Instead

of

using

ASSGN

to

change

the

input

or

output

External

Functions

Chapter

4.

Functions

97

stream,

you

can

specify

the

INDD

or

OUTDD

field

in

the

in-storage

parameter

list

during

a

call

to

ARXINIT.

See

“Module

Name

Table”

on

page

401

for

a

description

of

the

module

name

table.

Examples:

/**************************

REXX

***********************************/

/*

This

REXX

program

gets

a

word

from

the

input

stream

and

sends

*/

/*

it

to

the

output

stream.

*/

/***/

oldin

=

ASSGN(’STDIN’,’SYSLOG’)

oldout

=

ASSGN(’STDOUT’,’SYSLOG’)

say

’Enter

the

word.’

PULL

word

/*

Get

the

word.

*/

SAY

word

CALL

ASSGN

’STDIN’,oldin

CALL

ASSGN

’STDOUT’,oldout

EXIT

LOCKMGR

��

LOCKMGR(request,name)

��

The

LOCKMGR

function

allows

to

serialize

REXX

programs.

See

the

detailed

description

on

page

235.

MERGE

��

MERGE(string)

��

The

MERGE

function

creates

a

new

library

member

using

a

given

skeleton

and

input

variables.

See

the

detailed

description

on

page

236.

OPERMSG

��

OPERMSG(request)

��

The

OPERMSG

function

adds

or

removes

an

operator

communication

exit.

See

the

detailed

description

on

page

238.

External

Functions

98

REXX/VSE

Reference

OUTTRAP

��

OUTTRAP(

,999999999,CONCAT

varname

999999999

,CONCAT

,

max

,NOCONCAT

)

��

OUTTRAP

returns

v

OFF

(if

it

has

not

been

previously

used)

v

the

previously

used

varname

if

used

with

arguments

the

following

is

trapped

in

the

specified

varname:

v

user

data

provided

by

ARXOUT.

This

is

only

possible

from

a

user

program

invoked

by

LINK

or

LINKPGM.

v

job

completion

information

retrieved

by

QUERYMSG.

v

command

output

and

error

information

from

JCL.

v

SYSLST

output

for

LIBR

and

IDCAMS

v

error

information

from

PUTQE

(page

187).

and

GETQE

(page

182)

v

command

output

from

VSE/POWER

commands

(CTL

requests)

routed

back

through

the

VSE/POWER

spool-access

services

interface,

or

error

information

if

the

command

fails.

(See

VSE/POWER

Application

Programming,

SC33-6736,

for

a

list

of

POWER

commands

you

can

send

through

a

CTL

service

request.

See

VSE/POWER

Administration

and

Operation,

SC33-6733,

for

the

syntax

of

these

commands.)

varname

is

the

stem

of

a

compound

variable

(a

stem

must

end

with

a

period).

It

has

no

default

value

(trapping

is

not

in

effect

until

activated).

max

is

the

maximum

number

of

lines

to

store

in

the

compound

variables.

You

can

specify

a

number,

an

asterisk

in

quotation

marks

(’*’),

or

a

blank.

If

you

specify

’*’

or

a

blank,

all

the

output

is

stored.

The

default

is

999999999.

Once

the

maximum

number

of

lines

are

stored,

subsequent

lines

are

not

stored

in

compound

variables.

CONCAT

specifies

storing

trapped

lines

from

successive

commands

in

consecutive

order

until

the

maximum

number

of

lines

is

reached.

For

example,

if

the

first

command

has

three

lines

of

output

and

the

second

command

has

two

lines

of

output,

lines

are

stored

in

varname.1

through

varname.5,

respectively.

CONCAT

is

the

default.

NOCONCAT

specifies

overwriting

stored

lines

from

successive

commands.

For

example,

if

the

first

command

has

three

lines

of

output,

they

are

stored

in

varname.1

through

varname.3.

Storing

two

lines

of

output

from

the

second

command

overwrites

the

lines

from

the

first

command

in

varname.1

and

varname.2.

(Varname.3

would

no

longer

contain

the

third

line

of

the

first

command’s

output.)

Before

OUTTRAP

stores

output,

varname

is

dropped

(as

if

a

REXX

DROP

instruction

specifying

the

name

of

the

stem

had

been

used).

All

unused

variables

have

the

value

of

their

own

names

in

uppercase.

Varname.0

contains

the

number

of

lines

that

have

been

stored.

For

example,

if

you

specify

cmdout.

as

the

varname,

the

number

of

lines

stored

is

in

cmdout.0.

External

Functions

Chapter

4.

Functions

99

A

program

written

in

REXX

cannot

turn

trapping

off.

Once

trapping

is

turned

on,

it

remains

in

effect

until

the

program

is

done

running.

If

a

second

call

to

a

subsequent

program

is

made,

trapping

is

not

in

effect

unless

the

second

program

turns

trapping

on.

When

the

second

program

ends,

the

trapping

for

that

program

ends

and

trapping

for

the

first

program

is

again

in

effect.

(The

REXX

variables

that

trapping

affects

are

in

the

program

that

is

currently

running.)

Additional

Variables

That

OUTTRAP

Sets

In

addition

to

the

variables

that

store

the

lines

of

output,

OUTTRAP

stores

information

in

the

following

variables:

varname.0

contains

the

total

number

of

lines

stored.

The

number

in

this

variable

cannot

be

larger

than

varname.MAX

or

varname.TRAPPED.

varname.MAX

contains

the

maximum

number

of

output

lines

that

the

user

specified

or

the

default.

See

example

4.

varname.TRAPPED

contains

the

total

number

of

lines

of

command

output.

The

number

in

this

variable

can

be

larger

than

varname.0

or

varname.MAX.

varname.CON

contains

either

CONCAT

or

NOCONCAT.

Examples:

The

following

are

some

examples

of

using

OUTTRAP.

Note:

You

should

use

quotation

marks

around

the

string

you

specify

for

varname

and

around

the

keywords

CONCAT

and

NOCONCAT.

1.

To

determine

if

trapping

is

in

effect:

y

=

OUTTRAP()

SAY

y

/*

Produces

the

variable

name

being

used

to

*/

/*

store

output

or

"OFF"

if

trapping

is

off

*/

2.

To

suppress

all

command

output:

y

=

OUTTRAP(’output.’,0)

Note:

This

form

of

OUTTRAP

is

best

for

suppressing

command

output.

3.

To

store

output

from

commands

in

consecutive

order,

using

the

stem

output.,

you

can

use

one

of

the

following:

y

=

OUTTRAP(’output.’,’*’,’CONCAT’)

y

=

OUTTRAP(’output.’)

y

=

OUTTRAP(’output.’,,’CONCAT’)

4.

This

example

contrasts

CONCAT

and

NOCONCAT.

Suppose

you

use

the

following

to

store

output

lines

from

two

commands:

y

=

OUTTRAP(’ABC.’,4,’CONCAT’)

Command

1

has

three

lines

of

output.

ABC.0

-->

3

/*

total

lines

stored

*/

ABC.1

-->

Command

1

output

line

1

ABC.2

-->

Command

1

output

line

2

ABC.3

-->

Command

1

output

line

3

ABC.4

-->

ABC.4

/*

uninitialized

variable

*/

ABC.MAX

-->

4

ABC.TRAPPED

-->

3

/*

total

output

lines

*/

ABC.CON

-->

CONCAT

External

Functions

100

REXX/VSE

Reference

Command

2

has

two

lines

of

output.

They

are

stored

in

variables

starting

after

the

three

lines

already

stored.

ABC.0

-->

4

/*

total

lines

stored

*/

ABC.1

-->

Command

1

output

line

1

ABC.2

-->

Command

1

output

line

2

ABC.3

-->

Command

1

output

line

3

ABC.4

-->

Command

2

output

line

1

ABC.MAX

-->

4

ABC.TRAPPED

-->

5

/*

total

lines

output

*/

ABC.CON

-->

CONCAT

(The

second

line

from

Command

2

is

not

stored

because

max

is

4.)

However,

if

you

use:

y

=

OUTTRAP(’ABC.’,4,’NOCONCAT’)

to

store

the

same

two

commands,

this

produces

different

results:

Results

after

Command

1

are

the

same

(except

for

ABC.CON):

ABC.0

-->

3

/*

total

lines

stored

*/

ABC.1

-->

Command

1

output

line

1

ABC.2

-->

Command

1

output

line

2

ABC.3

-->

Command

1

output

line

3

ABC.4

-->

ABC.4

/*

uninitialized

variable

*/

ABC.MAX

-->

4

ABC.TRAPPED

-->

3

/*

total

lines

output

*/

ABC.CON

-->

NOCONCAT

However,

output

lines

from

Command

2

overwrite

lines

from

Command

1.

ABC.0

-->

2

/*

total

lines

stored

*/

ABC.1

-->

Command

2

output

line

1

ABC.2

-->

Command

2

output

line

2

ABC.3

-->

ABC.3

/*

becomes

uninitialized

*/

ABC.4

-->

ABC.4

ABC.MAX

-->

4

ABC.TRAPPED

-->

2

/*

total

lines

output

*/

ABC.CON

-->

NOCONCAT

5.

The

following

example

uses

OUTTRAP

to

capture

error

information

from

PUTQE:

y

=

OUTTRAP(’mystem.’)

ADDRESS

POWER

"PUTQE

RDR

MEMBER

member1

WAIT

3

CLASS

0"

If

Class

0

is

busy,

so

that

the

three-second

interval

elapses

before

the

job

can

be

put

on

the

RDR

queue,

OUTTRAP

stores

error

information

in

the

compound

variables

whose

names

begin

with

the

stem

mystem..

PAUSEMSG

��

PAUSEMSG(message)

��

The

PAUSEMSG

function

issues

a

console

message

and

waits

for

an

operator

reply.

See

the

detailed

description

on

page

239.

External

Functions

Chapter

4.

Functions

101

REXXIPT

��

REXXIPT(

)

input_stem.

OFF

��

REXXIPT

lets

a

program

(called

with

ADDRESS

JCL,

ADDRESS

LINK

or

ADDRESS

LINKPGM)

read

data

stored

in

compound

variables

as

if

it

were

SYSIPT

data.

It

returns

a

previously

defined

input

stem

or

’OFF’.

REXXIPT

cannot

be

used

in

a

REXX

program

running

in

a

subtask.

If

a

second

call

to

a

subsequent

REXX

program

is

made,

REXXIPT

is

off

unless

a

stem

is

assigned

to

REXXIPT.

When

the

second

program

ends,

REXXIPT

data

is

deleted

and

REXXIPT

for

the

first

program

is

on

again.

The

input_stem

is

the

name

of

a

stem

(it

must

end

with

a

period).

It

is

used

as

the

SYSIPT

input

stream

for

the

specified

host

command

environment.

OFF

specifies

that

no

stem

contains

SYSIPT

data.

To

use

the

REXXIPT

function:

1.

Store

the

lines

of

data

into

compound

variables.

2.

Store

the

number

of

lines

in

input_stem

stem.0.

3.

Call

the

REXXIPT

function.

4.

Use

the

ADDRESS

instruction

to

call

the

program.

In

the

following

example,

the

ADDRESS

instruction

specifies

the

LINK

environment

and

calls

the

program

MYPHASE:

line.1="Now

is

the

time"

line.2="for

all

good

men"

line.3="to

come

to

the

aid

of

their

country."

line.0=3

/*

total

number

of

lines

of

data

*/

oldstem

=

REXXIPT(line.)

ADDRESS

LINK

"MYPHASE"

The

REXXIPT

function

call

specifies

name

of

the

stem.

In

this

example,

line.

is

the

name

of

the

stem.

To

use

the

SYSIPT

information

provided

by

a

stem,

the

REXXIPT

function

call

must

precede

an

ADDRESS

instruction

that

loads

and

calls

another

program.

You

can

use

REXXIPT

for

the

following

environments:

v

ADDRESS

JCL

v

ADDRESS

LINK

v

ADDRESS

LINKPGM.

When

MYPHASE

reads

a

record

from

SYSIPT,

it

reads

the

contents

of

the

compound

variables

in

order.

That

is,

it

reads

line.1,

then

line.2,

and

finally

line.3.

The

called

program

uses

the

VSE/ESA

OPEN,

GET,

and

CLOSE

macros

using

a

DTFDI-eqivalent

from

SYSIPT

to

read

the

data.

A

record

containing

fewer

than

128

bytes

is

padded

with

blanks.

A

record

containing

more

than

128

bytes

is

truncated.

See

VSE/ESA

System

Macros

Reference

for

detailed

information.

Reading

the

last

record

acts

as

the

end

of

file

condition.

The

input_stem.0

contains

the

total

number

of

records.

Reading

a

record

whose

number

is

one

more

than

the

contents

of

input_stem.0

indicates

the

end

of

data.

If

you

call

a

program

a

second

time

and

it

reads

the

records

again,

reading

starts

at

the

first

record.

Each

time

you

start

reading

SYSIPT

data

you

start

at

the

first

record

again.

External

Functions

102

REXX/VSE

Reference

Notes:

1.

To

have

access

to

SYSIPT

data,

you

need

to

use

the

JCL

card

//

EXEC

REXX=

to

call

the

program

that

contains

the

REXXIPT

function

call.

(Otherwise,

you

receive

error

40.)

2.

The

called

program

uses

the

OPEN,

GET,

and

CLOSE

macros

using

DTFDI

from

SYSIPT

to

read

the

data.

3.

The

input_stem.0

contains

the

total

number

of

records.

4.

Supported

command

environments

can

use

REXXIPT

from

the

main

task.

The

REXX

program

must

be

called

by

the

JCL

statement

//

EXEC

REXX.

REXXMSG

��

REXXMSG(

)

symbol

��

This

function

is

intended

for

the

general

user.

REXXMSG

specifies

the

output

destination

where

REXX/VSE

messages

are

routed

to.

This

destination

is

valid

for

all

REXX

programs

running

under

the

same

language

program

environment.

REXXMSG

also

enables

the

complete

supression

of

REXX/VSE

messages.

REXXMSG

sets

the

NOMSGWTO

and

NOMSGIO

flags.

These

two

flags

control

where

REXX

error

messages

are

routed.

symbol

can

be

one

of

the

following:

ON

switches

all

REXX

messages

on.

This

is

equal

to

NOMSGWTO=OFF

and

NOMSGIO=OFF.

STDOUT

REXX

error

messages

are

written

to

the

standard

output

device

STDOUT.

The

messages

are

surpressed

if

the

current

output

is

SYSLOG.

This

is

equal

to

NOMSGWTO=ON

and

NOMSGIO=OFF.

SYSLOG

REXX

error

messages

cannot

be

written

to

the

standard

output

device

STDOUT.

Messages

are

written

to

SYSLOG.

This

is

equal

to

NOMSGWTO=OFF

and

NOMSGIO=ON.

OFF

all

REXX

error

messages

are

supressed.

This

is

equal

to

NOMSGWTO=ON

and

NOMSGIO=ON.

REXXMSG

returns

the

previous

symbol

set

by

REXXMSG.

Here

is

an

example

previous

=

REXXMSG(’ON’)

/*

->

returns

’OFF’

and

sets

messages

on

*/

result

=

REXXMSG(previous)/*

->

returns

’ON’

and

sets

msg

off

*/

REXXMSG()

just

returns

the

current

REXX

error

message

destination

without

setting

anything.

REXXMSG()

is

set

to

ON

as

shipped

by

IBM.

You

may,

however,

have

customized

your

installation

to

different

settings.

Here

is

an

example

previous

=

REXXMSG(’STDOUT’)

/*

->

returns

’OFF’

and

sets

STDOUT

*/

current

=

REXXMSG()

/*

->

returns

’STDOUT’

*/

Return

Codes:

Any

invalid

input

results

in

a

return

code

of

40.

External

Functions

Chapter

4.

Functions

103

Overruling

REXXMSG

The

REXX

administrator

can

overrule

the

REXXMSG

function

and

can

suppress

messages

by

setting

NOPMSGS=ON

and

ALTMSGS=OFF

in

the

ARXPARMS

parameters

module.

You

may

now

specify

REXXMSG(’ON’),

the

function

is

processed,

REXXMSG()

returns

’ON’

but

no

messages

are

written.

SETLANG

��

SETLANG(

)

langcode

��

SETLANG

returns

a

three-character

code

that

indicates

the

language

in

which

REXX

messages

are

currently

being

displayed.

Table

1

shows

the

language

codes

and

the

corresponding

languages

for

each

code.

You

can

optionally

specify

one

of

the

language

codes

as

an

argument

on

the

function.

This

sets

the

language

in

which

REXX

messages

are

displayed.

SETLANG

returns

the

code

of

the

language

in

which

REXX

messages

are

currently

displayed

and

changes

the

language

in

which

subsequent

messages

will

be

displayed.

Table

1.

Language

Codes

for

SETLANG

Function

Language

Code

Language

ENP

US

English

-

all

uppercase

ENU

US

English

-

mixed

case

(upper

and

lowercase)

(This

is

the

default.)

Here

are

some

examples:

curlang

=

SETLANG()

->

’ENU’

/*

Returns

current

language

(ENU)

*/

oldlang

=

SETLANG("ENP")->

’ENU’

/*

returns

current

language

(ENU)

and

sets

language

to

US

English

uppercase

(ENP)

*/

After

a

program

uses

SETLANG

to

set

a

specific

language,

any

REXX

message

the

system

issues

is

displayed

in

that

language.

If

the

program

calls

another

program

(either

as

a

function

or

subroutine

or

using

the

EXEC

command),

any

REXX

messages

are

displayed

in

the

language

you

specified

on

the

SETLANG

function.

The

language

you

specified

on

SETLANG

is

the

language

for

displaying

REXX

messages

until

the

program

processes

another

call

to

SETLANG

or

the

environment

in

which

the

program

is

running

terminates.

Notes:

1.

The

default

language

for

REXX

messages

depends

on

the

language

feature

that

is

installed

on

your

system.

The

default

language

is

in

the

language

field

of

the

parameters

module

(see

page

396).

You

can

use

the

SETLANG

function

to

determine

and

set

the

language

for

REXX

messages.

2.

The

language

codes

you

can

specify

on

the

SETLANG

function

also

depend

on

the

language

features

that

are

installed

on

your

system.

If

you

specify

a

language

code

on

the

SETLANG

function

and

the

corresponding

language

feature

is

not

installed

on

your

system,

SETLANG

does

not

issue

an

error

message.

However,

if

the

system

needs

to

display

a

REXX

message

and

cannot

locate

the

message

for

the

particular

language

you

specified,

the

system

issues

an

error

message.

The

system

then

tries

to

display

the

REXX

message

in

US

English.

External

Functions

104

REXX/VSE

Reference

SLEEP

��

SLEEP(n)

��

Use

SLEEP

to

wait

for

a

number

of

seconds.

n

specifies

the

number

of

seconds

a

REXX

program

is

requested

to

wait.

After

this

time

has

elapsed,

the

REXX

program

continues

processing.

The

highest

allowed

value

is

55924.

Any

invalid

input

results

in

return

code

40

and

message

ARX0040I.

Examples:

The

result

of

the

SLEEP

function

is

zero.

fc

=

SLEEP(1)

assigns

the

variable

fc

the

value

zero.

CALL

SLEEP

1

assigns

the

variable

result

the

value

zero.

SORTSTEM

��

SORTSTEM(stemname,zone,sortorder)

��

The

SORTSTEM

function

allows

to

sort

contents

of

a

stem

variable.

See

the

detailed

description

on

page

240.

STORAGE

��

,

1

STORAGE(

address

,

length

,

data

��

STORAGE

returns

length

bytes

of

data

from

the

specified

address

in

storage.

The

address

is

a

character

string

containing

the

hexadecimal

representation

of

the

storage

address

from

which

data

is

retrieved.

Optionally,

you

can

specify

length,

the

decimal

number

of

bytes

to

be

retrieved

from

address.

The

default

length

is

1

byte.

When

length

is

0,

STORAGE

returns

a

null

character

string.

If

you

specify

data,

STORAGE

returns

the

information

from

address

and

then

overwrites

the

storage

starting

at

address

with

data

you

specified

on

the

function

call.

The

data

is

the

character

string

to

be

stored

at

address.

The

length

argument

does

not

affect

how

much

storage

is

overwritten;

the

entire

data

is

written.

If

the

STORAGE

function

tries

to

retrieve

or

change

data

beyond

the

storage

limit,

only

the

storage

up

to

the

limit

is

retrieved

or

changed.

External

Functions

Chapter

4.

Functions

105

Note:

Virtual

storage

addresses

can

be

fetch

protected

or

update

protected,

or

they

may

not

be

valid

addresses

to

VSE/ESA.

An

abend

results

if

STORAGE

references

a

nonexistent

address

or

tries

to

update

nonexistent

storage,

retrieve

the

contents

of

fetch-protected

storage,

or

update

store-protected

storage.

The

STORAGE

function

returns

a

null

string

if

any

part

of

the

request

fails.

Because

the

STORAGE

function

can

retrieve

and

update

virtual

storage

at

the

same

time,

it

is

not

evident

whether

the

retrieve

or

update

caused

the

null

string

to

be

returned.

In

addition,

a

request

for

retrieving

or

updating

storage

of

a

shorter

length

might

have

been

successful.

When

part

of

a

request

fails,

the

failure

point

is

on

a

decimal

4096

boundary.

Examples

1.

To

retrieve

25

bytes

of

data

from

address

000AAE35,

use

the

STORAGE

function

as

follows:

storret

=

STORAGE(000AAE35,25)

2.

To

replace

the

data

at

address

0035D41F

with

REXX/VSE,

use

the

following

STORAGE

function:

storrep

=

STORAGE(0035D41F,,’REXX/VSE’)

This

example

first

returns

1

byte

of

information

found

at

address

0035D41F

and

then

replaces

the

data

beginning

at

address

0035D41F

with

the

characters

REXX/VSE.

Note:

Information

is

retrieved

before

it

is

replaced.

SYSVAR

��

SYSVAR(arg_name)

��

SYSVAR

returns

system

information

about

VSE/ESA.

This

information

is

stored

in

a

REXX

variable.

The

information

returned

depends

on

the

arg_name

specified

on

the

function

call.

Any

invalid

input

results

in

return

code

40

and

message

ARX0040I.

arg_name

can

be

the

following:

SYSMRC

stores

the

highest

return

code

from

VSE

JCL

in

the

variable

SYSMRC.

The

return

code

may

be

up

to

4

characters

long.

SYSJOBNAME

the

variable

SYSJOBNAME

returns

the

VSE

JCL

jobname

(//

JOB

jobname).

jobname

may

be

from

1

to

8

characters

long.

SYSJCLPROC

returns

the

JCL

procedure

name

if

the

REXX

program

is

invoked

from

a

nested

JCL

procedure.

Otherwise

it

will

return

a

null

string.

SYSLIBRCODE

returns

the

Librarian

return

and

reason

code

of

an

EXECIO

command

for

Libr

members.

It

is

a

string

consisting

of

two

words.

Each

word

consists

of

four

digits.

The

first

word

shows

the

return

code,

the

second

word

shows

the

reason

code,

e.g.

’0016

0067’.

SYSPOWJNM

the

variable

SYSPOWJNM

stores

the

VSE/POWER

jobname

(*

$$

JOB

JNM=jobname).

jobname

may

be

from

1

to

8

characters

long.

This

variable

may

be

only

used

if

the

VSE/POWER

partition

control

block

is

available.

External

Functions

106

REXX/VSE

Reference

SYSPOWJNUM

the

variable

SYSPOWJNUM

stores

the

jobnumber

of

the

VSE/POWER

job

calling

the

REXX

program.

This

variable

may

be

only

used

if

the

VSE/POWER

partition

control

block

is

available.

SYSPID

the

variable

SYSPID

returns

the

partition

ID.

It

is

2

bytes

long.

SYSVERSION

the

variable

SYSVERSION

returns

the

VSE/ESA

supervisor

version

(3

digits).

SYSERRCODES

relates

to

the

VSE

console

environment:

this

variable

contains

the

return

and

reason

codes

(see

page

267)

of

the

VSE

system

macro

(such

as

MGCRE,

MCSOPER,

or

WTO)

which

is

used

to

issue

a

VSE

console

command.

An

example

is

shown

in

section

“SYSVAR”

on

page

242.

SYSCPUID

stores

the

CPUID

of

your

VSE

system

in

the

variable

SYSCPUID.

Examples:

Return

the

VSE

JCL

jobname:

if

a

REXX

exec

runs

under

the

JCL

job

with

jobcard

″//

JOB

REXXJOB″.

fc=SYSVAR(’SYSJOBNAME’)

SAY

SYSJOBNAME

/*

Displays

REXXJOB

*/

Return

the

VSE/ESA

supervisor

version:

fc=SYSVAR(’SYSVERSION’)

SAY

SYSVERSION

/*

Displays

610

*/

Return

the

Librarian

return

and

reason

code:

"

EXECIO

*

PRD2.PROD.myfile.Z

(FINIS

"

IF

RC=20

THEN

DO

CALL

SYSVAR|’SYSLIBRCODE’|

IF

(WORD(syslibrcode,1)=’0016’

&

(syslibrcode,2)=’0067’

THEN

SAY

EXECIO

failed

as

member

is

locking

Return

Codes:

Table

2

shows

the

return

codes

for

the

SYSVAR

function.

Table

2.

Return

Codes

for

the

SYSVAR

function

Return

Code

Description

0

Processing

was

successful.

4

Processing

was

not

successful.

System

information

could

not

be

retrieved.

8

Processing

was

not

successful.

System

information

could

not

be

stored

into

a

REXX

variable.

40

Any

invalid

input

was

entered.

External

Functions

Chapter

4.

Functions

107

External

Functions

108

REXX/VSE

Reference

Chapter

5.

Parsing

Parsing

Rules

The

parsing

instructions

are

ARG,

PARSE,

and

PULL

(see

“ARG”

on

page

29,

“PARSE”

on

page

46,

and

“PULL”

on

page

51).

The

data

to

parse

is

a

source

string.

Parsing

splits

up

the

data

in

a

source

string

and

assigns

pieces

of

it

into

the

variables

named

in

a

template.

A

template

is

a

model

specifying

how

to

split

the

source

string.

The

simplest

kind

of

template

consists

of

only

a

list

of

variable

names.

Here

is

an

example:

variable1

variable2

variable3

This

kind

of

template

parses

the

source

string

into

blank-delimited

words.

More

complicated

templates

contain

patterns

in

addition

to

variable

names.

String

patterns

Match

characters

in

the

source

string

to

specify

where

to

split

it.

(See

“Templates

Containing

String

Patterns”

on

page

111

for

details.)

Positional

patterns

Indicate

the

character

positions

at

which

to

split

the

source

string.

(See

“Templates

Containing

Positional

(Numeric)

Patterns”

on

page

112

for

details.)

Parsing

is

essentially

a

two-step

process.

1.

Parse

the

source

string

into

appropriate

substrings

using

patterns.

2.

Parse

each

substring

into

words.

Simple

Templates

for

Parsing

into

Words

Here

is

a

parsing

instruction:

parse

value

’time

and

tide’

with

var1

var2

var3

The

template

in

this

instruction

is:

var1

var2

var3.

The

data

to

parse

is

between

the

keywords

PARSE

VALUE

and

the

keyword

WITH,

the

source

string

time

and

tide.

Parsing

divides

the

source

string

into

blank-delimited

words

and

assigns

them

to

the

variables

named

in

the

template

as

follows:

var1=’time’

var2=’and’

var3=’tide’

In

this

example,

the

source

string

to

parse

is

a

literal

string,

time

and

tide.

In

the

next

example,

the

source

string

is

a

variable.

/*

PARSE

VALUE

using

a

variable

as

the

source

string

to

parse

*/

string=’time

and

tide’

parse

value

string

with

var1

var2

var3

/*

same

results

*/

(PARSE

VALUE

does

not

convert

lowercase

a–z

in

the

source

string

to

uppercase

A–Z.

If

you

want

to

convert

characters

to

uppercase,

use

PARSE

UPPER

VALUE.

See

“Using

UPPER”

on

page

115

for

a

summary

of

the

effect

of

parsing

instructions

on

case.)

All

of

the

parsing

instructions

assign

the

parts

of

a

source

string

into

the

variables

named

in

a

template.

There

are

various

parsing

instructions

because

of

differences

in

the

nature

or

origin

of

source

strings.

(A

summary

of

all

the

parsing

instructions

is

on

page

116.)

©

Copyright

IBM

Corp.

1988,

2004

109

The

PARSE

VAR

instruction

is

similar

to

PARSE

VALUE

except

that

the

source

string

to

parse

is

always

a

variable.

In

PARSE

VAR,

the

name

of

the

variable

containing

the

source

string

follows

the

keywords

PARSE

VAR.

In

the

next

example,

the

variable

stars

contains

the

source

string.

The

template

is

star1

star2

star3.

/*

PARSE

VAR

example

*/

stars=’Sirius

Polaris

Rigil’

parse

var

stars

star1

star2

star3

/*

star1=’Sirius’

*/

/*

star2=’Polaris’

*/

/*

star3=’Rigil’

*/

All

variables

in

a

template

receive

new

values.

If

there

are

more

variables

in

the

template

than

words

in

the

source

string,

the

leftover

variables

receive

null

(empty)

values.

This

is

true

for

all

parsing:

for

parsing

into

words

with

simple

templates

and

for

parsing

with

templates

containing

patterns.

Here

is

an

example

using

parsing

into

words.

/*

More

variables

in

template

than

(words

in)

the

source

string

*/

satellite=’moon’

parse

var

satellite

Earth

Mercury

/*

Earth=’moon’

*/

/*

Mercury=’’

*/

If

there

are

more

words

in

the

source

string

than

variables

in

the

template,

the

last

variable

in

the

template

receives

all

leftover

data.

Here

is

an

example:

/*

More

(words

in

the)

source

string

than

variables

in

template

*/

satellites=’moon

Io

Europa

Callisto...’

parse

var

satellites

Earth

Jupiter

/*

Earth=’moon’

*/

/*

Jupiter=’Io

Europa

Callisto...’*/

Parsing

into

words

removes

leading

and

trailing

blanks

from

each

word

before

it

is

assigned

to

a

variable.

The

exception

to

this

is

the

word

or

group

of

words

assigned

to

the

last

variable.

The

last

variable

in

a

template

receives

leftover

data,

preserving

extra

leading

and

trailing

blanks.

Here

is

an

example:

/*

Preserving

extra

blanks

*/

solar5=’Mercury

Venus

Earth

Mars

Jupiter

’

parse

var

solar5

var1

var2

var3

var4

/*

var1

=’Mercury’

*/

/*

var2

=’Venus’

*/

/*

var3

=’Earth’

*/

/*

var4

=’

Mars

Jupiter

’

*/

In

the

source

string,

Earth

has

two

leading

blanks.

Parsing

removes

both

of

them

(the

word-separator

blank

and

the

extra

blank)

before

assigning

var3=’Earth’.

Mars

has

three

leading

blanks.

Parsing

removes

one

word-separator

blank

and

keeps

the

other

two

leading

blanks.

It

also

keeps

all

five

blanks

between

Mars

and

Jupiter

and

both

trailing

blanks

after

Jupiter.

Parsing

removes

no

blanks

if

the

template

contains

only

one

variable.

For

example:

parse

value

’

Pluto

’

with

var1

/*

var1=’

Pluto

’*/

The

Period

as

a

Placeholder

A

period

in

a

template

is

a

placeholder.

It

is

used

instead

of

a

variable

name,

but

it

receives

no

data.

It

is

useful:

v

As

a

″dummy

variable″

in

a

list

of

variables

v

Or

to

collect

unwanted

information

at

the

end

of

a

string.

The

period

in

the

first

example

is

a

placeholder.

Be

sure

to

separate

adjacent

periods

with

spaces;

otherwise,

an

error

results.

/*

Period

as

a

placeholder

*/

stars=’Arcturus

Betelgeuse

Sirius

Rigil’

parse

var

stars

.

.

brightest

.

/*

brightest=’Sirius’

*/

Parsing

110

REXX/VSE

Reference

/*

Alternative

to

period

as

placeholder

*/

stars=’Arcturus

Betelgeuse

Sirius

Rigil’

parse

var

stars

drop

junk

brightest

rest

/*

brightest=’Sirius’

*/

A

placeholder

saves

the

overhead

of

unneeded

variables.

Templates

Containing

String

Patterns

A

string

pattern

matches

characters

in

the

source

string

to

indicate

where

to

split

it.

A

string

pattern

can

be

a:

Literal

string

pattern

One

or

more

characters

within

quotation

marks.

Variable

string

pattern

A

variable

within

parentheses

with

no

plus

(+)

or

minus

(-)

or

equal

sign

(=)

before

the

left

parenthesis.

(See

page

115

for

details.)

Here

are

two

templates:

a

simple

template

and

a

template

containing

a

literal

string

pattern:

var1

var2

/*

simple

template

*/

var1

’,

’

var2

/*

template

with

literal

string

pattern

*/

The

literal

string

pattern

is:

’,

’.

This

template:

v

Puts

characters

from

the

start

of

the

source

string

up

to

(but

not

including)

the

first

character

of

the

match

(the

comma)

into

var1

v

Puts

characters

starting

with

the

character

after

the

last

character

of

the

match

(the

character

after

the

blank

that

follows

the

comma)

and

ending

with

the

end

of

the

string

into

var2.

A

template

with

a

string

pattern

can

omit

some

of

the

data

in

a

source

string

when

assigning

data

into

variables.

The

next

two

examples

contrast

simple

templates

with

templates

containing

literal

string

patterns.

/*

Simple

template

*/

name=’Smith,

John’

parse

var

name

ln

fn

/*

Assigns:

ln=’Smith,’

*/

/*

fn=’John’

*/

Notice

that

the

comma

remains

(the

variable

ln

contains

’Smith,’).

In

the

next

example

the

template

is

ln

’,

’

fn.

This

removes

the

comma.

/*

Template

with

literal

string

pattern

*/

name=’Smith,

John’

parse

var

name

ln

’,

’

fn

/*

Assigns:

ln=’Smith’

*/

/*

fn=’John’

*/

First,

the

language

processor

scans

the

source

string

for

’,

’.

It

splits

the

source

string

at

that

point.

The

variable

ln

receives

data

starting

with

the

first

character

of

the

source

string

and

ending

with

the

last

character

before

the

match.

The

variable

fn

receives

data

starting

with

the

first

character

after

the

match

and

ending

with

the

end

of

string.

A

template

with

a

string

pattern

omits

data

in

the

source

string

that

matches

the

pattern.

(There

is

a

special

case

(on

page

118)

in

which

a

template

with

a

string

pattern

does

not

omit

matching

data

in

the

source

string.)

We

used

the

pattern

’,

’

(with

a

blank)

instead

of

’,’

(no

blank)

because,

without

the

blank

in

the

pattern,

the

variable

fn

receives

’

John’

(including

a

blank).

If

the

source

string

does

not

contain

a

match

for

a

string

pattern,

then

any

variables

preceding

the

unmatched

string

pattern

get

all

the

data

in

question.

Any

variables

after

that

pattern

receive

the

null

string.

A

null

string

is

never

found.

It

always

matches

the

end

of

the

source

string.

Parsing

Chapter

5.

Parsing

111

Templates

Containing

Positional

(Numeric)

Patterns

A

positional

pattern

is

a

number

that

identifies

the

character

position

at

which

to

split

data

in

the

source

string.

The

number

must

be

a

whole

number.

An

absolute

positional

pattern

is

v

A

number

with

no

plus

(+)

or

minus

(-)

sign

preceding

it

or

with

an

equal

sign

(=)

preceding

it

v

A

variable

in

parentheses

with

an

equal

sign

before

the

left

parenthesis.

(See

page

115

for

details

on

variable

positional

patterns.)

The

number

specifies

the

absolute

character

position

at

which

to

split

the

source

string.

Here

is

a

template

with

absolute

positional

patterns:

variable1

11

variable2

21

variable3

The

numbers

11

and

21

are

absolute

positional

patterns.

The

number

11

refers

to

the

11th

position

in

the

input

string,

21

to

the

21st

position.

This

template:

v

Puts

characters

1

through

10

of

the

source

string

into

variable1

v

Puts

characters

11

through

20

into

variable2

v

Puts

characters

21

to

the

end

into

variable3.

Positional

patterns

are

probably

most

useful

for

working

with

a

file

of

records,

such

as:

The

following

example

uses

this

record

structure.

/*

Parsing

with

absolute

positional

patterns

in

template

*/

record.1=’Clemens

Samuel

Mark

Twain

’

record.2=’Evans

Mary

Ann

George

Eliot

’

record.3=’Munro

H.H.

Saki

’

do

n=1

to

3

parse

var

record.n

lastname

11

firstname

21

pseudonym

If

lastname=’Evans’

&

firstname=’Mary

Ann’

then

say

’By

George!’

end

/*

Says

’By

George!’

after

record

2

*/

The

source

string

is

first

split

at

character

position

11

and

at

position

21.

The

language

processor

assigns

characters

1

to

10

into

lastname,

characters

11

to

20

into

firstname,

and

characters

21

to

40

into

pseudonym.

The

template

could

have

been:

1

lastname

11

firstname

21

pseudonym

instead

of

lastname

11

firstname

21

pseudonym

Specifying

the

1

is

optional.

Optionally,

you

can

put

an

equal

sign

before

a

number

in

a

template.

An

equal

sign

is

the

same

as

no

sign

before

a

number

in

a

template.

The

number

refers

to

a

particular

character

position

in

the

source

string.

These

two

templates

work

the

same:

lastname

11

first

21

pseudonym

lastname

=11

first

=21

pseudonym

Parsing

112

REXX/VSE

Reference

A

relative

positional

pattern

is

a

number

with

a

plus

(+)

or

minus

(-)

sign

preceding

it.

(It

can

also

be

a

variable

within

parentheses,

with

a

plus

(+)

or

minus

(-)

sign

preceding

the

left

parenthesis;

for

details

see

“Parsing

with

Variable

Patterns”

on

page

115.)

The

number

specifies

the

relative

character

position

at

which

to

split

the

source

string.

The

plus

or

minus

indicates

movement

right

or

left,

respectively,

from

the

start

of

the

string

(for

the

first

pattern)

or

from

the

position

of

the

last

match.

The

position

of

the

last

match

is

the

first

character

of

the

last

match.

Here

is

the

same

example

as

for

absolute

positional

patterns

done

with

relative

positional

patterns:

/*

Parsing

with

relative

positional

patterns

in

template

*/

record.1=’Clemens

Samuel

Mark

Twain

’

record.2=’Evans

Mary

Ann

George

Eliot

’

record.3=’Munro

H.H.

Saki

’

do

n=1

to

3

parse

var

record.n

lastname

+10

firstname

+

10

pseudonym

If

lastname=’Evans’

&

firstname=’Mary

Ann’

then

say

’By

George!’

end

/*

same

results

*/

Blanks

between

the

sign

and

the

number

are

insignificant.

Therefore,

+10

and

+

10

have

the

same

meaning.

Note

that

+0

is

a

valid

relative

positional

pattern.

Absolute

and

relative

positional

patterns

are

interchangeable

(except

in

the

special

case

(on

page

118)

when

a

string

pattern

precedes

a

variable

name

and

a

positional

pattern

follows

the

variable

name).

The

templates

from

the

examples

of

absolute

and

relative

positional

patterns

give

the

same

results.

Only

with

positional

patterns

can

a

matching

operation

back

up

to

an

earlier

position

in

the

source

string.

Here

is

an

example

using

absolute

positional

patterns:

/*

Backing

up

to

an

earlier

position

(with

absolute

positional)

*/

string=’astronomers’

parse

var

string

2

var1

4

1

var2

2

4

var3

5

11

var4

say

string

’study’

var1||var2||var3||var4

/*

Displays:

"astronomers

study

stars"

*/

The

absolute

positional

pattern

1

backs

up

to

the

first

character

in

the

source

string.

With

relative

positional

patterns,

a

number

preceded

by

a

minus

sign

backs

up

to

an

earlier

position.

Here

is

the

same

example

using

relative

positional

patterns:

/*

Backing

up

to

an

earlier

position

(with

relative

positional)

*/

string=’astronomers’

parse

var

string

2

var1

+2

-3

var2

+1

+2

var3

+1

+6

var4

say

string

’study’

var1||var2||var3||var4

/*

same

results

*/

In

the

previous

example,

the

relative

positional

pattern

-3

backs

up

to

the

first

character

in

the

source

string.

The

templates

in

the

last

two

examples

are

equivalent.

Parsing

Chapter

5.

Parsing

113

You

can

use

templates

with

positional

patterns

to

make

multiple

assignments:

/*

Making

multiple

assignments

*/

books=’Silas

Marner,

Felix

Holt,

Daniel

Deronda,

Middlemarch’

parse

var

books

1

Eliot

1

Evans

/*

Assigns

the

(entire)

value

of

books

to

Eliot

and

to

Evans.

*/

Combining

Patterns

and

Parsing

Into

Words

What

happens

when

a

template

contains

patterns

that

divide

the

source

string

into

sections

containing

multiple

words?

String

and

positional

patterns

divide

the

source

string

into

substrings.

The

language

processor

then

applies

a

section

of

the

template

to

each

substring,

following

the

rules

for

parsing

into

words.

/*

Combining

string

pattern

and

parsing

into

words

*/

name=’

John

Q.

Public’

parse

var

name

fn

init

’.’

ln

/*

Assigns:

fn=’John’

*/

/*

init=’

Q’

*/

/*

ln=’

Public’

*/

The

pattern

divides

the

template

into

two

sections:

v

fn

init

v

ln

The

matching

pattern

splits

the

source

string

into

two

substrings:

v

’

John

Q’

v

’

Public’

The

language

processor

parses

these

substrings

into

words

based

on

the

appropriate

template

section.

John

had

three

leading

blanks.

All

are

removed

because

parsing

into

words

removes

leading

and

trailing

blanks

except

from

the

last

variable.

Q

has

six

leading

blanks.

Parsing

removes

one

word-separator

blank

and

keeps

the

rest

because

init

is

the

last

variable

in

that

section

of

the

template.

For

the

substring

’

Public’,

parsing

assigns

the

entire

string

into

ln

without

removing

any

blanks.

This

is

because

ln

is

the

only

variable

in

this

section

of

the

template.

(For

details

about

treatment

of

blanks,

see

page

110.)

/*

Combining

positional

patterns

with

parsing

into

words

*/

string=’R

E

X

X’

parse

var

string

var1

var2

4

var3

6

var4

/*

Assigns:

var1=’R’

*/

/*

var2=’E’

*/

/*

var3=’

X’

*/

/*

var4=’

X’

*/

The

pattern

divides

the

template

into

three

sections:

v

var1

var2

v

var3

v

var4

The

matching

patterns

split

the

source

string

into

three

substrings

that

are

individually

parsed

into

words:

v

’R

E’

Parsing

114

REXX/VSE

Reference

v

’

X’

v

’

X’

The

variable

var1

receives

’R’;

var2

receives

’E’.

Both

var3

and

var4

receive

’

X’

(with

a

blank

before

the

X)

because

each

is

the

only

variable

in

its

section

of

the

template.

(For

details

on

treatment

of

blanks,

see

page

110.)

Parsing

with

Variable

Patterns

You

may

want

to

specify

a

pattern

by

using

the

value

of

a

variable

instead

of

a

fixed

string

or

number.

You

do

this

by

placing

the

name

of

the

variable

in

parentheses.

This

is

a

variable

reference.

Blanks

are

not

necessary

inside

or

outside

the

parentheses,

but

you

can

add

them

if

you

wish.

The

template

in

the

next

parsing

instruction

contains

the

following

literal

string

pattern

’.

’.

parse

var

name

fn

init

’.

’

ln

Here

is

how

to

specify

that

pattern

as

a

variable

string

pattern:

strngptrn=’.

’

parse

var

name

fn

init

(strngptrn)

ln

If

no

equal,

plus,

or

minus

sign

precedes

the

parenthesis

that

is

before

the

variable

name,

the

value

of

the

variable

is

then

treated

as

a

string

pattern.

The

variable

can

be

one

that

has

been

set

earlier

in

the

same

template.

Example:

/*

Using

a

variable

as

a

string

pattern

*/

/*

The

variable

(delim)

is

set

in

the

same

template

*/

SAY

"Enter

a

date

(mm/dd/yy

format).

=====>

"

/*

assume

11/15/90

*/

pull

date

parse

var

date

month

3

delim

+1

day

+2

(delim)

year

/*

Sets:

month=’11’;

delim=’/’;

day=’15’;

year=’90’

*/

If

an

equal,

a

plus,

or

a

minus

sign

precedes

the

left

parenthesis,

then

the

value

of

the

variable

is

treated

as

an

absolute

or

relative

positional

pattern.

The

value

of

the

variable

must

be

a

positive

whole

number

or

zero.

The

variable

can

be

one

that

has

been

set

earlier

in

the

same

template.

In

the

following

example,

the

first

two

fields

specify

the

starting

character

positions

of

the

last

two

fields.

Example:

/*

Using

a

variable

as

a

positional

pattern

*/

dataline

=

’12

26

.....Samuel

ClemensMark

Twain’

parse

var

dataline

pos1

pos2

6

=(pos1)

realname

=(pos2)

pseudonym

/*

Assigns:

realname=’Samuel

Clemens’;

pseudonym=’Mark

Twain’

*/

Why

is

the

positional

pattern

6

needed

in

the

template?

Remember

that

word

parsing

occurs

after

the

language

processor

divides

the

source

string

into

substrings

using

patterns.

Therefore,

the

positional

pattern

=(pos1)

cannot

be

correctly

interpreted

as

=12

until

after

the

language

processor

has

split

the

string

at

column

6

and

assigned

the

blank-delimited

words

12

and

26

to

pos1

and

pos2,

respectively.

Using

UPPER

Specifying

UPPER

on

any

of

the

PARSE

instructions

converts

characters

to

uppercase

(lowercase

a–z

to

uppercase

A–Z)

before

parsing.

The

following

table

summarizes

the

effect

of

the

parsing

instructions

on

case.

Parsing

Chapter

5.

Parsing

115

Converts

alphabetic

characters

to

uppercase

before

parsing

Maintains

alphabetic

characters

in

case

entered

ARG

PARSE

UPPER

ARG

PARSE

ARG

PARSE

UPPER

EXTERNAL

PARSE

EXTERNAL

PARSE

UPPER

NUMERIC

PARSE

NUMERIC

PULL

PARSE

UPPER

PULL

PARSE

PULL

PARSE

UPPER

SOURCE

PARSE

SOURCE

PARSE

UPPER

VALUE

PARSE

VALUE

PARSE

UPPER

VAR

PARSE

VAR

PARSE

UPPER

VERSION

PARSE

VERSION

The

ARG

instruction

is

simply

a

short

form

of

PARSE

UPPER

ARG.

The

PULL

instruction

is

simply

a

short

form

of

PARSE

UPPER

PULL.

If

you

do

not

desire

uppercase

translation,

use

PARSE

ARG

(instead

of

ARG

or

PARSE

UPPER

ARG)

and

use

PARSE

PULL

(instead

of

PULL

or

PARSE

UPPER

PULL).

Parsing

Instructions

Summary

Remember:

All

parsing

instructions

assign

parts

of

the

source

string

into

the

variables

named

in

the

template.

The

following

table

summarizes

where

the

source

string

comes

from.

Instruction

Where

the

source

string

comes

from

ARG

PARSE

ARG

Arguments

you

list

when

you

call

the

program

or

arguments

in

the

call

to

a

subroutine

or

function.

PARSE

EXTERNAL

Reads

from

the

current

input

stream.

ASSGN(STDIN)

returns

the

name

of

the

current

input

stream.

PARSE

NUMERIC

Numeric

control

information

(from

NUMERIC

instruction).

PULL

PARSE

PULL

The

string

at

the

head

of

the

external

data

queue.

(If

queue

empty,

uses

default

input,

typically

the

terminal.)

input.

PARSE

SOURCE

REXX/VSE-supplied

string

giving

information

about

the

executing

program.

PARSE

VALUE

Expression

between

the

keyword

VALUE

and

the

keyword

WITH

in

the

instruction.

PARSE

VAR

name

Parses

the

value

of

name.

PARSE

VERSION

REXX/VSE-supplied

string

specifying

the

language,

language

level,

and

(three-word)

date.

Parsing

Instructions

Examples

All

examples

in

this

section

parse

source

strings

into

words.

ARG

/*

ARG

with

source

string

named

in

REXX

program

invocation

*/

/*

Program

name

is

PALETTE.

Specify

2

primary

colors

(yellow,

*/

/*

red,

blue)

on

call.

Assume

call

is:

palette

red

blue

*/

arg

var1

var2

/*

Assigns:

var1=’RED’;

var2=’BLUE’

*/

If

var1<>’RED’

&

var1<>’YELLOW’

&

var1<>’BLUE’

then

signal

err

If

var2<>’RED’

&

var2<>’YELLOW’

&

var2<>’BLUE’

then

signal

err

Parsing

116

REXX/VSE

Reference

total=length(var1)+length(var2)

SELECT;

When

total=7

then

new=’purple’

When

total=9

then

new=’orange’

When

total=10

then

new=’green’

Otherwise

new=var1

/*

entered

duplicates

*/

END

Say

new;

exit

/*

Displays:

"purple"

*/

Err:

say

’Input

error--color

is

not

"red"

or

"blue"

or

"yellow"’;

exit

ARG

converts

alphabetic

characters

to

uppercase

before

parsing.

An

example

of

ARG

with

the

arguments

in

the

CALL

to

a

subroutine

is

in

“Parsing

Multiple

Strings.”

PARSE

ARG

works

the

same

as

ARG

except

that

PARSE

ARG

does

not

convert

alphabetic

characters

to

uppercase

before

parsing.

PARSE

EXTERNAL

Say

"Enter

Yes

or

No

=====>

"

parse

upper

external

answer

2

.

If

answer=’Y’

then

say

"You

said

’Yes’!"

else

say

"You

said

’No’!"

PARSE

NUMERIC

parse

numeric

digits

fuzz

form

say

digits

fuzz

form

/*

Displays:

’9

0

SCIENTIFIC’

*/

/*

(if

defaults

are

in

effect)

*/

PARSE

PULL

PUSH

’80

7’

/*

Puts

data

on

queue

*/

parse

pull

fourscore

seven

/*

Assigns:

fourscore=’80’;

seven=’7’

*/

SAY

fourscore+seven

/*

Displays:

"87"

*/

PARSE

SOURCE

parse

source

sysname

.

Say

sysname

/*

Displays:

"VSE"

*/

PARSE

VALUE

example

is

on

page

109.

PARSE

VAR

examples

are

throughout

the

chapter,

starting

on

page

110.

PARSE

VERSION

parse

version

.

level

.

say

level

/*

Displays:

"3.48"

*/

PULL

works

the

same

as

PARSE

PULL

except

that

PULL

converts

alphabetic

characters

to

uppercase

before

parsing.

Advanced

Topics

in

Parsing

This

section

includes

parsing

multiple

strings

and

flow

charts

depicting

a

conceptual

view

of

parsing.

Parsing

Multiple

Strings

Only

ARG

and

PARSE

ARG

can

have

more

than

one

source

string.

To

parse

multiple

strings,

you

can

specify

multiple

comma-separated

templates.

Here

is

an

example:

parse

arg

template1,

template2,

template3

Parsing

Chapter

5.

Parsing

117

This

instruction

consists

of

the

keywords

PARSE

ARG

and

three

comma-separated

templates.

(For

an

ARG

instruction,

the

source

strings

to

parse

come

from

arguments

you

specify

when

you

call

a

program

or

CALL

a

subroutine

or

function.)

Each

comma

is

an

instruction

to

the

parser

to

move

on

to

the

next

string.

Example:

/*

Parsing

multiple

strings

in

a

subroutine

*/

num=’3’

musketeers="Porthos

Athos

Aramis

D’Artagnon"

CALL

Sub

num,musketeers

/*

Passes

num

and

musketeers

to

sub

*/

SAY

total;

say

fourth

/*

Displays:

"4"

and

"

D’Artagnon"

*/

EXIT

Sub:

parse

arg

subtotal,

.

.

.

fourth

total=subtotal+1

RETURN

Note

that

when

a

REXX

program

is

started

as

a

command,

only

one

argument

string

is

recognized.

You

can

pass

multiple

argument

strings

for

parsing:

v

When

one

REXX

program

calls

another

REXX

program

with

the

CALL

instruction

or

a

function

call.

v

When

programs

written

in

other

languages

start

a

REXX

program.

If

there

are

more

templates

than

source

strings,

each

variable

in

a

leftover

template

receives

a

null

string.

If

there

are

more

source

strings

than

templates,

the

language

processor

ignores

leftover

source

strings.

If

a

template

is

empty

(two

commas

in

a

row)

or

contains

no

variable

names,

parsing

proceeds

to

the

next

template

and

source

string.

Combining

String

and

Positional

Patterns:

A

Special

Case

There

is

a

special

case

in

which

absolute

and

relative

positional

patterns

do

not

work

identically.

We

have

shown

how

parsing

with

a

template

containing

a

string

pattern

skips

over

the

data

in

the

source

string

that

matches

the

pattern

(see

page

111).

But

a

template

containing

the

sequence:

v

string

pattern

v

variable

name

v

relative

positional

pattern

does

not

skip

over

the

matching

data.

A

relative

positional

pattern

moves

relative

to

the

first

character

matching

a

string

pattern.

As

a

result,

assignment

includes

the

data

in

the

source

string

that

matches

the

string

pattern.

/*

Template

containing

string

pattern,

then

variable

name,

then

*/

/*

relative

positional

pattern

does

not

skip

over

any

data.

*/

string=’REstructured

eXtended

eXecutor’

parse

var

string

var1

3

junk

’X’

var2

+1

junk

’X’

var3

+1

junk

say

var1||var2||var3

/*

Concatenates

variables;

displays:

"REXX"

*/

Here

is

how

this

template

works:

Parsing

118

REXX/VSE

Reference

Parsing

with

DBCS

Characters

Parsing

with

DBCS

characters

generally

follows

the

same

rules

as

parsing

with

SBCS

characters.

Literal

strings

can

contain

DBCS

characters,

but

numbers

must

be

in

SBCS

characters.

See

“PARSE”

on

page

484

for

examples

of

DBCS

parsing.

Details

of

Steps

in

Parsing

The

three

figures

that

follow

are

to

help

you

understand

the

concept

of

parsing.

Please

note

that

the

figures

do

not

include

error

cases.

The

figures

include

terms

whose

definitions

are

as

follows:

string

start

is

the

beginning

of

the

source

string

(or

substring).

string

end

is

the

end

of

the

source

string

(or

substring).

length

is

the

length

of

the

source

string.

match

start

is

in

the

source

string

and

is

the

first

character

of

the

match.

match

end

is

in

the

source

string.

For

a

string

pattern,

it

is

the

first

character

after

the

end

of

the

match.

For

a

positional

pattern,

it

is

the

same

as

match

start.

match

position

is

in

the

source

string.

For

a

string

pattern,

it

is

the

first

matching

character.

For

a

positional

pattern,

it

is

the

position

of

the

matching

character.

token

is

a

distinct

syntactic

element

in

a

template,

such

as

a

variable,

a

period,

a

pattern,

or

a

comma.

value

is

the

numeric

value

of

a

positional

pattern.

This

can

be

either

a

constant

or

the

resolved

value

of

a

variable.

Parsing

Chapter

5.

Parsing

119

Figure

3.

Conceptual

Overview

of

Parsing

Parsing

120

REXX/VSE

Reference

Figure

4.

Conceptual

View

of

Finding

Next

Pattern

Parsing

Chapter

5.

Parsing

121

Figure

5.

Conceptual

View

of

Word

Parsing

122

REXX/VSE

Reference

Chapter

6.

Numbers

and

Arithmetic

REXX

defines

the

usual

arithmetic

operations

(addition,

subtraction,

multiplication,

and

division)

in

as

natural

a

way

as

possible.

What

this

really

means

is

that

the

rules

followed

are

those

that

are

conventionally

taught

in

schools

and

colleges.

During

the

design

of

these

facilities,

however,

it

was

found

that

unfortunately

the

rules

vary

considerably

(indeed

much

more

than

generally

appreciated)

from

person

to

person

and

from

application

to

application

and

in

ways

that

are

not

always

predictable.

The

arithmetic

described

here

is,

therefore,

a

compromise

that

(although

not

the

simplest)

should

provide

acceptable

results

in

most

applications.

Introduction

Numbers

(that

is,

character

strings

used

as

input

to

REXX

arithmetic

operations

and

built-in

functions)

can

be

expressed

very

flexibly.

Leading

and

trailing

blanks

are

permitted,

and

exponential

notation

can

be

used.

Some

valid

numbers

are:

12

/*

a

whole

number

*/

’-76’

/*

a

signed

whole

number

*/

12.76

/*

decimal

places

*/

’

+

0.003

’

/*

blanks

around

the

sign

and

so

forth

*/

17.

/*

same

as

"17"

*/

.5

/*

same

as

"0.5"

*/

4E9

/*

exponential

notation

*/

0.73e-7

/*

exponential

notation

*/

In

exponential

notation,

a

number

includes

an

exponent,

a

power

of

ten

by

which

the

number

is

multiplied

before

use.

The

exponent

indicates

how

the

decimal

point

is

shifted.

Thus,

in

the

preceding

examples,

4E9

is

simply

a

short

way

of

writing

4000000000,

and

0.73e-7

is

short

for

0.000000073.

The

arithmetic

operators

include

addition

(+),

subtraction

(-),

multiplication

(*),

power

(**),

division

(/),

prefix

plus

(+),

and

prefix

minus

(-).

In

addition,

there

are

two

further

division

operators:

integer

divide

(%)

divides

and

returns

the

integer

part;

remainder

(//)

divides

and

returns

the

remainder.

The

result

of

an

arithmetic

operation

is

formatted

as

a

character

string

according

to

definite

rules.

The

most

important

of

these

rules

are

as

follows

(see

the

“Definition”

section

for

full

details):

v

Results

are

calculated

up

to

some

maximum

number

of

significant

digits

(the

default

is

9,

but

you

can

alter

this

with

the

NUMERIC

DIGITS

instruction

to

give

whatever

accuracy

you

need).

Thus,

if

a

result

requires

more

than

9

digits,

it

would

usually

be

rounded

to

9

digits.

For

example,

the

division

of

2

by

3

would

result

in

0.666666667

(it

would

require

an

infinite

number

of

digits

for

perfect

accuracy).

v

Except

for

division

and

power,

trailing

zeros

are

preserved

(this

is

in

contrast

to

most

popular

calculators,

which

remove

all

trailing

zeros

in

the

decimal

part

of

results).

So,

for

example:

2.40

+

2

->

4.40

2.40

-

2

->

0.40

2.40

*

2

->

4.80

2.40

/

2

->

1.2

This

behavior

is

desirable

for

most

calculations

(especially

financial

calculations).

If

necessary,

you

can

remove

trailing

zeros

with

the

STRIP

function

(see

page

84),

or

by

division

by

1.

v

A

zero

result

is

always

expressed

as

the

single

digit

0.

v

Exponential

form

is

used

for

a

result

depending

on

its

value

and

the

setting

of

NUMERIC

DIGITS

(the

default

is

9).

If

the

number

of

places

needed

before

the

decimal

point

exceeds

the

NUMERIC

DIGITS

setting,

or

the

number

of

places

after

the

point

exceeds

twice

the

NUMERIC

DIGITS

setting,

the

number

is

expressed

in

exponential

notation:

©

Copyright

IBM

Corp.

1988,

2004

123

1e6

*

1e6

->

1E+12

/*

not

1000000000000

*/

1

/

3E10

->

3.33333333E-11

/*

not

0.0000000000333333333

*/

Definition

A

precise

definition

of

the

arithmetic

facilities

of

the

REXX

language

is

given

here.

Numbers

A

number

in

REXX

is

a

character

string

that

includes

one

or

more

decimal

digits,

with

an

optional

decimal

point.

(See

“Exponential

Notation”

on

page

128

for

an

extension

of

this

definition.)

The

decimal

point

may

be

embedded

in

the

number,

or

may

be

a

prefix

or

suffix.

The

group

of

digits

(and

optional

decimal

point)

constructed

this

way

can

have

leading

or

trailing

blanks

and

an

optional

sign

(+

or

-)

that

must

come

before

any

digits

or

decimal

point.

The

sign

can

also

have

leading

or

trailing

blanks.

Therefore,

number

is

defined

as:.

��

blanks

sign

blanks

digits

digits.digits

.digits

digits.

blanks

��

blanks

are

one

or

more

spaces

sign

is

either

+

or

-

digits

are

one

or

more

of

the

decimal

digits

0–9.

Note

that

a

single

period

alone

is

not

a

valid

number.

Precision

Precision

is

the

maximum

number

of

significant

digits

that

can

result

from

an

operation.

This

is

controlled

by

the

instruction:

��

NUMERIC

DIGITS

expression

;

��

The

expression

is

evaluated

and

must

result

in

a

positive

whole

number.

This

defines

the

precision

(number

of

significant

digits)

to

which

calculations

are

carried

out.

Results

are

rounded

to

that

precision,

if

necessary.

If

you

do

not

specify

expression

in

this

instruction,

or

if

no

NUMERIC

DIGITS

instruction

has

been

processed

since

the

start

of

a

program,

the

default

precision

is

used.

The

REXX

standard

for

the

default

precision

is

9.

Note

that

NUMERIC

DIGITS

can

set

values

below

the

default

of

nine.

However,

use

small

values

with

care—the

loss

of

precision

and

rounding

thus

requested

affects

all

REXX

computations,

including,

for

example,

the

computation

of

new

values

for

the

control

variable

in

DO

loops.

Arithmetic

Operators

REXX

arithmetic

is

performed

by

the

operators

+,

-,

*,

/,

%,

//,

and

**

(add,

subtract,

multiply,

divide,

integer

divide,

remainder,

and

power),

which

all

act

on

two

terms,

and

the

prefix

plus

and

minus

operators,

which

both

act

on

a

single

term.

This

section

describes

the

way

in

which

these

operations

are

carried

out.

Before

every

arithmetic

operation,

the

term

or

terms

being

operated

upon

have

leading

zeros

removed

(noting

the

position

of

any

decimal

point,

and

leaving

only

one

zero

if

all

the

digits

in

the

number

are

Numbers

and

Arithmetic

124

REXX/VSE

Reference

zeros).

They

are

then

truncated

(if

necessary)

to

DIGITS

+

1

significant

digits

before

being

used

in

the

computation.

(The

extra

digit

is

a

″guard″

digit.

It

improves

accuracy

because

it

is

inspected

at

the

end

of

an

operation,

when

a

number

is

rounded

to

the

required

precision.)

The

operation

is

then

carried

out

under

up

to

double

that

precision,

as

described

under

the

individual

operations

that

follow.

When

the

operation

is

completed,

the

result

is

rounded

if

necessary

to

the

precision

specified

by

the

NUMERIC

DIGITS

instruction.

Rounding

is

done

in

the

traditional

manner.

The

digit

to

the

right

of

the

least

significant

digit

in

the

result

(the

″guard

digit″)

is

inspected

and

values

of

5

through

9

are

rounded

up,

and

values

of

0

through

4

are

rounded

down.

Even/odd

rounding

would

require

the

ability

to

calculate

to

arbitrary

precision

at

all

times

and

is,

therefore,

not

the

mechanism

defined

for

REXX.

A

conventional

zero

is

supplied

in

front

of

the

decimal

point

if

otherwise

there

would

be

no

digit

before

it.

Significant

trailing

zeros

are

retained

for

addition,

subtraction,

and

multiplication,

according

to

the

rules

that

follow,

except

that

a

result

of

zero

is

always

expressed

as

the

single

digit

0.

For

division,

insignificant

trailing

zeros

are

removed

after

rounding.

The

FORMAT

built-in

function

(see

page

77)

allows

a

number

to

be

represented

in

a

particular

format

if

the

standard

result

provided

does

not

meet

your

requirements.

Arithmetic

Operation

Rules—Basic

Operators

The

basic

operators

(addition,

subtraction,

multiplication,

and

division)

operate

on

numbers

as

follows.

Addition

and

Subtraction

If

either

number

is

0,

the

other

number,

rounded

to

NUMERIC

DIGITS

digits,

if

necessary,

is

used

as

the

result

(with

sign

adjustment

as

appropriate).

Otherwise,

the

two

numbers

are

extended

on

the

right

and

left

as

necessary,

up

to

a

total

maximum

of

DIGITS

+

1

digits

(the

number

with

the

smaller

absolute

value

may,

therefore,

lose

some

or

all

of

its

digits

on

the

right)

and

are

then

added

or

subtracted

as

appropriate.

Example:

xxx.xxx

+

yy.yyyyy

becomes:

xxx.xxx00

+

0yy.yyyyy

zzz.zzzzz

The

result

is

then

rounded

to

the

current

setting

of

NUMERIC

DIGITS

if

necessary

(taking

into

account

any

extra

″carry

digit″

on

the

left

after

addition,

but

otherwise

counting

from

the

position

corresponding

to

the

most

significant

digit

of

the

terms

being

added

or

subtracted).

Finally,

any

insignificant

leading

zeros

are

removed.

The

prefix

operators

are

evaluated

using

the

same

rules;

the

operations

+number

and

-number

are

calculated

as

0+number

and

0-number,

respectively.

Multiplication

The

numbers

are

multiplied

together

(“long

multiplication”)

resulting

in

a

number

that

may

be

as

long

as

the

sum

of

the

lengths

of

the

two

operands.

Example:

xxx.xxx

*

yy.yyyyy

becomes:

zzzzz.zzzzzzzz

Numbers

and

Arithmetic

Chapter

6.

Numbers

and

Arithmetic

125

The

result

is

then

rounded,

counting

from

the

first

significant

digit

of

the

result,

to

the

current

setting

of

NUMERIC

DIGITS.

Division

For

the

division:

yyy

/

xxxxx

the

following

steps

are

taken:

First

the

number

yyy

is

extended

with

zeros

on

the

right

until

it

is

larger

than

the

number

xxxxx

(with

note

being

taken

of

the

change

in

the

power

of

ten

that

this

implies).

Thus,

in

this

example,

yyy

might

become

yyy00.

Traditional

long

division

then

takes

place.

This

might

be

written:

zzzz

xxxxx

|

yyy00

The

length

of

the

result

(zzzz)

is

such

that

the

rightmost

z

is

at

least

as

far

right

as

the

rightmost

digit

of

the

(extended)

y

number

in

the

example.

During

the

division,

the

y

number

is

extended

further

as

necessary.

The

z

number

may

increase

up

to

NUMERIC

DIGITS+1

digits,

at

which

point

the

division

stops

and

the

result

is

rounded.

Following

completion

of

the

division

(and

rounding

if

necessary),

insignificant

trailing

zeros

are

removed.

Basic

Operator

Examples

Following

are

some

examples

that

illustrate

the

main

implications

of

the

rules

just

described.

/*

With:

Numeric

digits

5

*/

12+7.00

->

19.00

1.3-1.07

->

0.23

1.3-2.07

->

-0.77

1.20*3

->

3.60

7*3

->

21

0.9*0.8

->

0.72

1/3

->

0.33333

2/3

->

0.66667

5/2

->

2.5

1/10

->

0.1

12/12

->

1

8.0/2

->

4

Note:

With

all

the

basic

operators,

the

position

of

the

decimal

point

in

the

terms

being

operated

upon

is

arbitrary.

The

operations

may

be

carried

out

as

integer

operations

with

the

exponent

being

calculated

and

applied

afterward.

Therefore,

the

significant

digits

of

a

result

are

not

in

any

way

dependent

on

the

position

of

the

decimal

point

in

either

of

the

terms

involved

in

the

operation.

Arithmetic

Operation

Rules—Additional

Operators

The

operation

rules

for

the

power

(**),

integer

divide

(%),

and

remainder

(//)

operators

follow.

Power

The

**

(power)

operator

raises

a

number

to

a

power,

which

may

be

positive,

negative,

or

0.

The

power

must

be

a

whole

number.

(The

second

term

in

the

operation

must

be

a

whole

number

and

is

rounded

to

DIGITS

digits,

if

necessary,

as

described

under

“Numbers

Used

Directly

by

REXX”

on

page

130.)

If

negative,

the

absolute

value

of

the

power

is

used,

and

then

the

result

is

inverted

(divided

into

1).

For

calculating

the

power,

the

number

is

effectively

multiplied

by

itself

for

the

number

of

times

expressed

by

the

power,

and

finally

trailing

zeros

are

removed

(as

though

the

result

were

divided

by

1).

In

practice

(see

Note

1

on

page

127

for

the

reasons),

the

power

is

calculated

by

the

process

of

left-to-right

binary

reduction.

For

a**n:

n

is

converted

to

binary,

and

a

temporary

accumulator

is

set

to

1.

If

n

=

0

the

initial

calculation

is

complete.

(Thus,

a**0

=

1

for

all

a,

including

0**0.)

Otherwise

each

bit

(starting

at

the

first

nonzero

bit)

is

inspected

from

left

to

right.

If

the

current

bit

is

1,

the

accumulator

is

multiplied

by

a.

If

Numbers

and

Arithmetic

126

REXX/VSE

Reference

all

bits

have

now

been

inspected,

the

initial

calculation

is

complete;

otherwise

the

accumulator

is

squared

and

the

next

bit

is

inspected

for

multiplication.

When

the

initial

calculation

is

complete,

the

temporary

result

is

divided

into

1

if

the

power

was

negative.

The

multiplications

and

division

are

done

under

the

arithmetic

operation

rules,

using

a

precision

of

DIGITS

+

L

+

1

digits.

L

is

the

length

in

digits

of

the

integer

part

of

the

whole

number

n

(that

is,

excluding

any

decimal

part,

as

though

the

built-in

function

TRUNC(n)

had

been

used).

Finally,

the

result

is

rounded

to

NUMERIC

DIGITS

digits,

if

necessary,

and

insignificant

trailing

zeros

are

removed.

Integer

Division

The

%

(integer

divide)

operator

divides

two

numbers

and

returns

the

integer

part

of

the

result.

The

result

returned

is

defined

to

be

that

which

would

result

from

repeatedly

subtracting

the

divisor

from

the

dividend

while

the

dividend

is

larger

than

the

divisor.

During

this

subtraction,

the

absolute

values

of

both

the

dividend

and

the

divisor

are

used:

the

sign

of

the

final

result

is

the

same

as

that

which

would

result

from

regular

division.

The

result

returned

has

no

fractional

part

(that

is,

no

decimal

point

or

zeros

following

it).

If

the

result

cannot

be

expressed

as

a

whole

number,

the

operation

is

in

error

and

will

fail—that

is,

the

result

must

not

have

more

digits

than

the

current

setting

of

NUMERIC

DIGITS.

For

example,

10000000000%3

requires

10

digits

for

the

result

(3333333333)

and

would,

therefore,

fail

if

NUMERIC

DIGITS

9

were

in

effect.

Note

that

this

operator

may

not

give

the

same

result

as

truncating

regular

division

(which

could

be

affected

by

rounding).

Remainder

The

//

(remainder)

operator

returns

the

remainder

from

integer

division

and

is

defined

as

being

the

residue

of

the

dividend

after

the

operation

of

calculating

integer

division

as

previously

described.

The

sign

of

the

remainder,

if

nonzero,

is

the

same

as

that

of

the

original

dividend.

This

operation

fails

under

the

same

conditions

as

integer

division

(that

is,

if

integer

division

on

the

same

two

terms

would

fail,

the

remainder

cannot

be

calculated).

Additional

Operator

Examples

Following

are

some

examples

using

the

power,

integer

divide,

and

remainder

operators:.

/*

Again

with:

Numeric

digits

5

*/

2**3

->

8

2**-3

->

0.125

1.7**8

->

69.758

2%3

->

0

2.1//3

->

2.1

10%3

->

3

10//3

->

1

-10//3

->

-1

10.2//1

->

0.2

10//0.3

->

0.1

3.6//1.3

->

1.0

Notes:

1.

A

particular

algorithm

for

calculating

powers

is

used,

because

it

is

efficient

(though

not

optimal)

and

considerably

reduces

the

number

of

actual

multiplications

performed.

It,

therefore,

gives

better

performance

than

the

simpler

definition

of

repeated

multiplication.

Because

results

may

differ

from

those

of

repeated

multiplication,

the

algorithm

is

defined

here.

2.

The

integer

divide

and

remainder

operators

are

defined

so

that

they

can

be

calculated

as

a

by-product

of

the

standard

division

operation.

The

division

process

is

ended

as

soon

as

the

integer

result

is

available;

the

residue

of

the

dividend

is

the

remainder.

Numbers

and

Arithmetic

Chapter

6.

Numbers

and

Arithmetic

127

Numeric

Comparisons

The

comparison

operators

are

listed

in

“Comparison”

on

page

15.

You

can

use

any

of

these

for

comparing

numeric

strings.

However,

you

should

not

use

==,

\==,

¬==,

>>,

\>>,

¬>>,

<<,

\<<,

and

¬<<

for

comparing

numbers

because

leading

and

trailing

blanks

and

leading

zeros

are

significant

with

these

operators.

A

comparison

of

numeric

values

is

effected

by

subtracting

the

two

numbers

(calculating

the

difference)

and

then

comparing

the

result

with

0.

That

is,

the

operation:.

A

?

Z

where

?

is

any

numeric

comparison

operator,

is

identical

with:.

(A

-

Z)

?

’0’

It

is,

therefore,

the

difference

between

two

numbers,

when

subtracted

under

REXX

subtraction

rules,

that

determines

their

equality.

A

quantity

called

fuzz

affects

the

comparison

of

two

numbers.

This

controls

the

amount

by

which

two

numbers

may

differ

before

being

considered

equal

for

the

purpose

of

comparison.

The

FUZZ

value

is

set

by

the

instruction:

��

NUMERIC

FUZZ

expression

;

��

Here

expression

must

result

in

a

positive

whole

number

or

zero.

The

default

is

0.

The

effect

of

FUZZ

is

to

temporarily

reduce

the

value

of

DIGITS

by

the

FUZZ

value

for

each

numeric

comparison.

That

is,

the

numbers

are

subtracted

under

a

precision

of

DIGITS

minus

FUZZ

digits

during

the

comparison.

Clearly

the

FUZZ

setting

must

be

less

than

DIGITS.

Thus

if

DIGITS

=

9

and

FUZZ

=

1,

the

comparison

is

carried

out

to

8

significant

digits,

just

as

though

NUMERIC

DIGITS

8

had

been

put

in

effect

for

the

duration

of

the

operation.

Example:.

Numeric

digits

5

Numeric

fuzz

0

say

4.9999

=

5

/*

Displays

"0"

*/

say

4.9999

<

5

/*

Displays

"1"

*/

Numeric

fuzz

1

say

4.9999

=

5

/*

Displays

"1"

*/

say

4.9999

<

5

/*

Displays

"0"

*/

Exponential

Notation

The

preceding

description

of

numbers

describes

“pure”

numbers,

in

the

sense

that

the

character

strings

that

describe

numbers

can

be

very

long.

For

example:

10000000000

*

10000000000

would

give

100000000000000000000

and

.00000000001

*

.00000000001

would

give

0.0000000000000000000001

Numbers

and

Arithmetic

128

REXX/VSE

Reference

For

both

large

and

small

numbers

some

form

of

exponential

notation

is

useful,

both

to

make

long

numbers

more

readable,

and

to

make

execution

possible

in

extreme

cases.

In

addition,

exponential

notation

is

used

whenever

the

“simple”

form

would

give

misleading

information.

For

example:

numeric

digits

5

say

54321*54321

would

display

2950800000

in

long

form.

This

is

clearly

misleading,

and

so

the

result

is

expressed

as

2.9508E+9

instead.

The

definition

of

numbers

is,

therefore,

extended

as:.

��

blanks

sign

blanks

digits

digits.digits

.digits

digits.

E

digits

sign

blanks

��

The

integer

following

the

E

represents

a

power

of

ten

that

is

to

be

applied

to

the

number.

The

E

can

be

in

uppercase

or

lowercase.

Certain

character

strings

are

numbers

even

though

they

do

not

appear

to

be

numeric

to

the

user.

Specifically,

because

of

the

format

of

numbers

in

exponential

notation,

strings,

such

as

0E123

(0

raised

to

the

123

power)

and

1E342

(1

raised

to

the

342

power),

are

numeric.

In

addition,

a

comparison

such

as

0E123=0E567

gives

a

true

result

of

1

(0

is

equal

to

0).

To

prevent

problems

when

comparing

nonnumeric

strings,

use

the

strict

comparison

operators.

Here

are

some

examples:

12E7

=

120000000

/*

Displays

"1"

*/

12E-5

=

0.00012

/*

Displays

"1"

*/

-12e4

=

-120000

/*

Displays

"1"

*/

0e123

=

0e456

/*

Displays

"1"

*/

0e123

==

0e456

/*

Displays

"0"

*/

The

preceding

numbers

are

valid

for

input

data

at

all

times.

The

results

of

calculations

are

returned

in

either

conventional

or

exponential

form,

depending

on

the

setting

of

NUMERIC

DIGITS.

If

the

number

of

places

needed

before

the

decimal

point

exceeds

DIGITS,

or

the

number

of

places

after

the

point

exceeds

twice

DIGITS,

exponential

form

is

used.

The

exponential

form

REXX

generates

always

has

a

sign

following

the

E

to

improve

readability.

If

the

exponent

is

0,

then

the

exponential

part

is

omitted—that

is,

an

exponential

part

of

E+0

is

never

generated.

You

can

explicitly

convert

numbers

to

exponential

form,

or

force

them

to

be

displayed

in

long

form,

by

using

the

FORMAT

built-in

function

(see

page

77).

Scientific

notation

is

a

form

of

exponential

notation

that

adjusts

the

power

of

ten

so

a

single

nonzero

digit

appears

to

the

left

of

the

decimal

point.

Engineering

notation

is

a

form

of

exponential

notation

in

which

from

one

to

three

digits

(but

not

simply

0)

appear

before

the

decimal

point,

and

the

power

of

ten

is

always

expressed

as

a

multiple

of

three.

The

integer

part

may,

therefore,

range

from

1

through

999.

You

can

control

whether

Scientific

or

Engineering

notation

is

used

with

the

instruction:.

��

NUMERIC

FORM

SCIENTIFIC

ENGINEERING

expression

VALUE

;

��

Scientific

notation

is

the

default.

Numbers

and

Arithmetic

Chapter

6.

Numbers

and

Arithmetic

129

/*

after

the

instruction

*/

Numeric

form

scientific

123.45

*

1e11

->

1.2345E+13

/*

after

the

instruction

*/

Numeric

form

engineering

123.45

*

1e11

->

12.345E+12

Numeric

Information

To

determine

the

current

settings

of

the

NUMERIC

options,

use

the

built-in

functions

DIGITS,

FORM,

and

FUZZ.

These

functions

return

the

current

settings

of

NUMERIC

DIGITS,

NUMERIC

FORM,

and

NUMERIC

FUZZ,

respectively.

Whole

Numbers

Within

the

set

of

numbers

REXX

understands,

it

is

useful

to

distinguish

the

subset

defined

as

whole

numbers.

A

whole

number

in

REXX

is

a

number

that

has

a

decimal

part

that

is

all

zeros

(or

that

has

no

decimal

part).

In

addition,

it

must

be

possible

to

express

its

integer

part

simply

as

digits

within

the

precision

set

by

the

NUMERIC

DIGITS

instruction.

REXX

would

express

larger

numbers

in

exponential

notation,

after

rounding,

and,

therefore,

these

could

no

longer

be

safely

described

or

used

as

whole

numbers.

Numbers

Used

Directly

by

REXX

As

discussed,

the

result

of

any

arithmetic

operation

is

rounded

(if

necessary)

according

to

the

setting

of

NUMERIC

DIGITS.

Similarly,

when

REXX

directly

uses

a

number

(which

has

not

necessarily

been

involved

in

an

arithmetic

operation),

the

same

rounding

is

also

applied.

It

is

just

as

though

the

number

had

been

added

to

0.

In

the

following

cases,

the

number

used

must

be

a

whole

number,

and

the

largest

number

you

can

use

is

999999999.

v

The

positional

patterns

in

parsing

templates

(including

variable

positional

patterns)

v

The

power

value

(right

hand

operand)

of

the

power

operator

v

The

values

of

exprr

and

exprf

in

the

DO

instruction

v

The

values

given

for

DIGITS

or

FUZZ

in

the

NUMERIC

instruction

v

Any

number

used

in

the

numeric

option

in

the

TRACE

instruction.

Errors

Two

types

of

errors

may

occur

during

arithmetic:

v

Overflow

or

Underflow

This

error

occurs

if

the

exponential

part

of

a

result

would

exceed

the

range

that

the

language

processor

can

handle,

when

the

result

is

formatted

according

to

the

current

settings

of

NUMERIC

DIGITS

and

NUMERIC

FORM.

The

language

defines

a

minimum

capability

for

the

exponential

part,

namely

the

largest

number

that

can

be

expressed

as

an

exact

integer

in

default

precision.

Because

the

default

precision

is

9,

you

can

use

exponents

in

the

range

-999999999

through

999999999.

Because

this

allows

for

(very)

large

exponents,

overflow

or

underflow

is

treated

as

a

syntax

error.

v

Insufficient

storage

Storage

is

needed

for

calculations

and

intermediate

results,

and

on

occasion

an

arithmetic

operation

may

fail

because

of

lack

of

storage.

This

is

considered

a

terminating

error

as

usual,

rather

than

an

arithmetic

error.

Numbers

and

Arithmetic

130

REXX/VSE

Reference

Chapter

7.

Conditions

and

Condition

Traps

A

condition

is

a

specified

event

or

state

that

CALL

ON

or

SIGNAL

ON

can

trap.

A

condition

trap

can

modify

the

flow

of

execution

in

a

REXX

program.

Condition

traps

are

turned

on

or

off

using

the

ON

or

OFF

subkeywords

of

the

SIGNAL

and

CALL

instructions

(see

“CALL”

on

page

31

and

“SIGNAL”

on

page

55).

��

CALL

SIGNAL

OFF

condition

ON

condition

NAME

trapname

;

��

condition

and

trapname

are

single

symbols

that

are

taken

as

constants.

Following

one

of

these

instructions,

a

condition

trap

is

set

to

either

ON

(enabled)

or

OFF

(disabled).

The

initial

setting

for

all

condition

traps

is

OFF.

If

a

condition

trap

is

enabled

and

the

specified

condition

occurs,

control

passes

to

the

routine

or

label

trapname

if

you

have

specified

trapname.

Otherwise,

control

passes

to

the

routine

or

label

condition.

CALL

or

SIGNAL

is

used,

depending

on

whether

the

most

recent

trap

for

the

condition

was

set

using

CALL

ON

or

SIGNAL

ON,

respectively.

Note:

If

you

use

CALL,

the

trapname

can

be

an

internal

label,

a

built-in

function,

or

an

external

routine.

If

you

use

SIGNAL,

the

trapname

can

be

only

an

internal

label.

The

conditions

and

their

corresponding

events

that

can

be

trapped

are:

ERROR

raised

if

a

command

indicates

an

error

condition

upon

return.

It

is

also

raised

if

any

command

indicates

failure

and

neither

CALL

ON

FAILURE

nor

SIGNAL

ON

FAILURE

is

active.

The

condition

is

raised

at

the

end

of

the

clause

that

called

the

command

but

is

ignored

if

the

ERROR

condition

trap

is

already

in

the

delayed

state.

The

delayed

state

is

the

state

of

a

condition

trap

when

the

condition

has

been

raised

but

the

trap

has

not

yet

been

reset

to

the

enabled

(ON)

or

disabled

(OFF)

state.

SIGNAL

ON

ERROR

traps

all

positive

return

codes,

and

negative

return

codes

only

if

CALL

ON

FAILURE

and

SIGNAL

ON

FAILURE

are

not

set.

Note:

See

“The

VSE

Host

Command

Environment”

on

page

25

for

a

definition

of

host

commands.

FAILURE

raised

if

a

command

indicates

a

failure

condition

upon

return.

The

condition

is

raised

at

the

end

of

the

clause

that

called

the

command

but

is

ignored

if

the

FAILURE

condition

trap

is

already

in

the

delayed

state.

CALL

ON

FAILURE

and

SIGNAL

ON

FAILURE

trap

all

negative

return

codes

from

commands.

HALT

raised

if

an

external

attempt

is

made

to

interrupt

and

end

execution

of

the

program.

The

condition

is

usually

raised

at

the

end

of

the

clause

that

was

being

processed

when

the

external

interruption

occurred.

For

example,

the

immediate

command

HI

(Halt

Interpretation)

raises

a

halt

condition.

The

RXHLT

exit

(page

475)

also

raises

a

halt

condition.

See

“Interrupting

Program

Processing”

on

page

325.

NOVALUE

raised

if

an

uninitialized

variable

is

used:

v

As

a

term

in

an

expression

v

As

the

name

following

the

VAR

subkeyword

of

a

PARSE

instruction

v

As

a

variable

reference

in

a

parsing

template,

a

PROCEDURE

instruction,

or

a

DROP

instruction.

©

Copyright

IBM

Corp.

1988,

2004

131

Note:

SIGNAL

ON

NOVALUE

can

trap

any

uninitialized

variables

except

tails

in

compound

variables.

/*

The

following

does

not

raise

NOVALUE.

*/

signal

on

novalue

a.=0

say

a.z

say

’NOVALUE

is

not

raised.’

exit

novalue:

say

’NOVALUE

is

raised.’

You

can

specify

this

condition

only

for

SIGNAL

ON.

SYNTAX

raised

if

any

language

processing

error

is

detected

while

the

program

is

running.

This

includes

all

kinds

of

processing

errors,

including

true

syntax

errors

and

″run-time″

errors,

such

as

attempting

an

arithmetic

operation

on

nonnumeric

terms.

You

can

specify

this

condition

only

for

SIGNAL

ON.

Any

ON

or

OFF

reference

to

a

condition

trap

replaces

the

previous

state

(ON,

OFF,

or

DELAY,

and

any

trapname)

of

that

condition

trap.

Thus,

a

CALL

ON

HALT

replaces

any

current

SIGNAL

ON

HALT

(and

a

SIGNAL

ON

HALT

replaces

any

current

CALL

ON

HALT),

a

CALL

ON

or

SIGNAL

ON

with

a

new

trap

name

replaces

any

previous

trap

name,

any

OFF

reference

disables

the

trap

for

CALL

or

SIGNAL,

and

so

on.

Action

Taken

When

a

Condition

Is

Not

Trapped

When

a

condition

trap

is

currently

disabled

(OFF)

and

the

specified

condition

occurs,

the

default

action

depends

on

the

condition:

v

For

HALT

and

SYNTAX,

the

processing

of

the

program

ends,

and

a

message

(see

VSE/ESA

Messages

and

Codes)

describing

the

nature

of

the

event

that

occurred

usually

indicates

the

condition.

v

For

all

other

conditions,

the

condition

is

ignored

and

its

state

remains

OFF.

Action

Taken

When

a

Condition

Is

Trapped

When

a

condition

trap

is

currently

enabled

(ON)

and

the

specified

condition

occurs,

instead

of

the

usual

flow

of

control,

a

CALL

trapname

or

SIGNAL

trapname

instruction

is

processed

automatically.

You

can

specify

the

trapname

after

the

NAME

subkeyword

of

the

CALL

ON

or

SIGNAL

ON

instruction.

If

you

do

not

specify

a

trapname,

the

name

of

the

condition

itself

(ERROR,

FAILURE,

HALT,

NOVALUE,

or

SYNTAX)

is

used.

For

example,

the

instruction

call

on

error

enables

the

condition

trap

for

the

ERROR

condition.

If

the

condition

occurred,

then

a

call

to

the

routine

identified

by

the

name

ERROR

is

made.

The

instruction

call

on

error

name

commanderror

would

enable

the

trap

and

call

the

routine

COMMANDERROR

if

the

condition

occurred.

Question

At

the

9/93

ARB,

this

wording

changed

from

’occurred.’

to

’occurred,

and

the

caller

usually

receives

an

indication

of

failure.’

Should

this

change

print

for

VSE?

The

sequence

of

events,

after

a

condition

has

been

trapped,

varies

depending

on

whether

a

SIGNAL

or

CALL

is

processed:

v

If

the

action

taken

is

a

SIGNAL,

execution

of

the

current

instruction

ceases

immediately,

the

condition

is

disabled

(set

to

OFF),

and

the

SIGNAL

takes

place

in

exactly

the

same

way

as

usual

(see

page

55).

Conditions

and

Condition

Traps

132

REXX/VSE

Reference

If

any

new

occurrence

of

the

condition

is

to

be

trapped,

a

new

CALL

ON

or

SIGNAL

ON

instruction

for

the

condition

is

required

to

re-enable

it

when

the

label

is

reached.

For

example,

if

SIGNAL

ON

SYNTAX

is

enabled

when

a

SYNTAX

condition

occurs,

then,

if

the

SIGNAL

ON

SYNTAX

label

name

is

not

found,

a

usual

syntax

error

termination

occurs.

v

If

the

action

taken

is

a

CALL

(which

can

occur

only

at

a

clause

boundary),

the

CALL

is

made

in

the

usual

way

(see

page

31)

except

that

the

call

does

not

affect

the

special

variable

RESULT.

If

the

routine

should

RETURN

any

data,

then

the

returned

character

string

is

ignored.

Because

these

conditions

(ERROR,

FAILURE,

and

HALT)

can

arise

during

execution

of

an

INTERPRET

instruction,

execution

of

the

INTERPRET

may

be

interrupted

and

later

resumed

if

CALL

ON

was

used.

As

the

condition

is

raised,

and

before

the

CALL

is

made,

the

condition

trap

is

put

into

a

delayed

state.

This

state

persists

until

the

RETURN

from

the

CALL,

or

until

an

explicit

CALL

(or

SIGNAL)

ON

(or

OFF)

is

made

for

the

condition.

This

delayed

state

prevents

a

premature

condition

trap

at

the

start

of

the

routine

called

to

process

a

condition

trap.

When

a

condition

trap

is

in

the

delayed

state

it

remains

enabled,

but

if

the

condition

is

raised

again,

it

is

either

ignored

(for

ERROR

or

FAILURE)

or

(for

the

other

conditions)

any

action

(including

the

updating

of

the

condition

information)

is

delayed

until

one

of

the

following

events

occurs:

1.

A

CALL

ON

or

SIGNAL

ON,

for

the

delayed

condition,

is

processed.

In

this

case

a

CALL

or

SIGNAL

takes

place

immediately

after

the

new

CALL

ON

or

SIGNAL

ON

instruction

has

been

processed.

2.

A

CALL

OFF

or

SIGNAL

OFF,

for

the

delayed

condition,

is

processed.

In

this

case

the

condition

trap

is

disabled

and

the

default

action

for

the

condition

occurs

at

the

end

of

the

CALL

OFF

or

SIGNAL

OFF

instruction.

3.

A

RETURN

is

made

from

the

subroutine.

In

this

case

the

condition

trap

is

no

longer

delayed

and

the

subroutine

is

called

again

immediately.

On

RETURN

from

the

CALL,

the

original

flow

of

execution

is

resumed

(that

is,

the

flow

is

not

affected

by

the

CALL).

Notes:

1.

You

must

be

extra

careful

when

you

write

a

syntax

trap

routine.

Where

possible,

put

the

routine

near

the

beginning

of

the

program.

This

is

necessary

because

the

trap

routine

label

might

not

be

found

if

there

are

certain

scanning

errors,

such

as

a

missing

ending

comment.

Also,

the

trap

routine

should

not

contain

any

statements

that

might

cause

more

of

the

program

in

error

to

be

scanned.

Examples

of

this

are

calls

to

built-in

functions

with

no

quotation

marks

around

the

name.

If

the

built-in

function

name

is

in

uppercase

and

is

enclosed

in

quotation

marks,

REXX

goes

directly

to

the

function,

rather

than

searching

for

an

internal

label.

2.

In

all

cases,

the

condition

is

raised

immediately

upon

detection.

If

SIGNAL

ON

traps

the

condition,

the

current

instruction

is

ended,

if

necessary.

Therefore,

the

instruction

during

which

an

event

occurs

may

be

only

partly

processed.

For

example,

if

SYNTAX

is

raised

during

the

evaluation

of

the

expression

in

an

assignment,

the

assignment

does

not

take

place.

Note

that

the

CALL

for

ERROR,

FAILURE,

and

HALT

traps

can

occur

only

at

clause

boundaries.

If

these

conditions

arise

in

the

middle

of

an

INTERPRET

instruction,

execution

of

INTERPRET

may

be

interrupted

and

later

resumed.

Similarly,

other

instructions,

for

example,

DO

or

SELECT,

may

be

temporarily

interrupted

by

a

CALL

at

a

clause

boundary.

3.

The

state

(ON,

OFF,

or

DELAY,

and

any

trapname)

of

each

condition

trap

is

saved

on

entry

to

a

subroutine

and

is

then

restored

on

RETURN.

This

means

that

CALL

ON,

CALL

OFF,

SIGNAL

ON,

and

SIGNAL

OFF

can

be

used

in

a

subroutine

without

affecting

the

conditions

set

up

by

the

caller.

See

the

CALL

instruction

(page

31)

for

details

of

other

information

that

is

saved

during

a

subroutine

call.

4.

The

state

of

condition

traps

is

not

affected

when

an

external

routine

is

called

by

a

CALL,

even

if

the

external

routine

is

a

REXX

program.

On

entry

to

any

REXX

program,

all

condition

traps

have

an

initial

setting

of

OFF.

5.

While

user

input

is

processed

during

interactive

tracing,

all

condition

traps

are

temporarily

set

OFF.

This

prevents

any

unexpected

transfer

of

control—for

example,

should

the

user

accidentally

use

an

Conditions

and

Condition

Traps

Chapter

7.

Conditions

and

Condition

Traps

133

uninitialized

variable

while

SIGNAL

ON

NOVALUE

is

active.

For

the

same

reason,

a

syntax

error

during

interactive

tracing

does

not

cause

exit

from

the

program

but

is

trapped

specially

and

then

ignored

after

a

message

is

given.

6.

The

system

interface

detects

certain

execution

errors

either

before

execution

of

the

program

starts

or

after

the

program

has

ended.

SIGNAL

ON

SYNTAX

cannot

trap

these

errors.

Note

that

a

label

is

a

clause

consisting

of

a

single

symbol

followed

by

a

colon.

Any

number

of

successive

clauses

can

be

labels;

therefore,

multiple

labels

are

allowed

before

another

type

of

clause.

Condition

Information

When

any

condition

is

trapped

and

causes

a

SIGNAL

or

CALL,

this

becomes

the

current

trapped

condition,

and

certain

condition

information

associated

with

it

is

recorded.

You

can

inspect

this

information

by

using

the

CONDITION

built-in

function

(see

page

68).

The

condition

information

includes:

v

The

name

of

the

current

trapped

condition

v

The

name

of

the

instruction

processed

as

a

result

of

the

condition

trap

(CALL

or

SIGNAL)

v

The

status

of

the

trapped

condition

v

Any

descriptive

string

associated

with

that

condition.

The

current

condition

information

is

replaced

when

control

is

passed

to

a

label

as

the

result

of

a

condition

trap

(CALL

ON

or

SIGNAL

ON).

Condition

information

is

saved

and

restored

across

subroutine

or

function

calls,

including

one

because

of

a

CALL

ON

trap.

Therefore,

a

routine

called

by

a

CALL

ON

can

access

the

appropriate

condition

information.

Any

previous

condition

information

is

still

available

after

the

routine

returns.

Descriptive

Strings

The

descriptive

string

varies,

depending

on

the

condition

trapped.

ERROR

The

string

that

was

processed

and

resulted

in

the

error

condition.

FAILURE

The

string

that

was

processed

and

resulted

in

the

failure

condition.

HALT

Any

string

associated

with

the

halt

request.

This

can

be

the

null

string

if

no

string

was

provided.

NOVALUE

The

derived

name

of

the

variable

whose

attempted

reference

caused

the

NOVALUE

condition.

The

NOVALUE

condition

trap

can

be

enabled

only

using

SIGNAL

ON.

SYNTAX

Any

string

the

language

processor

associated

with

the

error.

This

can

be

the

null

string

if

you

did

not

provide

a

specific

string.

Note

that

the

special

variables

RC

and

SIGL

provide

information

on

the

nature

and

position

of

the

processing

error.

You

can

enable

the

SYNTAX

condition

trap

only

by

using

SIGNAL

ON.

Special

Variables

A

special

variable

is

one

that

may

be

set

automatically

during

processing

of

a

REXX

program.

There

are

three

special

variables:

RC,

RESULT,

and

SIGL.

None

of

these

has

an

initial

value,

but

the

program

may

alter

them.

(For

information

about

RESULT,

see

page

53.)

The

Special

Variable

RC

For

ERROR

and

FAILURE,

the

REXX

special

variable

RC

is

set

to

the

command

return

code,

as

usual,

before

control

is

transferred

to

the

condition

label.

The

return

code

may

be

the

return

code

from

a

routine

(such

as,

a

REXX

program)

that

caused

the

ERROR

or

FAILURE

condition.

The

return

code

may

also

be

a

-3,

which

indicates

that

the

command

could

not

be

found.

For

more

information

about

issuing

commands

and

their

return

codes,

see

“The

VSE

Host

Command

Environment”

on

page

25.

Conditions

and

Condition

Traps

134

REXX/VSE

Reference

For

SIGNAL

ON

SYNTAX,

RC

is

set

to

the

syntax

error

number.

The

Special

Variable

SIGL

Following

any

transfer

of

control

because

of

a

CALL

or

SIGNAL,

the

program

line

number

of

the

clause

causing

the

transfer

of

control

is

stored

in

the

special

variable

SIGL.

Where

the

transfer

of

control

is

because

of

a

condition

trap,

the

line

number

assigned

to

SIGL

is

that

of

the

last

clause

processed

(at

the

current

subroutine

level)

before

the

CALL

or

SIGNAL

took

place.

This

is

especially

useful

for

SIGNAL

ON

SYNTAX

when

the

number

of

the

line

in

error

can

be

used,

for

example,

to

control

a

text

editor.

Typically,

code

following

the

SYNTAX

label

may

PARSE

SOURCE

to

find

the

source

of

the

data,

then

call

an

editor

to

edit

the

source

file

positioned

at

the

line

in

error.

Note

that

in

this

case

you

may

have

to

run

the

program

again

before

any

changes

made

in

the

editor

can

take

effect.

Alternatively,

SIGL

can

be

used

to

help

determine

the

cause

of

an

error

(such

as

the

occasional

failure

of

a

function

call)

as

in

the

following

example:

signal

on

syntax

a

=

a

+

1

/*

This

is

to

create

a

syntax

error

*/

say

’SYNTAX

error

not

raised’

exit

/*

Standard

handler

for

SIGNAL

ON

SYNTAX

*/

syntax:

say

’REXX

error’

rc

’in

line’

sigl’:’

"ERRORTEXT"(rc)

say

"SOURCELINE"(sigl)

trace

?r;

nop

This

code

first

displays

the

error

code,

line

number,

and

error

message.

It

then

displays

the

line

in

error,

and

finally

drops

into

debug

mode

to

let

you

inspect

the

values

of

the

variables

used

at

the

line

in

error.

Conditions

and

Condition

Traps

Chapter

7.

Conditions

and

Condition

Traps

135

136

REXX/VSE

Reference

Chapter

8.

Using

REXX

The

REXX

language

consists

of

keyword

instructions

and

built-in

functions

that

you

use

in

a

REXX

program.

The

keyword

instructions

and

built-in

functions

are

described

in

Chapter

3,

“Keyword

Instructions,”

on

page

27

and

Chapter

4,

“Functions,”

on

page

61,

respectively.

You

can

also

use

external

functions

and

REXX/VSE

commands

in

a

REXX

program.

The

functions

are

described

in

“External

Functions”

on

page

96.

The

REXX/VSE

commands

provide

additional

services

that

let

you:

v

Control

I/O

processing

v

Perform

data

stack

requests

v

Change

characteristics

that

control

how

a

REXX

program

runs

v

Check

for

the

existence

of

a

specific

host

command

environment.

See

Chapter

10,

“REXX/VSE

Commands,”

on

page

143

for

details.

See

“Writing

Programs”

on

page

139

for

information

about

services

you

can

use

in

programs.

REXX/VSE

is

a

partial

implementation

of

Level

2

SAA

REXX

on

the

VSE/ESA

system.

By

using

the

keyword

instructions

and

functions

that

are

defined

for

the

SAA

REXX

language,

you

can

write

REXX

programs

that

can

run

in

any

of

the

supported

SAA

environments.

See

the

SAA

Common

Programming

Interface

REXX

Level

2

Reference

for

more

information.

Additional

REXX

Support

REXX/VSE

also

provides:

programming

services

You

can

use

these

to

interface

with

REXX

and

the

language

processor.

customizing

services

These

let

you

customize

REXX

processing

and

accessing

and

using

system

services.

Programming

Services

The

REXX/VSE

programming

services

are:

ARXEXCOM

–

Variable

Pool

Access

ARXEXCOM

lets

you

access

and

manipulate

the

current

generation

of

REXX

variables.

Commands

and

programs

can

call

ARXEXCOM

to

inspect,

set,

and

drop

REXX

variables.

See

page

356

for

a

description.

ARXSUBCM

–

Maintain

Host

Command

Environments

ARXSUBCM

is

a

programming

interface

to

the

host

command

environment

table.

This

table

contains

the

names

of

the

environments

and

routines

that

handle

the

processing

of

host

commands.

You

can

use

ARXSUBCM

to

add,

change,

delete,

and

query

entries

in

the

table.

See

page

362

for

a

description.

ARXIC

–

Trace

and

Execution

Control

ARXIC,

the

trace

and

execution

control

routine,

is

an

interface

to

the

immediate

commands

HI,

HT,

RT,

TQ,

TS,

and

TE.

A

program

can

call

ARXIC

to

use

these

commands

to

affect

the

processing

and

tracing

of

REXX

programs.

See

page

365

for

a

description.

ARXRLT

–

Get

Result

ARXRLT

gets

the

result

from

a

REXX

program.

that

the

ARXEXEC

routine

called.

ARXRLT

also

allows

a

non-REXX

program

to

get

an

EVALBLOK

to

return

a

result

to

REXX.

See

page

368

for

a

description.

©

Copyright

IBM

Corp.

1988,

2004

137

ARXJCL

and

ARXEXEC

–

Exec

Processing

The

ARXJCL

and

ARXEXEC

routines

call

a

REXX

program.

These

routines

are

programming

interfaces

to

the

language

processor.

You

can

run

a

program

in

batch

by

specifying

ARXJCL

as

the

program

name

on

the

JCL

EXEC

statement.

You

can

call

either

ARXJCL

or

ARXEXEC

from

an

application

program

to

call

a

REXX

program.

See

page

333

for

descriptions.

External

Functions

and

Subroutines

and

Function

Packages

You

can

write

your

own

external

functions

and

subroutines

to

extend

the

programming

capabilities

of

the

REXX

language.

You

can

write

external

functions

or

subroutines

in

REXX.

Or

you

can

write

them

in

any

programming

language

that

supports

the

system-dependent

interfaces

that

the

language

processor

uses

to

call

a

function

or

subroutine.

You

can

also

group

frequently

used

external

functions

and

subroutines

into

a

package.

This

allows

quick

access

to

the

functions

and

subroutines.

To

include

an

external

function

or

subroutine

in

a

function

package,

the

function

or

subroutine

must

be

link-edited

into

a

phase.

See

page

348

for

a

description

of

the

system-dependent

interfaces

for

writing

external

functions

and

subroutines

and

how

to

define

function

packages.

ARXOUT

–

OUTTRAP

Interface

Routine

ARXOUT

lets

programs

write

a

character

string

to

the

REXX

stem

specified

by

the

OUTTRAP

external

function.

Programs

using

this

interface

must

have

been

invoked

by

the

ADDRESS

LINK

or

ADDRESS

LINKPGM

host

command

environment.

See

page

382

for

a

description.

ARXSAY

–

SAY

Instruction

Routine

ARXSAY

lets

you

write

a

character

string

to

the

same

output

stream

as

the

REXX

SAY

instruction.

See

page

372

for

a

description.

ARXHLT

–

Halt

Condition

Routine

ARXHLT

queries

or

resets

the

halt

condition.

See

page

374

for

a

description.

ARXTXT

–

Text

Retrieval

Routine

ARXTXT

retrieves

data

from

the

message

repository.

This

is

the

same

text

that

the

language

processor

uses

for

the

ERRORTEXT

built-in

function

and

for

certain

options

of

the

DATE

built-in

function.

For

example,

a

program

can

use

ARXTXT

to

retrieve

the

name

of

a

month

or

the

text

of

a

syntax

error

message.

See

page

376

for

a

description.

ARXLIN

–

LINESIZE

Function

Routine

ARXLIN

lets

you

retrieve

the

same

value

that

the

LINESIZE

built-in

function

returns.

See

page

380

for

a

description.

Customizing

Services

There

are

services

you

can

use

to

customize

REXX

processing.

Many

services

let

you

change

how

a

program

is

processed

and

how

the

language

processor

interfaces

with

the

system

to

access

and

use

system

services,

such

as

storage

and

I/O.

Customization

services

for

REXX

processing

include

the

following:

Environment

Characteristics

Various

routines

and

services

allow

you

to

customize

the

environment

in

which

the

language

processor

processes

a

REXX

program.

This

environment

is

known

as

the

language

processor

environment

and

defines

various

characteristics

relating

to

program

processing

and

how

to

access

and

use

system

services.

There

are

default

environment

characteristics

that

you

can

change

and

also

a

routine

you

can

use

to

define

your

own

environment.

Replaceable

Routines

When

a

REXX

program

runs,

various

system

services

are

used,

such

as

services

for

loading

and

freeing

a

program,

I/O,

obtaining

and

freeing

storage,

and

data

stack

requests.

Replaceable

routines

handle

these

types

of

system

services.

(They

are

called

replaceable

routines

because

you

can

provide

your

own

routine

that

either

replaces

the

REXX/VSE

routine

or

that

performs

pre-processing

and

then

calls

the

REXX/VSE

routine.)

Using

REXX

138

REXX/VSE

Reference

Exit

Routines

You

can

provide

exit

routines

to

customize

various

aspects

of

REXX

processing.

The

chapters

on

pages

385

through

479

describe

the

different

ways

in

which

you

can

customize

REXX

processing.

Writing

Programs

You

can

use

the

following

in

a

program:

v

Assignment

v

All

keyword

instructions

that

are

described

in

Chapter

3,

“Keyword

Instructions,”

on

page

27

v

All

built-in

functions

that

are

described

in

Chapter

4,

“Functions,”

on

page

61

v

The

external

functions

ASSGN,

OUTTRAP,

REXXIPT,

REXXMSG,

SETLANG,

SLEEP,

STORAGE,

and

SYSVAR.

See

“External

Functions”

on

page

96

for

more

information.

v

The

following

REXX/VSE

commands:

–

DELSTACK

-

Deletes

the

most

current

data

stack

that

was

created

with

NEWSTACK.

–

DROPBUF

-

Drops

(discards)

a

buffer

that

was

previously

created

on

the

data

stack

with

MAKEBUF.

–

EXEC

-

runs

a

REXX

program

in

the

active

PROC

chain.

(See

page

139

for

an

example.)

–

EXECIO

-

Reads

data

from

and

writes

data

to

files.

You

can

use

EXECIO

to

read

data

from

and

write

data

to

the

data

stack

or

stem

variables.

–

MAKEBUF

-

Creates

a

buffer

on

the

data

stack.

–

NEWSTACK

-

Creates

a

new

data

stack

and

effectively

isolates

the

current

data

stack

that

the

program

is

using.

–

QBUF

-

Queries

how

many

buffers

are

currently

on

the

active

data

stack.

–

QELEM

-

Queries

how

many

elements

are

on

the

data

stack

above

the

most

recently

created

buffer.

–

QSTACK

-

Queries

the

number

of

data

stacks

currently

in

existence.

–

SETUID

-

Lets

you

specify

the

user

ID

and

password

associated

with

a

request

through

the

VSE/POWER

spool-access

services

interface.

–

SUBCOM

-

Determines

whether

a

particular

host

command

environment

is

available

to

process

host

commands.

–

TE

(Trace

End)

-

Ends

tracing

of

the

program.

–

TS

(Trace

Start)

-

Starts

tracing

of

the

program.

See

Chapter

10,

“REXX/VSE

Commands,”

on

page

143

for

details

on

these

commands.

v

Instructions

to

call

a

program

You

can

call

a

REXX

program

from

another

REXX

program

using

the

following

instructions

(the

examples

assume

that

the

current

host

command

environment

is

VSE):

"EXEC

program_name

p1

p2

..."

"EX

program_name

p1

p2

..."

"program_name

p1

p2

..."

/*

Implicit

EXEC

command

*/

v

ADDRESS

POWER

commands:

–

GETQE

–

retrieves

an

entry

from

a

POWER

queue

and

stores

the

lines

it

retrieves.

–

PUTQE

–

places

a

job

on

a

POWER

queue.

–

QUERYMSG

–

returns

job

completion

messages

into

the

stem

specified

by

OUTTRAP.

–

CTL

service

requests

to

POWER

(sent

through

the

VSE/POWER

spool-access

services

interface).

See

“Commands

to

External

Environments”

on

page

22

for

more

information.

v

Instructions

that

load

and

call

programs

You

can

use

the

LINK

and

LINKPGM

host

command

environments

to

load

and

call

a

phase

from

the

active

PHASE

search

chain.

For

example:

ADDRESS

LINK

"PROGRAM

p1

p2

..."

Using

REXX

Chapter

8.

Using

REXX

139

For

more

information,

see

Chapter

13,

“Host

Command

Environments

for

Loading

and

Calling

Programs,”

on

page

205.

v

JCL

commands

You

can

use

the

JCL

host

command

environment

to

issue

JCL

commands

via

a

REXX

program.

For

example:

ADDRESS

JCL

"jcl_command"

For

more

information,

see

“The

JCL

Host

Command

Environment”

on

page

201.

v

Console

commands

You

can

use

the

CONSOLE

host

command

environment

to

issue

console

commands

via

a

REXX

program.

For

example:

ADDRESS

CONSOLE

"console_command"

For

more

information,

see

Chapter

14,

“REXX/VSE

Console

Automation,”

on

page

217.

v

Programming

services

See

Chapter

17,

“Programming

Services,”

on

page

327

for

descriptions

of

programming

services

such

as

ARXEXEC,

ARXJCL,

ARXEXCOM,

and

ARXIC.

Running

a

Program

You

can

call

a

REXX

program

directly

by

using

the

JCL

EXEC

command

(see

“Calling

REXX

Directly

with

the

JCL

EXEC

Command”

on

page

333).

Or

you

call

a

REXX

program

by

using

the

ARXJCL

or

ARXEXEC

routine.

These

routines

are

programming

interfaces

to

the

language

processor.

See

“The

ARXEXEC

Routine”

on

page

338

and

“The

ARXJCL

Routine”

on

page

335

for

details

about

these

programming

interfaces

and

information

about

using

ARXJCL

to

run

a

REXX

program.

You

can

use

ARXJCL

to

call

a

REXX

program

from

a

non-REXX

program

(for

example,

a

PL/I

program).

To

call

a

REXX

program

from

another

REXX

program,

you

can

use

the

REXX/VSE

EXEC

command.

Here

are

some

examples

using

the

ADDRESS

command.

The

environment

following

the

ADDRESS

keyword

is

POWER.

This

specifies

sending

the

expression

within

quotation

marks

to

the

POWER

environment.

ADDRESS

POWER

"EXEC

program_name

p1

p2

..."

ADDRESS

POWER

"EX

program_name

p1

p2

..."

See

“The

VSE

Host

Command

Environment”

on

page

25

for

more

information

about

environments

for

issuing

host

commands.

Communicating

with

a

User

Console

With

the

ECHO

parameter

in

the

VSE/POWER

$$

JOB

statement

REXX

can

communicate

with

a

user

console.

In

the

following

example

all

messages

REXX

writes

to

SYSLOG

are

routed

to

a

user

console

named

REXX.

Replies

given

on

the

user

console

are

routed

to

the

REXX

exec.

*

$$

JOB

JNM=REXXJOB,...,ECHO=(ALL,REXX)

//

JOB

REXXJOB

//

EXEC

REXX=RXPGM

/&

*

$$

EOJ

The

demo

program

REXXTRY,

which

is

described

on

page

262,

provides

an

interactive

testing

facility

of

REXX

statements.

Using

REXX

140

REXX/VSE

Reference

Chapter

9.

Reserved

Keywords,

Special

Variables,

and

Command

Names

This

chapter

describes

reserved

keywords,

special

variables,

and

reserved

command

names.

Where

there

is

no

ambiguity,

you

can

use

keywords

as

symbols;

the

precise

rules

are

given

here.

REXX

has

three

special

variables:

RC,

RESULT,

and

SIGL.

(The

names

of

the

special

variables

are

not

reserved.)

The

names

of

REXX/VSE

commands

are

reserved.

Reserved

Keywords

The

syntax

of

REXX

implies

that

some

symbols

are

reserved

for

the

language

processor’s

use

in

certain

contexts.

Within

particular

instructions,

some

symbols

may

be

reserved

to

separate

the

parts

of

the

instruction.

These

symbols

are

called

keywords.

Examples

of

REXX

keywords

are

the

WHILE

in

a

DO

instruction,

and

the

THEN

(which

ends

a

clause

in

this

case)

following

an

IF

or

WHEN

clause.

Apart

from

these

cases,

the

language

processor

checks

only

simple

symbols

that

are

the

first

token

in

a

clause

and

that

are

not

followed

by

an

equal

sign

(=)

or

colon

(:)

to

see

if

they

are

instruction

keywords.

You

can

use

the

symbols

freely

elsewhere

in

clauses

without

their

being

treated

as

keywords.

However,

you

are

not

recommended

to

use

host

commands

or

subcommands

with

the

same

name

as

REXX

keywords

(QUEUE,

for

example).

This

can

create

problems

for

programmers

whose

REXX

programs

might

be

used

for

some

time

and

in

circumstances

outside

their

control.

You

may

want

to

enclose

an

entire

host

command

in

quotation

marks.

This

ensures

that

the

language

processor

processes

the

expression

as

a

host

command.

Special

Variables

There

are

three

special

variables

that

the

language

processor

can

set

automatically:

RC

is

the

return

code

from

any

executed

host

command

(or

subcommand).

Following

the

SIGNAL

events

SYNTAX,

ERROR,

or

FAILURE,

RC

is

set

to

the

code

appropriate

to

the

event:

the

syntax

error

number

or

the

command

return

code.

RC

is

unchanged

following

a

NOVALUE

or

HALT

event.

Note:

Host

Commands

from

input

during

debug

mode

do

not

change

the

value

of

RC.

The

special

variable

RC

can

also

be

set

to

a

-3

if

the

host

command

could

not

be

found.

See

“The

VSE

Host

Command

Environment”

on

page

25

for

information

about

issuing

commands

from

a

program.

The

REXX/VSE

commands

also

return

a

value

in

the

special

variable

RC.

Some

of

the

commands

return

the

result

from

the

command.

For

example,

the

QBUF

command

returns

the

number

of

buffers

currently

on

the

data

stack

in

the

special

variable

RC.

Chapter

10,

“REXX/VSE

Commands”

describes

the

commands.

RESULT

is

set

by

a

RETURN

instruction

in

a

called

subroutine,

if

the

RETURN

instruction

specifies

an

expression.

If

the

RETURN

instruction

has

no

expression,

RESULT

is

dropped

(becomes

uninitialized.)

©

Copyright

IBM

Corp.

1988,

2004

141

SIGL

contains

the

line

number

of

the

clause

currently

executing

when

the

last

transfer

of

control

to

a

label

took

place.

(A

SIGNAL,

a

CALL,

an

internal

function

call,

or

a

trapped

error

condition

could

cause

this.)

None

of

these

variables

has

an

initial

value.

You

can

change

their

values,

just

as

with

any

other

variable.

You

can

access

them

using

the

variable

pool

access

interface

ARXEXCOM

(page

356).

The

PROCEDURE

and

DROP

instructions

also

affect

these

variables

in

the

usual

way.

Certain

other

information

is

always

available

to

a

REXX

program.

This

includes

the

name

by

which

the

program

was

called

and

the

source

of

the

program,

which

is

available

using

the

PARSE

SOURCE

instruction.

See

page

47

for

details

about

the

information

PARSE

SOURCE

returns.

PARSE

VERSION

provides

information

about

the

version

and

date

of

the

language

processor

code

that

is

running.

(See

page

48.)

The

TRACE

built-in

function

returns

the

current

trace

setting.

The

ADDRESS

built-in

function

returns

the

name

of

the

host

command

environment.

Finally,

you

can

obtain

the

current

NUMERIC

settings

with

the

DIGITS,

FORM,

and

FUZZ

built-in

functions.

Reserved

Command

Names

You

can

also

use

REXX/VSE

commands

in

REXX

programs.

The

names

of

these

commands

are

reserved.

It

is

recommended

that

you

do

not

use

these

names

for

names

of

your

REXX

programs

or

phases.

The

REXX/VSE

commands

are

in

the

next

chapter.

Keywords,

Variables,

and

Command

Names

142

REXX/VSE

Reference

Chapter

10.

REXX/VSE

Commands

REXX/VSE

provides

commands

to

perform

different

services,

such

as

I/O

and

data

stack

requests.

You

can

use

the

REXX/VSE

commands

in

both

the

VSE

and

the

POWER

environment.

“The

VSE

Host

Command

Environment”

on

page

25

and

“The

POWER

Host

Command

Environment”

on

page

25

describe

these

environments.

The

REXX/VSE

commands

perform

services,

such

as:

v

Performing

data

stack

services

(MAKEBUF,

DROPBUF,

QBUF,

QELEM,

NEWSTACK,

DELSTACK,

QSTACK)

v

Changing

characteristics

that

control

tracing

(immediate

commands

TE

and

TS)

Note:

See

“Immediate

Commands”

for

details

about

use

of

immediate

commands.

v

Checking

for

the

existence

of

a

host

command

environment

(SUBCOM).

Note:

The

names

of

the

REXX/VSE

commands

are

reserved.

It

is

recommended

that

you

do

not

use

these

names

for

names

of

your

REXX

programs

or

phases.

Immediate

Commands

The

immediate

commands

are:

v

HI

–

Halt

Interpretation

v

HT

–

Halt

Typing

v

RT

–

Resume

Typing

v

TE

–

Trace

End

v

TQ

–

Trace

Query.

v

TS

–

Trace

Start.

You

can

use

HI,

HT,

RT,

and

TQ

only

by

including

them

on

a

call

from

a

non-REXX

program

to

the

programming

interface

ARXIC.

You

can

use

TE

and

TS

by

including

them

in

a

REXX

program

or

specifying

them

on

a

call

to

ARXIC

from

a

non-REXX

program.

The

operator

can

send

a

message

to

a

particular

partition.

A

partition

that

is

running

a

REXX

program

ignores

the

message.

For

information

about

the

syntax

of

each

immediate

command,

see

the

description

of

the

command

in

this

chapter.

DELSTACK

��

DELSTACK

��

DELSTACK

deletes

the

most

recent

data

stack

NEWSTACK

has

created

and

all

elements

on

it.

If

a

new

data

stack

was

not

created,

DELSTACK

removes

all

the

elements

from

the

original

data

stack.

You

can

create

a

new

data

stack

with

NEWSTACK

and

delete

that

data

stack

with

DELSTACK.

Or

your

program

can

call

an

external

function

or

subroutine

that

is

written

in

REXX

and

includes

a

DELSTACK

command

to

delete

the

data

stack.

Examples:

©

Copyright

IBM

Corp.

1988,

2004

143

1.

To

create

a

new

data

stack

for

a

called

routine

and

delete

the

data

stack

when

the

routine

returns,

use

the

NEWSTACK

and

DELSTACK

commands

as

follows:

...

"NEWSTACK"

/*

data

stack

2

created

*/

CALL

sub1

"DELSTACK"

/*

data

stack

2

deleted

*/

...

EXIT

sub1:

PUSH

...

QUEUE

...

PULL

...

RETURN

2.

After

creating

multiple

new

data

stacks,

you

can

find

out

how

many

data

stacks

were

created

and

delete

all

but

the

original

data

stack

using

NEWSTACK,

QSTACK,

and

DELSTACK

as

follows:

"NEWSTACK"

/*

data

stack

2

created

*/

...

"NEWSTACK"

/*

data

stack

3

created

*/

...

"NEWSTACK"

/*

data

stack

4

created

*/

"QSTACK"

times

=

RC-1

/*

set

times

to

the

number

of

new

data

stacks

created

*/

DO

times

/*

delete

all

but

the

original

data

stack

*/

"DELSTACK"

/*

delete

one

data

stack

*/

END

DROPBUF

��

DROPBUF

n

��

DROPBUF

removes

the

most

recently

created

(with

MAKEBUF)

data

stack

buffer

and

all

elements

on

the

data

stack

in

the

buffer.

If

you

specify

n,

DROPBUF

removes

a

specific

data

stack

buffer

and

all

buffers

created

after

it.

Operands:

n

specifies

the

number

of

the

first

data

stack

buffer

you

want

to

drop.

DROPBUF

removes

the

specified

buffer

and

all

buffers

created

after

it.

Any

elements

that

were

placed

on

the

data

stack

after

the

specified

buffer

was

created

are

also

removed.

If

n

is

not

specified,

only

the

most

recently

created

buffer

and

its

elements

are

removed.

The

data

stack

initially

contains

one

buffer,

which

is

known

as

buffer

0.

This

buffer

is

never

removed

because

MAKEBUF

does

not

create

it.

DROPBUF

0

removes

all

buffers

that

were

created

on

the

data

stack

with

MAKEBUF

and

all

elements

that

were

put

on

the

data

stack.

DROPBUF

0

effectively

clears

the

data

stack

including

the

elements

on

buffer

0.

The

following

table

shows

how

DROPBUF

sets

the

REXX

special

variable

RC.

Return

Code

Meaning

0

DROPBUF

was

successful.

DELSTACK

144

REXX/VSE

Reference

Return

Code

Meaning

1

An

incorrect

number

n

was

specified.

For

example,

n

was

A1.

2

The

specified

buffer

does

not

exist.

For

example,

you

get

a

return

code

of

2

if

you

try

to

drop

a

buffer

that

does

not

exist.

Examples:

A

subroutine

(sub2)

in

a

REXX

program

issues

MAKEBUF

to

create

four

buffers.

Before

the

subroutine

returns,

it

removes

buffers

two

and

above

and

all

elements

within

the

buffers.

/*

REXX

program

*/

...

CALL

sub2

...

exit

sub2:

"MAKEBUF"

/*

buffer

1

created

*/

QUEUE

A

"MAKEBUF"

/*

buffer

2

created

*/

QUEUE

B

QUEUE

C

"MAKEBUF"

/*

buffer

3

created

*/

QUEUE

D

"MAKEBUF"

/*

buffer

4

created

*/

QUEUE

E

QUEUE

F

...

"DROPBUF

2"

/*

buffers

2

and

above

deleted

*/

RETURN

EXEC

��

EXec

pgm_name

string

��

EXEC

runs

a

REXX

program

in

the

active

PROC

chain.

Operands:

pgm_name

is

the

name

of

the

program.

It

is

8

characters

or

fewer.

string

is

an

argument

string.

The

langugage

processor

treats

this

as

a

single

argument.

The

string

is

optional.

See

page

25

for

examples.

DROPBUF

Chapter

10.

REXX/VSE

Commands

145

EXECIO

��

EXECIO

lines

*

�

�

DISKR

member_name

Read

Options

linenum

(1)

BYTES

bytesnum

(

STRTBYTE

strtnum

SYSIPT

linenum

(1)

RECSIZEn

(

SAM_filename

linenum

(1)

(2)

(

SAM

File

Options

DISKRU

member_name

Read

Options

linenum

(1)

BYTES

bytesnum

(

STRTBYTE

strtnum

SAM_filename

linenum

(1)

(2)

(

SAM

File

Options

DISKW

member_name

Write

Options

(3)

(1)

NODATA

(

DATA

STEM

var_name

BYTES

bytesnum

SYSLST

(1)

NOCC

(

CC

STEM

var_name

RECSIZE-n

MCC

ASA

SYSPCH

(1)

NOCC

(

CC

STEM

var_name

SAM_filename

(1)

(2)

(

SAM

File

Options

STEM

var_name

��

Read

Options:

FIFO

LIFO

STEM

var_name

SKIP

OPEN

FINIS

)

Write

Options:

OPEN

FINIS

)

SAM

File

Options:

BLKSIZEn

RECFORM

FIXUNB

FIXBLK

VARUNB

VARBLK

UNDEF

(4)

RECSIZE

n

Notes:

1 You

can

enter

the

options

between

the

parentheses

in

any

order.

2 SAM

files

require

additional

options

for

opening

a

file

explicitly

or

implicitly.

3 The

default

is

NODATA

for

a

new

member.

For

a

member

that

already

exists,

the

default

is

its

value

from

when

it

was

created.

EXECIO

146

REXX/VSE

Reference

4 RECSIZE

is

required

with

RECFORM

FIXUNB

or

RECFORM

FIXBLK;

do

not

use

it

with

other

types

of

record

formats.

EXECIO

controls

the

input

and

output

(I/O)

of

information

to

and

from

a

file.

Supported

operations

are

DISKR,

DISKW

and

DISKRU

(read

and

update).

EXECIO

can

read

or

write

data

on

the

program

stack

or

in

REXX

variables

directly.

You

can

use

EXECIO

for

I/O

tasks

such

as

copying

information

to

and

from

a

file

to

add,

delete,

or

update

information.

A

program

can

read

information

from

a

file

to

the

data

stack

for

serialized

processing

or

to

a

list

of

variables

for

random

processing.

A

program

can

write

information

from

the

data

stack

or

a

list

of

variables

to

a

file.

EXECIO

operates

on

the

following

types

of

files:

v

Sublibrary

members

of

any

type.

The

REXX

program

must

specify

the

full

name

of

the

member

on

the

EXECIO

command.

(The

full

name

consists

of

a

library

name,

sublibrary

name,

member

name,

and

member

type,

for

example:

mylib.mysublib.myfile.typea.)

An

example

of

reading

a

sublibrary

member

is

on

page

1

on

page

154.

Usually

library

members

have

a

logical

record

format

″fixed.″.

But

some

types,

for

example

DUMP,

PHASE,

have

a

logical

record

format

″string″.

In

this

case

the

member

consists

of

1

record

only

with

arbitrary

length.

v

SYSIPT

,

SYSLST,

and

SYSPCH.

These

names

are

reserved

words

on

the

EXECIO

command.

You

must

specify

DISKR

(not

DISKRU)

with

SYSIPT.

Note

that

REXX/VSE

reads

SYSIPT

data

until

encountering

an

end-of-file

indicator,

such

as

/*.

See

page

334

for

an

example

of

input

lines

in

SYSIPT.

If

a

REXX

program

is

invoked

from

a

nested

JCL

procedure,

EXECIO

from

SYSIPT

cannot

read

from

the

current

procedure.

v

SAM

files.

Only

SAM

files

on

disk

are

supported.

Before

using

EXECIO

to

perform

I/O

to

or

from

a

SAM

file,

you

need

to

assign

a

name

to

the

file.

You

do

this

by

using

DLBL

to

associate

the

file

with

a

file

name.

Accessing

SAM

files

requires

additional

options

on

the

EXECIO

command

that

are

not

needed

for

other

files.

See

page

152

for

details.

See

page

3

on

page

154

for

an

example.

Put

quotation

marks

around

any

operands,

such

as

DISKW,

STEM,

FINIS,

or

LIFO.

Operands:

lines

is

the

number

of

lines

to

be

processed.

This

operand

can

be

an

integer

or

*,

which

indicates

an

arbitrary

number.

When

the

operand

is

*

and

EXECIO

is

reading

from

a

file,

input

is

read

until

EXECIO

reaches

the

end

of

the

file.

If

you

specify

a

value

of

0,

no

I/O

operations

are

performed

unless

you

also

specify

OPEN

or

FINIS

or

both.

v

If

you

specify

OPEN

and

the

file

is

closed,

EXECIO

opens

the

file

but

does

not

read

or

write

any

lines.

If

you

specify

OPEN

and

the

file

is

open,

EXECIO

does

not

read

or

write

any

lines.

In

either

case,

if

you

are

reading

from

a

file

and

specify

a

nonzero

value

for

linenum,

EXECIO

sets

the

current

record

number

to

the

record

number

linenum

indicates.

Note:

The

current

record

number

is

the

number

of

the

next

record

EXECIO

will

read.

By

default,

the

current

record

number

is

set

to

the

first

record

when

a

file

is

opened.

However,

if

you

specify

OPEN

and

a

nonzero

value

for

linenum,

EXECIO

sets

the

current

record

number

to

the

record

number

linenum

indicates.

v

If

you

specify

FINIS

and

the

file

is

open,

EXECIO

does

not

read

or

write

any

lines,

but

it

closes

the

file.

If

you

specify

FINIS

and

the

file

is

not

already

open,

EXECIO

does

not

open

the

file

and

then

close

it.

v

If

you

specify

both

OPEN

and

FINIS,

EXECIO

processes

the

OPEN

first

and

then

the

FINIS.

EXECIO

Chapter

10.

REXX/VSE

Commands

147

When

EXECIO

writes

an

arbitrary

number

of

lines

from

the

data

stack,

it

stops

only

when

it

reaches

a

null

line.

If

there

is

no

null

line

on

the

data

stack

and

the

stack

becomes

empty,

EXECIO

continues

with

the

current

input

stream.

ASSGN(STDIN)

returns

the

name

of

the

current

input

stream.

When

end-of-file

is

reached,

EXECIO

ends.

When

EXECIO

writes

an

arbitrary

number

of

lines

from

a

list

of

compound

variables,

it

stops

when

it

reaches

a

null

value

or

an

uninitialized

variable

(one

that

has

not

been

assigned

a

value).

DISKR

opens

a

file

for

input

(if

it

is

not

already

open)

and

reads

the

specified

number

of

lines

from

the

file

and

places

them

on

the

data

stack.

If

you

specify

the

STEM

operand,

the

lines

are

placed

in

a

list

of

variables

instead

of

on

the

data

stack.

While

a

file

is

open

for

input,

you

cannot

write

information

back

to

the

same

file.

The

file

is

not

automatically

closed

unless:

v

The

task,

under

which

the

file

was

opened,

ends

v

The

last

language

processor

environment

associated

with

the

task,

under

which

the

file

was

opened,

is

terminated.

(See

Chapter

19,

“Language

Processor

Environments,”

on

page

391

for

information

about

language

processor

environments).

DISKRU

opens

a

file

for

update

(if

it

is

not

already

open)

and

reads

the

specified

number

of

lines

from

the

file

and

places

them

on

the

data

stack.

If

you

specify

the

STEM

operand,

the

lines

are

placed

in

a

list

of

variables

instead

of

on

the

data

stack.

While

a

file

is

open

for

update,

the

last

record

read

can

be

changed

and

then

written

back

to

the

file

with

a

corresponding

EXECIO

DISKW

command.

Typically,

you

open

a

file

for

update

when

you

want

to

change

information

in

the

file.

The

file

is

not

automatically

closed

unless:

v

The

task,

under

which

the

file

was

opened,

ends

v

The

last

language

processor

environment

associated

with

the

task,

under

which

the

file

was

opened,

is

terminated.

After

you

open

a

file

for

update

(by

issuing

a

DISKRU

as

the

first

operation

against

the

file),

you

can

use

either

DISKR

or

DISKRU

to

fetch

subsequent

records

for

update.

DISKW

opens

a

file

for

output

(if

it

is

not

already

open)

and

writes

the

specified

number

of

lines

to

the

file.

The

lines

are

from

the

data

stack

or,

if

you

specify

STEM

var_name,

from

a

list

of

variables.

You

can

use

the

DISKW

operand

to

write

information

to

a

different

file

from

the

one

opened

for

input,

or

to

update,

one

line

at

a

time,

the

same

file

opened

for

update.

When

you

write

data

to

a

library

member

with

logical

record

format

″string″

and

the

number

specified

with

option

BYTES

is

smaller

than

the

length

of

the

string

to

be

written,

then

the

data

is

truncated

and

the

return

code

is

set

to

1.

If

the

BYTES

number

is

greater

than

the

available

string

length,

only

the

available

number

of

bytes

is

written

and

the

return

code

is

set

to

zero.

When

a

file

is

open

for

update,

you

can

use

DISKW

to

rewrite

the

last

record

read.

The

lines

value

must

be

1

when

doing

an

update.

For

lines

values

greater

than

1,

the

user

receives

an

error

message

and

a

return

code

of

20,

and

the

program

is

ended.

Once

a

line

is

written,

the

program

cannot

rewrite

the

line;

attempting

to

do

so

causes

an

error.

When

a

file

with

logical

record

format

″string″

is

open

for

update,

you

can

use

DISKW

to

rewrite

the

latest

portion

read.

The

new

string

may

have

a

different

length

than

the

one

being

replaced.

No

padding

or

truncation

of

the

new

string

takes

place.

After

one

portion

of

the

record

has

been

updated,

the

attempt

to

write

another

portion

without

a

DISKRU

operation

in

between

causes

an

error.

The

file

is

not

automatically

closed

unless:

EXECIO

148

REXX/VSE

Reference

v

The

task,

under

which

the

file

was

opened,

ends.

v

The

last

language

processor

environment

associated

with

the

task,

under

which

the

file

was

opened,

is

terminated.

Notes:

1.

The

length

of

an

updated

line

is

set

to

the

length

of

the

line

it

replaces.

When

an

updated

line

is

longer

than

the

line

it

replaces,

information

that

extends

beyond

the

replaced

line

is

truncated.

When

information

is

shorter

than

the

replaced

line,

the

line

is

padded

with

blanks

to

the

original

line

length.

2.

You

can

read

a

DUMP

or

a

PHASE

either

as

a

whole

or

broken

up

into

portions

using

options

BYTES

and

STRTBYTE.

Writing

or

reading

for

update

of

a

PHASE

is

not

possible.

The

open

will

fail

with

return

code

20

and

error

messages

containing

LIBRM

OPEN

feedback

(code

236,

incorrect

phase

handling).

When

you

write

a

DUMP

or

other

string-type

members,

use

option

BYTES.

Otherwise,

the

library

member

is

defined

with

fixed

logical

record

format

and

only

80

bytes

of

the

first

record

will

be

written.

You

also

get

a

truncation

return

code

of

1.

member_name

SYSIPT

SYSLST

SYSPCH

SAM_filename

The

file

name

is

a

sublibrary

member,

SYSIPT,

SYSLST,

SYSPCH,

or

the

name

assigned

to

a

SAM

file.

The

name

of

a

sublibrary

member

is

in

the

format:

library.sublibrary.member.filetype.

For

input

or

output

to

a

SAM

file,

you

must

use

DLBL

to

assign

the

file

a

name

before

using

EXECIO.

The

DLBL

statement

can

either

refer

to

a

SAM-file

in

VSAM-managed

space,

or

directly

to

a

disk.

If

you

are

processing

a

file

directly

on

a

disk,

an

ASSGN

SYS007,cuu

is

necessary

for

DISKW

and

an

ASSGN

SYS006,cuu

for

DISKR

and

DISKRU.

linenum

is

the

line

number

in

the

file

at

which

EXECIO

is

to

begin

reading.

When

a

file

is

closed

and

reopened

because

of

specifying

a

record

number

preceding

the

current

record

number,

the

file

is

open

for:

v

input,

if

you

specify

DISKR

v

update,

if

you

specify

DISKRU.

When

a

file

is

open

for

input

or

update,

the

current

record

number

is

the

number

of

the

next

record

to

be

read.

When

linenum

specifies

a

record

number

earlier

than

the

current

record

number

in

an

open

file,

you

need

to

close

and

reopen

the

file

to

reposition

the

current

record

number

at

linenum.

When

this

occurs

and

the

file

was

not

opened

at

the

same

task

level

as

that

of

the

program

running,

trying

to

close

the

file

at

a

different

task

level

causes

an

EXECIO

error.

Do

not

use

the

linenum

operand

in

this

case.

Specifying

a

value

of

0

for

linenum

is

the

same

as

not

specifying

the

linenum

operand.

In

either

case,

EXECIO

begins

reading

the

file

as

follows:

v

If

the

file

was

already

opened,

EXECIO

begins

reading

with

the

line

following

the

last

line

that

was

read

v

If

the

file

was

just

opened,

EXECIO

begins

reading

with

the

first

line

of

the

file.

You

have

to

write

a

user

or

application

I/O

replaceable

routine

to

have

EXECIO

exploit

files

such

as

SYSIN,

SYSOUT,

SYSRDR,

or

SYSLOG.

EXECIO

DISKW

on

SYSLST

and

EXECIO

DISKR

from

SYSIPT

are

supported.

For

SYSLST

and

SYSIPT

you

do

not

need

to

specify

BLKSIZE,

RECSIZE,

or

the

RECFORM

options.

EXECIO

Chapter

10.

REXX/VSE

Commands

149

The

following

values

are

used:

File

name

BLKSIZE

RECSIZE

RECFORM

SYSLST

(option

CC)

121

121

FIXUNB

SYSLST

(otherwise)

256

256

FIXUNB

SYSPCH

81

81

FIXUNB

SYSIPT

128

128

FIXUNB

For

SYSLST

with

CC

option

specified,

a

record

greater

than

121

bytes

is

truncated

with

a

return

code

rc=1.

For

SYSLST

without

CC

option

specified,

a

record

greater

than

120

bytes

is

truncated

with

a

return

code

rc=1.

If

you

want

to

use

a

different

record

length

for

SYSLST,

you

can

specify

operand

RECSIZE

n

with

0<n<=256

(including

carriage

control

character).

In

this

case,

you

cannot

specify

option

CC.

For

SYSIPT,

if

a

record

size

smaller

than

128

bytes

is

desired,

you

can

specify

operand

RECSIZE

n

with

0<n<=128.

BYTES

bytesnum

If

you

want

to

process

(read

or

write)

a

library

member

of

type

″string″

in

separate

units,

specify

the

BYTES

operand

followed

by

the

number

of

bytes

you

want

to

handle

as

one

unit.

Smaller

units

require

less

storage

to

execute

the

command.

The

BYTES

operand

is

only

valid

for

library

members

with

logical

record

format

″string″.

If

you

store

(write)

a

new

library

member,

the

option

BYTES

implies

that

logical

record

format

″string″

is

used

for

this

library

member.

STRTBYTE

strtnum

Specifies

a

byte

number

within

a

library

member

of

logical

record

format

″string″.

STRTBYTE

specifies

the

byte

number

where

reading

is

to

start.

It

is

only

valid

together

with

operand

BYTES.

Note

that

changing

the

position

where

reading

should

continue

is

always

accompanied

by

an

implicit

close

and

re-open

of

the

file.

Notes:

1.

You

can

read

a

DUMP

or

a

PHASE

either

as

a

whole

or

broken

up

into

portions

using

options

BYTES

and

STRTBYTE.

2.

Writing

or

reading

for

update

of

a

PHASE

is

not

possible.

The

open

will

fail

with

return

code

20

and

error

messages

containing

LIBRM

OPEN

feedback

(code

236,

incorrect

phase

handling).

3.

When

you

write

a

DUMP

or

other

string-type

members,

use

option

BYTES.

Otherwise,

the

library

member

is

defined

with

fixed

logical

record

format

and

only

80

bytes

of

the

first

record

will

be

written.

You

also

get

a

truncation

return

code

of

1.

FINIS

closes

the

file

after

EXECIO

completes.

You

can

close

a

file

only

if

it

was

opened

at

the

same

task

level

as

the

program

issuing

EXECIO.

You

can

use

FINIS

with

a

lines

value

of

0

to

have

EXECIO

close

an

open

file

without

first

reading

or

writing

a

record.

The

language

processor

environment

is

terminated

after

the

end

of

a

step

in

a

batch

job

that

called

REXX.

Therefore,

all

files

a

REXX

program

opens

are

typically

closed

automatically

when

the

top

level

program

ends.

However,

it

is

a

good

programming

practice

to

explicitly

close

all

files

when

finished

with

them.

OPEN

opens

the

specified

file

if

it

is

not

already

open.

For

reading

from

a

file,

you

can

use

OPEN

with

a

lines

value

of

0

to

have

EXECIO

do

one

of

the

following:

v

Open

a

file

without

reading

any

records

EXECIO

150

REXX/VSE

Reference

v

Set

the

current

record

number

(that

is,

the

number

of

the

next

record

EXECIO

will

read)

to

the

record

number

the

linenum

operand

indicates,

by

specifying

a

value

for

linenum.

For

writing

to

a

file,

you

must

use

OPEN

with

a

lines

value

of

0

to

have

EXECIO

open

a

file

without

writing

any

records.

NODATA

DATA

This

option

is

valid

only

for

DISKW

and

is

required

only

for

opening

a

member

of

a

sublibrary.

(It

is

ignored

for

other

types

of

files.)

NODATA

indicates

the

sublibrary

member

does

not

contain

SYSIPT

DATA.

DATA

indicates

the

sublibrary

member

contains

SYSIPT

DATA.

The

default

is

NODATA

for

a

new

member.

For

a

member

that

already

exists,

the

default

is

its

value

from

when

it

was

created.

CC

NOCC

MCC

ASA

CC,

NOCC,

MCC,

and

ASA

are

valid

only

with

SYSLST.

CC,

MCC,

and

ASA

indicate

treating

the

first

character

as

a

carriage

control

character.

(The

first

character

must

be

a

valid

American

Standards

Association

(ASA)

or

machine

control

character.

See

the

VSE/ESA

System

Macros

Reference

for

a

list

of

valid

carriage

control

characters.)

NOCC

indicates

that

EXECIO

provides

carriage

control

for

the

next

line.

NOCC

is

the

default.

You

can

use

CC,

MCC,

ASA,

or

NOCC

for

each

single

I/O

request.

This

means

your

program

can

contain

multiple

EXECIO

commands

with

different

control

character

options

for

SYSLST.

STEM

var_name

specifies

the

stem

of

the

list

of

variables

into

which

to

place

information

or

from

which

to

write

information.

Compound

variables

permit

indexing.

To

use

compound

variables,

make

sure

the

var_name

ends

with

a

period,

for

example,

myvar..

If

you

specify

*

as

the

number

of

lines

to

write,

EXECIO

stops

writing

information

to

the

file

when

it

finds

a

null

line

or

an

uninitialized

compound

variable.

For

example,

if

the

list

contains

10

compound

variables,

EXECIO

stops

at

myvar.11.

In

the

following

example,

the

list

of

compound

variables

has

the

stem

myvar.

and

lines

of

information

(records)

are

placed

in

variables

myvar.1,

myvar.2,

myvar.3,

and

so

forth.

"EXECIO

*

DISKR

MYLIB.MYSUB.MYFILE.TYPEA

(FINIS

STEM

MYVAR."

For

reading

from

a

file,

the

number

of

variables

in

the

list

is

placed

in

myvar.0.

Suppose

10

lines

of

information

are

read

into

the

myvar.

variables.

Then

myvar.0

contains

the

number

10

(indicating

that

10

records

are

read),

and

myvar.1

contains

record

1,

myvar.2

contains

record

2,

and

so

forth

up

to

myvar.10,

which

contains

record

10.

All

stem

variables

beyond

myvar.10

(that

is,

myvar.11,

myvar.12,

and

so

on)

are

residual

and

contain

the

value

that

was

specified

before

issuing

the

EXECIO

command.

To

avoid

confusion

about

whether

a

residual

stem

variable

value

is

meaningful,

you

may

want

to

clear

the

entire

stem

variable

before

issuing

the

EXECIO

command.

To

clear

all

compound

variables

whose

names

begin

with

a

particular

stem,

you

can:

v

Use

the

DROP

instruction

(for

example,

DROP

myvar.)

to

set

all

possible

compound

variables

whose

names

begin

with

that

stem

to

the

values

of

their

own

names

in

uppercase.

v

Use

an

assignment

to

set

all

possible

compound

variables

whose

names

begin

with

that

stem

to

nulls

(for

example,

myvar.

=

’’).

Example

5

on

page

154

shows

using

EXECIO

with

stem

variables,

and

example

15

on

page

157

illustrates

the

effect

of

residual

data.

EXECIO

Chapter

10.

REXX/VSE

Commands

151

When

writing

an

arbitrary

number

of

lines

from

a

file,

var_name.0

has

no

effect

on

controlling

the

number

of

lines

written.

Note:

For

reading

from

a

file,

if

var_name

does

not

end

with

a

period,

the

variable

names

must

be

appended

with

numbers,

but

an

index

in

a

loop

cannot

access

them.

For

writing

to

a

file,

if

var_name

does

not

end

with

a

period,

the

variable

names

must

be

appended

with

consecutive

numbers,

such

as

myvar1,

myvar2,

myvar3.

Read

Options

FIFO

places

information

on

the

data

stack

in

FIFO

(first

in

first

out)

order.

FIFO

is

the

default.

LIFO

places

information

on

the

data

stack

in

LIFO

(last

in

first

out)

order.

SKIP

reads

the

specified

number

of

lines

but

does

not

place

them

on

the

data

stack

or

in

variables.

When

the

number

of

lines

is

*,

EXECIO

skips

to

the

end

of

the

file.

Additional

Options

Required

for

SAM

Files

Accessing

SAM

files

requires

additional

information

that

is

not

needed

for

other

files.

Block

size,

record

format,

and

(for

certain

record

formats)

record

size

are

necessary

for

opening

a

file

explicitly

or

implicitly

(for

example,

to

perform

positioning

within

a

file).

You

specify

this

information

in

the

following

additional

options

on

the

EXECIO

command.

These

options

are

required

whenever

a

file

is

opened.

A

file

is

opened

explicitly

if

you

specify

the

OPEN

option.

It

is

opened

implicitly

if:

v

The

file

is

not

currently

open.

v

You

switch

from

input

processing

(DISKR)

to

outprocessing

(DISKRU

or

DISKW)

or

from

output

processing

to

input

processing.

v

linenum

specifies

a

record

number

that

precedes

the

current

record

number.

BLKSIZE

n

specifies

the

block

size

of

the

file.

The

maximum

size

is

32761.

See

VSE/ESA

System

Macros

User’s

Guide

for

details

about

the

block

size.

RECFORM

FIXUNB

RECFORM

FIXBLK

RECFORM

VARUNB

RECFORM

VARBLK

RECFORM

UNDEF

specifies

whether

the

record

format

is

fixed

unblocked,

fixed

blocked,

variable

unblocked,

variable

blocked,

or

undefined.

RECSIZE

n

specifies

the

record

size.

This

is

required

for

FIXUNB

and

FIXBLK

format

records.

Do

not

use

RECSIZE

for

other

record

formats.

Records

are

blank-extended

if

they

are

too

short.

If

the

records

are

too

long,

EXECIO

ends

with

an

error.

Closing

Files

If

you

specify

FINIS

on

EXECIO,

the

file

is

closed

after

EXECIO

completes

processing.

If

you

do

not

specify

FINIS,

the

file

is

closed:

v

When

the

task,

under

which

the

file

was

opened,

is

terminated,

or

v

When

the

last

language

processor

environment

associated

with

the

task,

under

which

the

file

was

opened,

is

terminated

(even

if

the

task

itself

is

not

terminated).

v

Before

a

file

is

implicitly

opened.

EXECIO

152

REXX/VSE

Reference

Whenever

the

file

in

VSAM-managed

space

is

closed

or

opened

(explicitly

or

implicitly)

the

file

is

processed

according

the

open

and

close

disposition

on

the

DLBL

statement,

that

is,

the

file

may

be

defined,

allocated,

reset,

or

deleted.

The

initial

positioning

is

handled

according

to

the

open

disposition.

In

general,

when

a

REXX

program

is

called,

any

files

that

the

program

opens

are

closed

when

the

top-level

program

completes.

For

example,

suppose

you

are

running

a

program

(top-level

program)

that

calls

another

program.

The

second

program

uses

EXECIO

to

open

a

file

and

then

returns

control

to

the

first

program

without

closing

the

file.

The

file

is

still

open

when

the

top-level

program

regains

control.

The

top-level

program

can

then

read

the

same

file

continuing

from

the

point

where

the

nested

program

finished

EXECIO

processing.

When

the

top-level

program

ends,

the

file

is

automatically

closed.

(Example

12

on

page

156

illustrates

this.)

EXECIO

Input

Checking

The

EXECIO

options

CC,

NOCC,

DATA,

NODATA,

BLKSIZE,

RECFORM,

and

RECSIZE

are

ignored

if

they

are

specified

differently

than

described

in

the

EXECIO

syntax

diagram.

For

example,

if

you

specify

EXECIO

*

DISKR

SYSIPT

5

(CC

the

CC

option

is

ignored.

EXECIO

only

does

a

minimum

of

input

checking.

It

is

your

reponsibility

to

correctly

set

up

the

input

parameters.

EXECIO

uses

the

DTFDI,

the

DTFCP,

or

the

DTFPR

for

SYSIPT,

SYSLST,

and

SYSPCH,

and

the

DTFSD

for

all

other

SAM

filenames.

Refer

to

the

manuals

VSE/ESA

System

Macros

User’s

Guide

and

VSE/ESA

System

Macros

Reference

for

details

about

DTFSD

and

DTFDI.

EXECIO

takes

care

of

the

8

extra

bytes

required

for

output

by

the

DTFSD

macro

for

the

BLKSIZE

parameter.

For

example,

if

you

use

BLKSIZE

4096

to

write

a

record

you

use

BLKSIZE

4096

to

read

the

record.

The

largest

size

you

can

specify

with

the

RECSIZE

or

BLKSIZE

parameter

in

REXX/VSE

is

32761.

REXX

procedures

using

EXECIO

to

access

library

members

may

cause

unusable

library

blocks

if

they

are

canceled.

Use

the

librarian

TEST

command

to

restore

those

blocks.

An

EXECIO

return

code

rc=20

may

have

various

reasons,

for

example

1.

partition

storage

may

be

exhausted.

Try

a

failing

procedure

in

a

larger

partition.

2.

a

library

member

which

is

not

accessible

may

be

already

opened

by

another

partition.

3.

end

of

extent

has

been

reached.

4.

a

WRITE

was

issued

for

a

file

opened

for

READ.

Message

ARX0565I

may

provide

you

with

additional

information

why

the

EXECIO

command

failed.

Return

Codes

The

following

table

shows

how

EXECIO

sets

the

REXX

special

variable

RC.

Return

Code

Meaning

0

Successful

completion

of

requested

operation

1

Data

was

truncated

during

DISKW

operation

2

End-of-file

reached

before

the

specified

number

of

lines

were

read

during

a

DISKR

or

DISKRU

operation.

This

does

not

occur

if

you

use

*

for

number

of

lines

because

the

remainder

of

the

file

is

always

read.

For

a

member

of

a

sublibrary,

this

return

code

may

indicate

the

file

is

empty.

EXECIO

Chapter

10.

REXX/VSE

Commands

153

Return

Code

Meaning

20

Severe

error.

EXECIO

completed

unsuccessfully

and

a

message

is

issued.

For

a

SAM

file:

v

The

file

may

not

exist

v

You

may

have

specified

a

record

format,

block

size,

or

record

size

that

does

not

match

the

file

v

A

new

file

could

not

be

defined.

Examples:

1.

This

example

reads

from

a

sublibrary

member.

The

EXECIO

command

reads

an

entire

PROC

member

into

INPUT.1,

INPUT.2,

and

so

on,

and

closes

the

file

when

done.

’EXECIO

*

DISKR

LIBNAME.SUBLIB.MEMBER.PROC

(STEM

INPUT.

FINIS’

2.

This

example

reads

one

line

from

SYSIPT

and

puts

it

on

the

stack

in

LIFO

order.

The

EXECIO

command

does

not

close

the

file.

’EXECIO

1

DISKR

SYSIPT

(LIFO’

3.

This

example

writes

to

a

SAM

file.

You

must

previously

use

DLBL,

for

example

//

DLBL

FILE01,’MY.OUTPUT.FILE’

//

EXTENT

,SYSWK1,,,13260,15

//

ASSGN

SYS007,231

to

assign

a

name

(FILE01)

to

the

file:

’EXECIO

*

DISKW

FILE01

(STEM

SAMFILE.

BLKSIZE

64

RECFORM

FIXBLK’

,

’RECSIZE

64’

The

file

definition

above

refers

to

a

specific

disk

location.

Or

you

can

specify

the

DLBL

within

your

REXX

procedure:

ADDRESS

JCL

"//DLBL

FILE01,’MY.OUTPUT.FILE’,,VSAM,CAT=VSESPUC,"

||

,

"RECSIZE=65,RECORDS=(10,5),DISP=(NEW,KEEP)"

ADDRESS

JCL

"/*"

’EXECIO

*

DISKW

FILE01

(STEM

SAMFILE.

BLKSIZE

64

RECFORM

FIXBLK’

,

’RECSIZE

64’

Here

the

file

definition

refers

to

a

SAM-file

in

VSAM-managed

space.

4.

This

example

copies

an

entire

existing

SAM

file

named

USERID.MY.INPUT

into

a

member

of

an

existing

library

named

DEPT5.MEMO.MAR2.TEXT.

You

must

previously

use

DLBL

(for

example,

//

DLBL

MYIPT,’USERID.MY.INPUT’)

to

assign

a

name

(MYINPUT)

to

the

file

USERID.MY.INPUT.

The

library

member

DEPT5.MEMO.MAR22.TEXT

does

not

need

any

previous

DLBL.

"NEWSTACK"

/*

Create

a

new

data

stack

for

input

only

*/

"EXECIO

*

DISKR

MYINPUT

(FINIS

BLKSIZE

64

RECFORM

FIXUNB

RECSIZE

64"

QUEUE

’’

/*

Add

a

null

line

to

indicate

the

end

of

information

*/

"EXECIO

*

DISKW

DEPT5.MEMO.MAR22.TEXT

(FINIS"

"DELSTACK"

/*

Delete

the

new

data

stack

*/

5.

This

example

copies

an

arbitrary

number

of

lines

from

an

existing

SAM

file,

USERID.TOTAL.DATA,

into

a

list

of

compound

variables.

DATA.

is

the

stem.

You

must

previously

use

//

DLBL

ALLDATA,’USERID.TOTAL.DATA’

to

assign

the

name

ALLDATA

to

the

file

USERID.TOTAL.DATA.)

ARG

lines

"EXECIO"

lines

"DISKR

ALLDATA

(STEM

data.

BLKSIZE

64

RECFORM

FIXUNB

RECSIZE

64"

SAY

data.0

’records

were

read.’

6.

This

example

updates

the

second

line

in

file

DEPT5.EMPLOYEE.LIST.

(You

must

previously

use

//DLBL

EMPLIST,’DEPT5.EMPLOYEE.LIST’)

to

assign

the

name

EMPLIST

to

the

file.

EXECIO

154

REXX/VSE

Reference

"EXECIO

1

DISKRU

EMPLIST

2

(BLKSIZE

400

RECFORM

FIXBLK

RECSIZE

80"

PULL

line

PUSH

’Crandall,

Amy

AMY

5500’

"EXECIO

1

DISKW

EMPLIST

(FINIS"

7.

This

example

reads

from

a

SAM

file

to

find

the

first

occurrence

of

the

string

″Jones″.

(You

must

previously

use

DLBL

to

associate

the

sequential

file

with

the

file

name,

INPUT.)

The

program

ignores

upper

and

lowercase

distinctions.

The

example

demonstrates

how

to

read

and

search

one

record

at

a

time.

For

better

performance,

you

can

read

all

records

to

the

data

stack

or

to

a

list

of

variables,

search

them,

and

then

return

the

updated

records.

done

=

’no’

lineno

=

0

DO

WHILE

done

=

’no’

"EXECIO

1

DISKR

INPUT

(BLKSIZE

100

RECFORM

FIXBLK

RECSIZE

100"

IF

RC

=

0

THEN

/*

Record

was

read

*/

DO

PULL

record

lineno

=

lineno

+

1

/*

Count

the

record

*/

IF

INDEX(record,’JONES’)

¬=

0

THEN

DO

SAY

’Found

in

record’

lineno

done

=

’yes’

SAY

’Record

=

’

record

END

ELSE

NOP

END

ELSE

done

=

’yes’

END

"EXECIO

0

DISKR

INPUT

(FINIS"

EXIT

0

8.

This

program

copies

records

from

the

SAM

file

MY.INPUT.DATA

to

MY.OUT.DATA.

(You

must

previously

use

DLBL

to

assign

MY.INPUT.DATA

the

name

INFILE

and

assign

MY.OUT.DATA

the

name

OUTFILE.)

The

program

assumes

that

the

input

file

has

no

null

lines.

SAY

’Copying

...’

"EXECIO

*

DISKR

INFILE

(FINIS

BLKSIZE

64

RECFORM

VARBLK"

QUEUE

’’

/*

Insert

a

null

line

at

the

end

to

indicate

end

of

file

*/

"EXECIO

*

DISKW

OUTFILE

(FINIS

BLKSIZE

64

RECFORM

VARBLK"

SAY

’Copy

complete.’

EXIT

0

9.

This

program

starts

at

the

third

record

and

reads

five

records

from

a

SAM

file

to

which

you

have

assigned

the

name

MYINPUT.

It

strips

trailing

blanks

from

the

records

and

then

writes

any

record

that

is

longer

than

20

characters.

The

file

is

not

closed

when

the

program

is

finished.

"EXECIO

5

DISKR

MYINPUT

3

(BLKSIZE

64

RECFORM

VARBLK"

DO

i

=

1

to

5

PARSE

PULL

line

stripline

=

STRIP(line,t)

len

=

LENGTH(stripline)

IF

len

>

20

THEN

SAY

’Line’

stripline

’is

long.’

ELSE

NOP

END

/*

The

file

is

still

open

for

processing

*/

EXIT

0

EXECIO

Chapter

10.

REXX/VSE

Commands

155

10.

This

program

reads

the

first

100

records

(or

until

EOF)

of

the

SAM

file

assigned

the

name

INVNTOR.

It

places

records

on

the

data

stack

in

LIFO

order.

It

issues

a

message

about

the

result

of

the

EXECIO

operation.

eofflag

=

2

/*

Return

code

to

indicate

end

of

file

*/

"EXECIO

100

DISKR

INVNTOR

(LIFO

BLKSIZE

80

RECFORM

VARBLK

FINIS"

return_code

=

RC

IF

return_code

=

eofflag

THEN

SAY

’Premature

end

of

file.’

ELSE

SAY

’100

Records

read.’

DROPBUF

0

EXIT

return_code

11.

This

program

erases

any

existing

data

from

the

SAM

file

FRED.WORKSET.FILE

by

opening

the

file

and

then

closing

it

without

writing

any

records.

Doing

this

means

EXECIO

simply

writes

an

end-of-file

marker,

which

erases

any

existing

records

in

the

file.

(You

must

previously

use

DLBL

to

assign

FRED.WORKSET.FILE

the

name

NAMES.)

/*

Open

the

file

for

writing,

but

do

not

write

a

record.

*/

"EXECIO

0

DISKW

NAMES

(OPEN

BLKSIZE

64

RECFORM

VARBLK"

/*

Close

the

file.

This

completes

erasing

any

existing

records

*/

"EXECIO

0

DISKW

NAMES

(FINIS"

Note

that

in

this

example,

EXECIO

...

(OPEN

followed

by

the

EXECIO

...

(FINIS

is

equivalent

to:

"EXECIO

0

DISKW

NAMES

(OPEN

FINIS

BLKSIZE

64

RECFORM

VARBLK"

12.

The

next

example

includes

two

programs.

The

first

(top-level)

program,

PROG1,

calls

PROG2.

PROG2

opens

the

file,

reads

the

first

three

records,

and

then

returns

control

to

PROG1.

Note

that

PROG2

does

not

specify

FINIS

on

EXECIO,

so

the

file

remains

open.

When

the

PROG1

regains

control,

it

issues

EXECIO

and

gets

the

fourth

record

because

the

file

is

still

open.

If

PROG2

had

specified

FINIS

on

EXECIO,

PROG1

would

have

read

the

first

record.

In

the

example,

both

programs

run

at

the

same

task

level.

/*

PROG1

--

This

program

calls

PROG2

to

open

a

file.

*/

/*

The

file

is

a

SAM

file,

and

you

must

use

DLBL

to

*/

/*

assign

it

a

name

before

using

EXECIO;

for

example:

*/

/*

//

DLBL

myinput,’userid.my.input’

*/

/*

PROG1

then

continues

reading

the

same

file.

*/

say

’Executing

the

first

program

PROG1’

/*

*/

/*

Now

call

PROG2

to

open

the

file.

*/

/*

This

program

uses

a

CALL

instrucion

to

call

the

second

program.

*/

/*

The

REXX/VSE

EXEC

command

would

have

the

same

result.

*/

/*

*/

/*

If

PROG2

opens

a

file

and

does

not

close

the

file

before

*/

/*

returning

control

to

PROG1,

the

file

remains

open

when

*/

/*

control

is

returned

to

PROG1.

*/

/*

*/

say

’Calling

the

second

program

PROG2’

call

prog2

/*

Call

PROG2

to

open

file

*/

say

’Now

back

from

the

second

program

PROG2.

Issue

another

EXECIO.’

"EXECIO

1

DISKR

MYINPUT

(STEM

Z.

/*

EXECIO

reads

record

4

*/

say

z.1

say

’Now

close

the

file’

"EXECIO

0

DISKR

MYINPUT

(FINIS"

/*

Close

file

so

it

can

be

freed

*/

EXIT

0

/*

PROG2

--

This

program

opens

the

file

MYINPUT,

reads

3

records,

*/

/*

and

returns

control

to

PROG1

without

closing

the

file.

*/

/*

*/

say

"Now

in

the

second

program

PROG2"

EXECIO

156

REXX/VSE

Reference

DO

I

=

1

to

3

/*

Read

and

produce

first

3

records

*/

"EXECIO

1

DISKR

MYINPUT

(STEM

Y.

BLKSIZE

120

RECFORM

VARUNB"

say

y.1

END

Say

’Leaving

second

program

PROG2.

Three

records

were

read

from

file.’

RETURN

13.

This

program

opens

the

SAM

file

MY.INVNTORY

without

reading

any

records.

The

program

then

uses

a

main

loop

to

read

records

from

the

file

and

process

the

records.

(You

must

have

previously

used

DLBL

to

assign

the

file

the

name

INPUT

and

to

assign

MY.AVAIL.FILE

the

name

OUTPUT.)

/*

Open

INPUT

file

for

input,

but

do

not

read

any

records

*/

"EXECIO

0

DISKR

INPUT

(OPEN

BLKSIZE

100

RECFORM

FIXBLK

RECSIZE

100"

eof

=

’NO’

/*

Initialize

end-of-file

flag

*/

avail_count

=

0

/*

Initialize

counter

*/

DO

WHILE

eof

=

’NO’

/*

Loop

till

EOF

of

input

file

*/

"EXECIO

1

DISKR

INPUT

(STEM

LINE."

/*

Read

a

line

*/

IF

RC

=

2

THEN

/*

If

end

of

file

is

reached,

*/

eof

=

’YES’

/*

set

end-of-file

(eof)

flag;

*/

ELSE

/*

otherwise,

a

record

is

read.

*/

DO

IF

INDEX(line.1,’AVAILABLE’)

THEN

/*

Look

for

records

*/

/*

marked

"available"

*/

DO

/*

"Available"

record

found

*/

/*

Write

record

to

available

file

*/

"EXECIO

1

DISKW

OUTPUT

(STEM

LINE.

BLKSIZE

100

RECFORM

FIXBLK

RECSIZE

100"

avail_count

=

avail_count

+

1

/*

Increment

"available"

counter

*/

END

END

END

"EXECIO

0

DISKR

INPUT

(FINIS"

/*

Close

currently

open

INPUT

file.

*/

"EXECIO

0

DISKW

OUTPUT

(FINIS"

/*

Close

OUTPUT

file

if

currently

open.

*/

/*

If

OUTPUT

file

is

not

open,

*/

/*

EXECIO

has

no

effect.

*/

EXIT

0

14.

This

program

opens

SYSIPT

and

sets

the

current

record

number

to

record

8

so

that

the

next

EXECIO

DISKR

command

begins

reading

at

the

eighth

record.

"EXECIO

0

DISKR

SYSIPT

8

(OPEN"

/*

Open

file

SYSIPT

for

input

and

set

current

record

number

to

8.

*/

CALL

READ_NEXT_RECORD

/*

Call

subroutine

to

read

record

on

to

the

data

stack.

The

next

record

EXECIO

reads

is

record

8

because

the

previous

EXECIO

set

the

current

record

number

to

8.

*/

"EXECIO

0

DISKR

SYSIPT

(FINIS"

/*

Close

the

SYSIPT

file.

*/

EXIT

read_next_record:

"EXECIO

1

DISKR

SYSIPT

(STEM

Z."

say

z.1

return

15.

This

program

uses

EXECIO

to

successively

append

the

records

from

SAMPLE1.DATA

and

then

from

SAMPLE2.DATA

to

the

end

of

the

file

ALL.SAMPLE.DATA.

It

illustrates

the

effect

of

residual

data

in

EXECIO

Chapter

10.

REXX/VSE

Commands

157

STEM

variables.

SAMPLE1.DATA

contains

20

records;

SAMPLE2.DATA

contains

10

records.

(You

must

previously

use

DLBL

to

assign

SAMPLE1.DATA

the

name

IN1,

SAMPLE2.DATA

the

name

IN2,

and

ALL.SAMPLE.DATA

the

name

OUT.)

/***/

/*

Read

all

records

from

IN1

and

append

them

to

the

*/

/*

end

of

OUT.

*/

/***/

program_RC

=

0

/*

Initialize

exec

return

code

*/

/*

Read

all

records

*/

"EXECIO

*

DISKR

IN1

(STEM

NEWVAR.

FINIS

BLKSIZE

80

RECFORM

VARBLK"

if

rc

=

0

then

/*

If

read

was

successful

*/

do

/***/

/*

At

this

point,

newvar.0

should

be

20,

indicating

20

records

*/

/*

have

been

read.

Stem

variables

newvar.1,

newvar.2,

and

so

on

*/

/*

through

newvar.20

contain

the

20

records

that

were

read.

*/

/***/

say

"---"

say

newvar.0

"records

have

been

read

from

first

input

file."

say

do

i

=

1

to

newvar.0

/*

Loop

through

all

records

*/

say

newvar.i

/*

Produce

the

ith

record

*/

end

/*

Write

exactly

the

number

of

records

read

*/

"EXECIO"

newvar.0

"DISKW

OUT

(STEM

NEWVAR.

BLKSIZE

80

RECFORM

VARBLK"

if

rc

=

0

then

/*

If

write

was

successful

*/

do

say

say

newvar.0

"records

were

written

to

the

output

file."

end

else

do

program_RC

=

RC

/*

Save

program_return

code

*/

say

say

"Error

during

1st

EXECIO

...

DISKW,

return

code

is

"

RC

say

end

end

else

do

program_RC

=

RC

/*

Save

program_return

code

*/

say

say

"Error

during

1st

EXECIO

...

DISKR,

return

code

is

"

RC

say

end

If

program_RC

=

0

then

/*

If

no

errors

so

far...

continue

*/

do

/***/

/*

At

this

time,

the

stem

variables

newvar.0

through

newvar.20

*/

/*

contain

residual

data

from

the

previous

EXECIO.

*/

/*

The

"DROP

newvar."

instruction

clears

these

residual

*/

/*

values

from

the

stem.

*/

/***/

DROP

newvar.

/*

Set

all

stems

variables

to

their

*/

/*

uninitialized

state

*/

/***/

/*

Read

all

records

from

IN2

and

append

them

to

the

*/

/*

end

of

OUTPUT.

*/

/***/

/*Read

all

records*/

"EXECIO

*

DISKR

IN2

(STEM

NEWVAR.

FINIS

BLKSIZE

80

RECFORM

VARBLK"

EXECIO

158

REXX/VSE

Reference

if

rc

=

0

then

/*

If

read

was

successful

*/

do

/***/

/*

Now

newvar.0

should

be

10,

indicating

10

records

have

*/

/*

been

read.

Stem

variables

newvar.1

through

newvar.10

*/

/*

contain

the

10

records.

If

we

had

not

cleared

*/

/*

the

stem

newvar.

with

the

previous

DROP

instruction,

*/

/*

variables

newvar.11

through

newvar.20

would

still

*/

/*

contain

records

11

through

20

from

the

first

file.

*/

/*

However,

we

would

know

that

the

last

EXECIO

DISKR

did

*/

/*

not

read

these

values

because

the

current

newvar.0

*/

/*

variable

indicates

the

last

EXECIO

read

only

10

records.

*/

/***/

say

say

say

"---"

say

newvar.0

"records

have

been

read

from

second

input

file."

say

do

i

=

1

to

newvar.0

/*

Loop

through

all

records

*/

say

newvar.i

/*

Produce

the

ith

record

*/

end

/*

Write

exactly

the

number

of

records

read

*/

"EXECIO"

newvar.0

"DISKW

OUT

(STEM

NEWVAR.

BLKSIZE

80

RECFORM

VARBLK"

if

rc

=

0

then

/*

If

write

was

successful

*/

do

say

say

newvar.0

"records

were

written

to

output

file."

end

else

do

program_RC

=

RC

/*

Save

exec_return

code

*/

say

say

"Error

during

2nd

EXECIO

...DISKW,

return

code

is

"

RC

say

end

end

else

do

program_RC

=

RC

/*

Save

program_return

code

*/

say

say

"Error

during

2nd

EXECIO

...

DISKR,

return

code

is

"

RC

say

end

end

/*

Close

output

file

*/

"EXECIO

0

DISKW

OUT

(FINIS

BLKSIZE

80

RECFORM

VARBLK"

exit

0

16.

This

example

reads

bytes

100

to

199

from

a

dump

file,

inserts

string

″REXX_CHANGE″,

and

rewrites

the

dump.

’EXECIO

1

DISKRU

SYSDUMP.BG.DBG00000.DUMP

(STEM

DUMP.

BYTES

100’,

’STRBYTE

100

OPEN’

dump.1

=

’REXX_CHANGE’

||

dump.1

’EXECIO

1

DISKW

SYSDUMP.BG.DBG00000.DUMP

(STEM

dump.

BYTES

111’,

’FINIS’

EXECIO

Chapter

10.

REXX/VSE

Commands

159

HI

��

HI

��

Note:

This

immediate

command

is

available

only

from

an

application

program.

You

specify

HI

on

a

call

to

ARXIC

(see

page

365)

from

a

non-REXX

program.

HI

(Halt

Interpretation)

is

an

immediate

command

that

halts

the

interpretation

of

all

currently

running

programs.

HI

is

available

only

if

a

program

is

running.

After

HI,

program

processing

ends

or

control

passes

to

a

routine

or

label

if

the

halt

condition

trap

has

been

turned

on

in

the

program.

For

example,

if

the

program

contains

a

SIGNAL

ON

HALT

instruction

and

HI

interrupts

processing,

control

passes

to

the

HALT:

label

in

the

program.

See

Chapter

7,

“Conditions

and

Condition

Traps”

for

information

about

the

HALT

condition.

HT

��

HT

��

Note:

This

immediate

command

is

available

only

from

an

application

program.

You

specify

it

in

a

call

to

ARXIC

(see

page

365)

from

a

non-REXX

program.

HT

(Halt

Typing)

is

an

immediate

command

that

suppresses

output

that

a

program

generates.

The

HT

immediate

command

is

available

only

if

a

program

is

running.

After

HT,

the

program

that

is

running

continues

processing,

but

the

only

output

written

to

the

current

output

device

is

output

from

commands

that

the

program

issues.

All

other

output

from

the

program

is

suppressed.

MAKEBUF

��

MAKEBUF

��

MAKEBUF

creates

a

new

buffer

on

the

data

stack.

Initially,

the

data

stack

contains

one

buffer,

which

is

known

as

buffer

0.

You

can

create

additional

buffers

by

using

MAKEBUF.

MAKEBUF

returns

the

number

of

the

buffer

it

has

created

in

the

REXX

special

variable

RC.

For

example,

the

first

time

a

program

issues

MAKEBUF,

it

creates

the

first

buffer

and

returns

a

1

in

the

special

variable

RC.

The

second

time

a

program

issues

MAKEBUF,

it

creates

another

buffer

and

returns

a

2

in

the

special

variable

RC.

The

following

table

shows

how

MAKEBUF

sets

the

REXX

special

variable

RC.

Return

Code

Meaning

1

A

single

additional

buffer

after

the

original

buffer

0

now

exists

on

the

data

stack.

HI

160

REXX/VSE

Reference

Return

Code

Meaning

2

A

second

additional

buffer

after

the

original

buffer

0

now

exists

on

the

data

stack.

3

A

third

additional

buffer

after

the

original

buffer

0

now

exists

on

the

data

stack.

n

An

nth

additional

buffer

after

the

original

buffer

0

now

exists

on

the

data

stack.

To

remove

buffers

created

with

MAKEBUF

from

the

data

stack,

use

the

DROPBUF

command

(see

page

144).

Example:

A

program

places

two

elements,

elem1

and

elem2,

on

the

data

stack.

The

program

calls

a

subroutine

(sub3)

that

also

places

an

element,

elem3,

on

the

data

stack.

The

program

and

the

subroutine

(sub3)

each

create

a

buffer

on

the

data

stack

so

they

do

not

share

their

data

stack

information.

Before

the

subroutine

returns,

it

uses

DROPBUF

to

remove

the

buffer

it

created.

/*

REXX

program

to

...

*/

...

"MAKEBUF"

/*

Creates

buffer.

*/

SAY

’The

number

of

buffers

created

is’

RC

/*

RC

=

1

*/

PUSH

elem1

PUSH

elem2

CALL

sub3

...

exit

sub3:

"MAKEBUF"

/*

Creates

second

buffer.

*/

buffnum=RC

PUSH

elem3

...

"DROPBUF"

buffnum

/*

Deletes

second

buffer

created

*/

...

RETURN

NEWSTACK

��

NEWSTACK

��

NEWSTACK

creates

a

new

data

stack

and

hides

or

isolates

the

current

data

stack.

A

program

cannot

access

elements

on

the

previous

data

stack

until

it

issues

a

DELSTACK

command

to

delete

the

new

data

stack

and

any

elements

remaining

in

it.

After

a

program

issues

NEWSTACK,

any

element

placed

on

the

data

stack

with

a

PUSH

or

QUEUE

instruction

is

placed

on

the

new

data

stack.

If

a

program

calls

a

routine

(function

or

subroutine)

after

issuing

NEWSTACK,

that

routine

also

uses

the

new

data

stack

and

cannot

access

elements

on

the

previous

data

stack,

unless

it

issues

a

DELSTACK

command.

If

you

use

a

NEWSTACK

command,

you

must

use

a

corresponding

DELSTACK

command

to

delete

the

data

stack

NEWSTACK

created.

When

there

are

no

more

elements

on

the

new

data

stack,

PULL

obtains

information

from

the

input

stream

even

though

elements

remain

in

the

previous

data

stack.

ASSGN(STDIN)

returns

the

name

of

the

current

MAKEBUF

Chapter

10.

REXX/VSE

Commands

161

input

device.

(By

default,

this

is

SYSIPT.)

To

access

elements

on

the

previous

data

stack,

use

a

DELSTACK

command.

If

a

new

data

stack

was

not

created,

DELSTACK

removes

all

elements

from

the

original

data

stack.

You

can

create

multiple

new

data

stacks

but

can

access

only

elements

on

the

most

recently

created

data

stack.

To

find

out

how

many

data

stacks

you

have

created,

use

the

QSTACK

command

(page

165).

To

find

out

the

number

of

elements

on

the

most

recently

created

stack,

use

the

QUEUED

built-in

function

(page

81).

If

multiple

language

processor

environments

are

chained

together

and

you

create

a

new

data

stack

with

NEWSTACK,

the

new

data

stack

is

available

only

to

programs

that

run

in

the

language

processor

environment

in

which

the

new

data

stack

was

created.

The

other

environments

in

the

chain

cannot

access

the

new

data

stack.

Examples:

1.

To

protect

elements

placed

on

the

data

stack

from

a

subroutine

that

might

also

use

the

data

stack,

you

can

use

NEWSTACK

and

DELSTACK

as

follows:

PUSH

element1

PUSH

element2

...

"NEWSTACK"

/*

Creates

data

stack

2.

*/

CALL

sub

"DELSTACK"

/*

Deletes

data

stack

2.

*/

...

PULL

stackelem

...

PULL

stackelem

EXIT

2.

To

run

a

program

named

ABC

that

is

a

member

in

REXXLIB.SAMPLES.PROGRAM1.PROC

specify

REXX=program_name

on

the

JCL

EXEC

statement.

//

LIBDEF

*,SEARCH=(PRD1.BASE,REXXLIB.SAMPLES)

//

EXEC

REXX=PROGRAM1

Alternately,

you

could

use

the

ARXJCL

routine

to

run

a

REXX

program.

Specify

ARXJCL

on

the

JCL

EXEC

statement

and

specify

in

the

PARM

field

the

member

name

of

the

program

and

arguments:

//

LIBDEF

*,SEARCH=(PRD1.BASE,REXXLIB.SAMPLES)

//

EXEC

ARXJCL,PARM=’PROGRAM1’

This

creates

a

new

data

stack.

You

can

then

put

two

elements

on

the

new

data

stack

for

the

program

PROGRAM2.

"NEWSTACK"

/*

Creates

data

stack

2.

*/

PUSH

elem1

PUSH

elem2

ADDRESS

LINK

"PROGRAM2"

...

"DELSTACK"

/*

Deletes

data

stack

2.

*/

NEWSTACK

162

REXX/VSE

Reference

...

QBUF

��

QBUF

��

QBUF

queries

the

number

of

buffers

that

have

been

created

on

the

data

stack

with

the

MAKEBUF

command.

QBUF

returns

the

number

of

buffers

in

the

REXX

special

variable

RC.

If

you

have

not

used

MAKEBUF

to

create

any

buffers

on

the

data

stack,

QBUF

sets

the

special

variable

RC

to

0.

This

is

the

only

buffer

the

data

stack

initially

contains.

QBUF

returns

the

current

number

of

data

stack

buffers

created

by

a

program

and

other

routines

(functions

and

subroutines)

the

program

calls.

You

can

issue

QBUF

from

the

calling

program

or

from

a

called

routine.

For

example,

if

a

program

issues

two

MAKEBUF

commands

and

then

calls

a

routine

that

issues

another

MAKEBUF

command,

QBUF

returns

3

in

the

REXX

special

variable

RC.

The

following

table

shows

how

QBUF

sets

the

REXX

special

variable

RC.

Return

Code

Meaning

0

Only

buffer

0

exists

on

the

data

stack.

1

One

additional

buffer

exists

on

the

data

stack.

2

Two

additional

buffers

exist

on

the

data

stack.

n

n

additional

buffers

exist

on

the

data

stack.

Examples:

1.

If

a

program

creates

two

buffers

on

the

data

stack

using

MAKEBUF,

deletes

one

buffer

using

DROPBUF,

and

then

issues

QBUF,

RC

is

set

to

1.

"MAKEBUF"

/*

Creates

buffer.

*/

...
"MAKEBUF"

/*

Creates

second

buffer.

*/

...
"DROPBUF"

/*

Deletes

second

buffer

created.

*/

"QBUF"

SAY

’The

number

of

buffers

created

is’

RC

/*

RC

=

1

*/

2.

Suppose

a

program

uses

MAKEBUF

to

create

a

buffer

and

then

calls

a

routine

that

also

issues

MAKEBUF.

The

called

routine

then

calls

another

routine

that

issues

two

MAKEBUF

commands

to

create

two

buffers.

If

either

of

the

called

routines

or

the

original

program

issues

QBUF,

this

sets

the

REXX

special

variable

RC

to

4.

"DROPBUF

0"

/*

Delete

any

buffers

MAKEBUF

created.

*/

"MAKEBUF"

/*

Create

one

buffer.

*/

SAY

’Buffers

created

=

’

RC

/*

RC

=

1

*/

CALL

sub1

"QBUF"

SAY

’Buffers

created

=

’

RC

/*

RC

=

4

*/

EXIT

sub1:

"MAKEBUF"

/*

Create

second

buffer.

*/

SAY

’Buffers

created

=

’

RC

/*

RC

=

2

*/

CALL

sub2

"QBUF"

SAY

’Buffers

created

=

’

RC

/*

RC

=

4

*/

NEWSTACK

Chapter

10.

REXX/VSE

Commands

163

RETURN

sub2:

"MAKEBUF"

/*

Create

third

buffer.

*/

SAY

’Buffers

created

=

’

RC

/*

RC

=

3

*/

...
"MAKEBUF"

/*

Create

fourth

buffer.

*/

SAY

’Buffers

created

=

’

RC

/*

RC

=

4

*/

RETURN

QELEM

��

QELEM

��

QELEM

returns

the

number

of

elements

in

the

buffer

that

MAKEBUF

most

recently

created.

QELEM

returns

the

number

of

elements

in

the

REXX

special

variable

RC.

If

MAKEBUF

has

not

created

any

buffers,

QELEM

returns

0

in

RC,

regardless

of

the

number

of

elements

on

the

data

stack.

Thus,

when

QBUF

returns

0,

QELEM

also

returns

0.

You

can

use

QELEM

to

coordinate

the

use

of

MAKEBUF.

Knowing

how

many

elements

are

in

a

data

stack

buffer

can

also

be

useful

before

a

program

issues

DROPBUF,

because

DROPBUF

removes

the

most

recently

created

buffer

and

all

elements

in

it.

The

QUEUED

built-in

function

(see

page

81)

returns

the

total

number

of

elements

in

the

data

stack,

not

including

buffers.

The

following

table

shows

how

QELEM

sets

the

REXX

special

variable

RC.

Return

Code

Meaning

0

Either

the

MAKEBUF

command

has

not

been

issued

or

the

buffer

that

MAKEBUF

most

recently

created

contains

no

elements.

1

MAKEBUF

has

been

issued,

and

there

is

one

element

in

the

current

buffer.

2

MAKEBUF

has

been

issued,

and

there

are

two

elements

in

the

current

buffer.

3

MAKEBUF

has

been

issued,

and

there

are

three

elements

in

the

current

buffer.

n

MAKEBUF

has

been

issued,

and

there

are

n

elements

in

the

current

buffer.

Examples:

1.

If

a

program

creates

a

buffer

on

the

data

stack

using

MAKEBUF

and

then

puts

three

elements

on

the

data

stack,

QELEM

returns

the

number

3.

"MAKEBUF"

/*

Creates

buffer.

*/

PUSH

one

PUSH

two

PUSH

three

"QELEM"

SAY

’The

number

of

elements

in

the

buffer

is’

RC

/*

RC

=

3

*/

2.

Suppose

a

program

creates

a

buffer

on

the

data

stack,

puts

two

elements

on

the

data

stack,

creates

another

buffer,

and

then

puts

one

element

on

the

data

stack.

If

the

program

issues

QELEM,

it

returns

the

number

1.

The

QUEUED

function,

however,

which

returns

the

total

number

of

elements

on

the

data

stack,

returns

the

number

3.

"MAKEBUF"

/*

Creates

buffer.

*/

QUEUE

one

PUSH

two

QBUF

164

REXX/VSE

Reference

"MAKEBUF"

/*

Creates

second

buffer.

*/

PUSH

one

"QELEM"

SAY

’The

number

of

elements

in

the

most

recent

buffer

is’

RC

/*

1

*/

SAY

’The

total

number

of

elements

is’

QUEUED()

/*

returns

3

*/

3.

To

check

whether

a

data

stack

buffer

contains

elements

before

you

remove

the

buffer,

use

the

result

from

QELEM

and

QBUF

in

an

IF...THEN...ELSE

instruction.

"MAKEBUF"

PUSH

a

"QELEM"

numelem

=

RC

/*

Assigns

value

of

RC

to

variable

NUMELEM

*/

"QBUF"

numbuf

=

RC

/*

Assigns

value

of

RC

to

variable

NUMBUF

*/

IF

(numelem

=

0)

&

(numbuf

>

0)

THEN

"DROPBUF"

/*

Deletes

most

recently

created

buffer

*/

ELSE

DO

numelem

PULL

elem

SAY

elem

END

QSTACK

��

QSTACK

��

QSTACK

queries

the

number

of

data

stacks

in

existence

for

a

program

that

is

running.

QSTACK

returns

the

number

of

data

stacks

in

the

REXX

special

variable

RC.

The

value

QSTACK

returns

is

the

total

number

of

data

stacks,

including

the

original

data

stack.

If

you

have

not

used

NEWSTACK

to

create

a

new

data

stack,

QSTACK

returns

1

in

the

special

variable

RC.

QSTACK

returns

the

current

number

of

data

stacks

created

by

a

program

and

by

other

routines

(functions

and

subroutines)

the

program

calls.

You

can

issue

QSTACK

from

the

calling

program

or

from

a

called

routine.

Suppose

a

program

issues

one

NEWSTACK

command

and

then

calls

a

routine

that

issues

another

NEWSTACK

command;

if

none

of

the

new

data

stacks

is

deleted

with

DELSTACK,

QSTACK

returns

3

in

the

REXX

special

variable

RC.

The

following

table

shows

how

QSTACK

sets

the

REXX

special

variable

RC.

Return

Code

Meaning

0

No

data

stack

exists.

See

“Data

Stack

Routine”

on

page

462.

1

Only

the

original

data

stack

exists.

2

The

original

data

stack

and

one

new

data

stack

exist.

3

The

original

data

stack

and

two

new

data

stacks

exist.

n

The

original

data

stack

and

n

-

1

new

data

stacks

exist.

Examples:

1.

Suppose

a

program

creates

two

new

data

stacks

using

NEWSTACK

and

then

deletes

one

data

stack

using

DELSTACK.

If

the

program

issues

QSTACK,

QSTACK

returns

2

in

the

REXX

special

variable

RC.

"NEWSTACK"

/*

Creates

data

stack

2.

*/

...
"NEWSTACK"

/*

Creates

data

stack

3.

*/

QELEM

Chapter

10.

REXX/VSE

Commands

165

...
"DELSTACK"

/*

Deletes

data

stack

3.

*/

"QSTACK"

SAY

’The

number

of

data

stacks

is’

RC

/*

RC

=

2

*/

2.

Suppose

a

program

creates

one

new

data

stack

and

then

calls

a

routine

that

also

creates

a

new

data

stack.

The

called

routine

then

calls

another

routine

that

creates

two

new

data

stacks.

When

either

of

the

called

routines

or

the

original

program

issues

QSTACK,

it

returns

5

in

the

REXX

special

variable

RC.

The

data

stack

that

is

active

is

data

stack

5.

"NEWSTACK"

/*

Creates

data

stack

2.

*/

CALL

sub1

"QSTACK"

SAY

’Data

stacks

=’

RC

/*

RC

=

5

*/

EXIT

sub1:

"NEWSTACK"

/*

Creates

data

stack

3.

*/

CALL

sub2

"QSTACK"

SAY

’Data

stacks

=’

RC

/*

RC

=

5

*/

RETURN

sub2:

"NEWSTACK"

/*

Creates

data

stack

4.

*/

...
"NEWSTACK"

/*

Creates

data

stack

5.

*/

"QSTACK"

SAY

’Data

stacks

=’

RC

/*

RC

=

5

*/

RETURN

RT

��

RT

��

Note:

This

immediate

command

is

available

only

from

an

application

program.

You

specify

it

on

a

call

to

ARXIC

(see

page

365)

from

a

non-REXX

program.

The

RT

(Resume

Typing)

immediate

command

resumes

producing

output

that

was

previously

suppressed.

The

RT

immediate

command

is

available

only

if

a

program

is

running.

Output

that

the

program

generated

after

the

HT

command

and

before

the

RT

command

is

lost.

SETUID

��

SETUID

userid

password

��

SETUID

lets

you

specify

the

user

ID

and

password

to

be

associated

with

an

ADDRESS

POWER

command.

You

can

set

the

user

ID

for

the

life

of

a

REXX

program

or

can

modify

it

at

any

time

during

a

REXX

program.

Operands:

QSTACK

166

REXX/VSE

Reference

userid

is

the

user

ID

to

use

on

subsequent

requests

to

POWER.

The

userid

must

be

from

1

to

8

characters.

If

you

omit

the

userid

or

specify

a

userid

of

more

than

8

characters,

you

receive

return

code

-6.

password

is

the

password

to

associate

with

the

given

userid

and

subsystem

communication

request.

The

password

must

be

from

1

to

8

characters.

Supply

a

password

when

an

ADDRESS

POWER

command

would

require

it,

for

example

when

a

VSE/POWER

master

password

is

needed

for

unlimited

access

(refer

to

the

MPWD

operand

of

the

POWER

generation

macro

described

in

the

VSE/POWER

Application

Programming,

SC33-6736

manual)

or

when

a

password

protects

a

POWER

queue

entry.

If

master

password

has

been

specified,

POWER

does

no

longer

use

the

userid

for

access

checking;

userid

can

be

any

string

from

1

to

8

characters

in

this

case.

Specifying

X'00000000'

as

the

password

or

a

password

that

is

longer

than

8

characters

is

an

error

causing

a

return

code

of

-2.

The

userid

and

password

combination

are

associated

with

each

subsequent

POWER

command

(VSE/POWER

spool-access

services

CTL

request),

PUTQE

command

(VSE/POWER

spool-access

services

PUT

request),

or

GETQE

command

(VSE/POWER

spool-access

services

GET

request).

The

initial

value

of

the

userid

is

what

the

USERID

built-in

function

would

return

(see

“USERID”

on

page

96).

If

one

REXX

program

calls

another,

the

user

ID

in

the

calling

REXX

program

is

the

initial

user

ID

in

the

called

program.

The

initial

password

is

all

blanks,

or,

if

one

REXX

program

calls

another,

the

initial

password

is

that

of

the

calling

REXX

program.

If

you

invoke

SETUID

without

specifying

a

password,

then

the

password

is

reset

to

the

default

of

blanks.

Some

ADDRESS

POWER

commands

check

the

userid

and

the

password

and

do

not

permit

processing

to

continue

if

these

do

not

match.

See

VSE/POWER

Application

Programming,

SC33-6736,

for

details

about

the

scope

of

access.

Any

information

you

specify

after

the

password

causes

a

return

code

of

-4.

In

this

case,

REXX

does

not

change

the

userid

and

password

values.

Examples:

"SETUID

MYNAME1A"

/*

Sets

the

user

ID

to

MYNAME1A

*/

"SETUID

MYNAME1B"

/*

Sets

the

user

ID

to

MYNAME1B

*/

"SETUID

MYNAME1C

MYPASSWD"

/*

Sets

the

user

ID

to

MYNAME1C

*/

/*

and

specifies

password

MYPASSWD

*/

SUBCOM

��

SUBCOM

envname

��

SUBCOM

queries

the

existence

of

a

specified

host

command

environment.

SUBCOM

searches

the

host

command

environment

table

for

the

named

environment

and

sets

the

REXX

special

variable

RC

to

0

or

1.

If

RC

contains

0,

the

environment

exists.

If

RC

contains

1,

the

environment

does

not

exist.

Before

a

program

runs,

a

default

host

command

environment

is

defined

to

process

the

commands

that

the

program

issues.

You

can

use

the

ADDRESS

keyword

instruction

(page

28)

to

change

this

environment

to

another

environment

if

the

environment

is

defined

in

the

host

command

environment

table.

Use

SUBCOM

to

determine

whether

the

environment

is

defined

in

the

host

command

environment

table

for

the

current

language

processor

environment.

You

can

use

the

ADDRESS

built-in

function

(page

65)

to

determine

the

name

of

the

environment

to

which

host

commands

are

currently

being

submitted.

Operands:

envname

is

the

name

of

the

host

command

environment

for

which

SUBCOM

is

to

search.

SETUID

Chapter

10.

REXX/VSE

Commands

167

REXX/VSE

provides

the

following

host

command

environments:

v

VSE

v

POWER

v

LINK

v

LINKPGM

v

JCL

v

CONSOLE

When

you

call

a

program,

the

default

host

command

environment

is

VSE.

The

following

table

shows

how

SUBCOM

sets

the

REXX

special

variable

RC.

RC

Value

Description

0

The

host

command

environment

exists.

1

The

host

command

environment

does

not

exist.

Examples:

To

check

whether

the

POWER

environment

is

available

before

using

the

ADDRESS

instruction

to

change

the

environment,

use

the

SUBCOM

command

as

follows:

"SUBCOM

power"

IF

RC

=

0

THEN

ADDRESS

power

ELSE

NOP

TE

��

TE

��

Note:

You

can

use

TE

in

a

REXX

program

or

specify

it

in

a

call

to

ARXIC

from

a

non-REXX

program.

TE

(Trace

End)

is

an

immediate

command

that

ends

tracing

REXX

programs.

The

TE

immediate

command

is

available

if

a

program

is

running.

The

program

continues

processing,

but

tracing

is

off.

If

you

are

running

in

interactive

debug,

you

can

also

use

TE

in

the

current

input

stream

to

end

tracing.

Example:

A

program

calls

an

internal

subroutine.

The

subroutine

is

not

processing

correctly

and

you

want

to

trace

it.

At

the

beginning

of

the

subroutine,

you

can

insert

a

TS

command

to

start

tracing.

At

the

end

of

the

subroutine,

before

the

RETURN

instruction,

insert

the

TE

command

to

end

tracing

before

control

returns

to

the

main

program.

TQ

��

TQ

��

Note:

You

can

use

TQ

to

test

if

tracing

in

a

REXX

program

was

set

on

or

off.

TQ

(Trace

Query)

is

an

immediate

command

available

only

from

an

application

program.

The

program

continues

processing.

SUBCOM

168

REXX/VSE

Reference

The

following

table

shows

how

TQ

sets

the

REXX

special

variable

RC.

RC

Value

Description

0

Processing

was

successful.

REXX

trace

was

set

OFF

by

TE.

4

Processing

was

successful.

REXX

trace

was

set

ON

by

TS.

TS

��

TS

��

Note:

You

can

use

TS

in

a

REXX

program

or

specify

it

on

a

call

to

ARXIC

from

a

non-REXX

program.

TS

(Trace

Start)

is

an

immediate

command

that

starts

tracing

REXX

programs.

Tracing

lets

you

control

the

execution

of

a

program

and

debug

problems.

The

TS

immediate

command

is

available

if

a

program

is

running.

The

language

processor

writes

trace

output

to

the

current

output

stream.

ASSGN(STDOUT)

returns

the

name

of

the

current

output

stream.

To

end

tracing,

you

can

use

the

TRACE

OFF

instruction

or

the

TE

immediate

command.

You

can

also

use

TE

in

the

program

to

stop

tracing

at

a

specific

point.

If

you

are

running

in

interactive

debug,

you

can

use

TE

to

end

tracing.

For

more

information

about

tracing,

see

the

TRACE

instruction

on

page

56

and

Chapter

16,

“Debug

Aids.”

VSAMIO

��

VSAMIO

READ

WRITE

DELETE

UPDATE

FILENAME

fnam

RECORDS

numrec

STARTREC

recnum

STARTKEY

key

STEM

stemvar

�

�

OPEN_READ

OPEN_WRITE

OPEN_UPDATE

CLOSE

PASSWORD

pwd

CICS_APPLID

applid

FILETYPE

typvar

RECLEN

rlenvar

�

�

KEYPOS

kposvar

KEYLEN

klenvar

PROCESSED

recvar

��

VSAMIO

controls

the

input

and

output

(I/O)

of

information

to

and

from

a

VSAM

file.

Supported

operations

are

READ,

WRITE,

DELETE,

and

UPDATE.

VSAMIO

can

read

or

write

data

in

REXX

stem

variables.

If

you

use

VSAMIO

to

read

information

from

a

VSAM

file

to

a

list

of

variables,

the

first

file

line

is

stored

in

variable.1,

the

second

file

line

is

stored

in

variable.2,

and

so

on.

The

various

operands

and

combination

of

operands

of

the

VSAMIO

command

permit

you

to

do

many

types

of

I/O.

For

example,

you

can

use

the

VSAMIO

command

to:

v

Read

information

from

a

VSAM

file

v

Write

information

to

a

VSAM

file

TQ

Chapter

10.

REXX/VSE

Commands

169

v

Open

a

VSAM

file

without

reading

or

writing

any

records.

v

Empty

a

VSAM

file

v

Copy

information

from

one

VSAM

file

to

another

v

Copy

information

to

and

from

a

list

of

compound

variables

(REXX

stem)

v

Add

information

to

a

VSAM

file

v

Update

information

in

a

VSAM

file

v

Delete

information

in

a

VSAM

file

There

are

three

types

of

VSAM

data

sets

supported

by

VSAMIO:

Key-Sequenced

Data

Set

(KSDS)

is

used

when

a

record

is

accessed

through

a

key

field

within

the

record.

Every

record

in

a

KSDS

must

have

a

unique

key

value.

An

additional

alternate

index

(AIX)

via

an

additional

unique

or

non-unique

key

field

is

possible.

Entry-Sequenced

Data

Set

(ESDS)

is

used

for

data

that

is

primarily

accessed

in

the

order

it

was

created.

An

additional

alternate

index

(AIX)

via

an

extra

unique

or

non-unique

key

field

is

possible.

Relative

Record

Data

Set

(RRDS)

is

used

for

data

in

which

every

item

has

a

particular

number,

called

Relative

Record

Number

(RRN).

RRDS

records

in

REXX/VSE

consist

of

a

prefix

containing

the

RRN

as

the

first

word

followed

by

the

record

data

itself.

When

reading

RRDS

records,

REXX/VSE

returns

them

with

a

12

character

prefix

starting

with

a

blank,

followed

by

a

10-digit-representation

of

the

RRN,

followed

by

another

blank,

for

instance:

’

0000000022

data...data...data...’

When

writing

or

updating

a

RRDS

record,

you

have

to

specify

the

RRN-number

as

the

first

word

of

arbitrary

length

within

the

first

12

bytes

of

the

record,

for

instance:

’22

data...data...data...data...’

’

00022

data...data...data...’

VSAM

data

sets

can

either

be

defined

and

used

only

via

batch

applications

or

they

can

be

defined

and

used

via

one

of

the

installed

CICSes.

VSAMIO

can

handle

both:

pure

batch

VSAM

data

sets,

and

CICS-defined

data

sets.

Besides

the

usual

batch

interface,

an

alternative

processing

is

provided

for

CICS-defined

VSAM

files

via

cross

partition

communication

with

a

CICS

partition.

This

is

especially

useful,

if

read/write

access

is

necessary

for

both,

CICS

and

the

REXX

program.

Due

to

access

through

CICS,

the

VSAM

cluster

must

only

be

opened

once

by

CICS;

thus

there

is

no

need

for

defining

the

VSAM

data

set

with

shareoption

4.

Before

VSAMIO

can

perform

I/O

to

or

from

a

VSAM

file

in

batch

mode,

you

have

to

use

DLBL

to

associate

the

file

with

the

file

name.

The

following

example

associates

USERID.MY.INPUT

of

catalog

MYCAT

with

the

file

MYINP:

ADDRESS

JCL

"//

DLBL

MYINP,’USERID.MY.INPUT’,,VSAM,CAT=MYCAT"

ADDRESS

JCL

"/*"

Operands:

READ

Copy

records

from

a

VSAM

data

set

into

a

REXX

stem

variable

starting

with

stemvar.1,

stemvar.2,

...

Variable

stemvar.0

contains

the

number

of

really

copied

records.

The

number

of

records

copied

are

determined

by

operand

RECORDS.

Default

is

1

record.

For

VSAM

data

sets

of

types

KSDS,

KSDS

AIX,

and

ESDS

AIX,

records

are

retrieved

according

to

the

key

sequence.

For

ESDS

data

sets

records

are

retrieved

according

to

the

sequence

they

were

written,

and

RRDS

data

sets

according

to

their

relative

record

number

sequence.

VSAMIO

170

REXX/VSE

Reference

If

data

set

is

already

opened

and

neither

STARTREC

/

STARTKEY

nor

one

of

the

options

OPEN_READ,

OPEN_WRITE,

or

OPEN_UPDATE

are

specified,

reading

starts

at

the

current

position.

Reading

increases

the

current

position

in

the

VSAM

data

set

accordingly.

If

none

of

the

keywords

OPEN_xxxx

are

specified

for

a

closed

VSAM

data

set

and

operation

is

READ,

the

data

set

is

automatically

opened

for

reading

first.

WRITE

Copy

a

REXX

stem

variable

to

a

VSAM

data

set.

Every

variable

is

copied,

starting

with

stemvar.1

and

finishing

with

stemvar.nnn,

where

nnn

is

either

the

numrec-value

(if

operand

RECORDS

has

been

specified

as

a

number),

or

the

value

of

stemvar.0

(if

set

to

a

whole

number),

or

the

predecessor

of

the

first

uninitialized

stem

variable

(if

RECORDS

is

specified

as

’*’

and

stemvar.0

is

not

set),

or

the

default

value

1.

For

VSAM

data

sets

of

types

KSDS,

and

KSDS

AIX,

records

are

written

according

to

the

value

contained

in

the

key

field.

You

can

write

in

any

key

order,

but

it

is

most

efficient

to

do

it

in

key

sequence.

For

ESDS

and

ESDS

AIX

data

sets

records

are

written

to

the

end

of

the

file,

and

RRDS

data

set

records

are

written

according

to

their

value

in

the

relative

record

number

field.

If

none

of

the

keywords

OPEN_xxxx

are

specified

for

a

closed

VSAM

data

set

and

operation

is

WRITE,

the

data

set

is

automatically

opened

for

updating

first.

UPDATE

Replace

records

within

a

VSAM

data

set

by

new

values

provided

in

a

REXX

stem

variable.

Every

variable

is

copied,

starting

with

stemvar.1

and

finishing

with

stemvar.nnn,

where

nnn

is

either

the

numrec-value

(if

operand

RECORDS

has

been

specified

as

a

number),

or

the

value

of

stemvar.0

(if

set

to

a

whole

number),

or

the

predecessor

of

the

first

uninitialized

stem

variable

(if

RECORDS

is

specified

as

’*’

and

stemvar.0

is

not

set),

or

the

default

value

1.

For

VSAM

data

sets

of

types

KSDS

and

KSDS

AIX,

you

can

change

the

length

of

the

record

being

updated.

Stem

values

longer

than

the

maximum

size

are

truncated

and

RC

is

set

to

-1.

You

cannot

change

the

key

field

of

a

record.

For

ESDS

and

ESDS

AIX

data

sets

you

cannot

change

the

length

of

the

record

being

updated.

For

ESDS

AIX

files

you

cannot

change

the

reference

key,

too.

If

the

updating

stem

value

is

smaller

than

the

current

record

size,

the

initial

part

is

changed

and

the

rest

remains

the

same

as

before.

Stem

values

longer

than

the

current

record

size

are

truncated

and

RC

is

set

to

-1.

RRDS

files

have

fixed

record

length,

thus

the

same

record

length

rules

apply

as

for

ESDS

files.

If

an

ESDS

data

set

is

already

opened

and

neither

STARTREC

nor

one

of

the

options

OPEN_READ,

OPEN_WRITE,

or

OPEN_UPDATE

are

specified,

updating

starts

at

the

current

position.

Updating

increases

the

current

position

in

the

VSAM

data

set

accordingly.

If

none

of

the

keywords

OPEN_xxxx

are

specified

for

a

closed

VSAM

data

set

and

operation

is

UPDATE,

the

data

set

is

automatically

opened

for

updating

first.

DELETE

Delete

records

from

a

non-ESDS

VSAM

data

set.

If

data

set

is

already

opened

for

updating

and

neither

STARTREC

/

STARTKEY

nor

one

of

the

options

OPEN_READ,

OPEN_WRITE,

or

OPEN_UPDATE

are

specified,

deleting

starts

at

the

current

position

in

the

VSAM

data

set.

If

none

of

the

keywords

OPEN_xxxx

are

specified

for

a

closed

VSAM

data

set

and

operation

is

DELETE,

the

data

set

is

automatically

opened

for

updating

first.

FILENAME

fnam

refers

to

a

DLBL

name

for

the

VSAM

data

set

to

be

processed

in

batch

mode,

or

the

CICS-defined

filename

for

the

VSAM

data

set

if

processed

through

CICS.

For

batch-processed

data

sets

before

using

VSAMIO

to

perform

I/O

to

or

from

a

VSAM

file,

you

need

to

assign

a

name

to

the

file.

You

do

this

by

using

DLBL

to

associate

the

file

with

a

file

name.

VSAMIO

Chapter

10.

REXX/VSE

Commands

171

RECORDS

numrec

specifies

the

number

of

VSAM

data

set

records

to

be

processed.

Use

’*’

to

read

or

delete

the

starting

record

together

with

all

following

records

in

the

data

set.

Default

for

reading

and

deleting

is

1

record,

if

operand

RECORDS

is

not

given.

For

writing

and

updating,

the

default

is

the

value

specified

in

stemvar.0,

if

operand

RECORDS

is

not

mentioned.

If

even

stemvar.0

is

not

set,

the

default

for

writing

and

updating

is

1

record.

If

RECORDS

is

specified

as

’*’

and

stemvar.0

is

not

set,

writing

and

updating

stops

when

it

reaches

a

null

value

or

an

uninitialized

variable

(one

that

has

not

been

assigned

a

value).

If

you

specify

a

RECORDS

value

of

0,

no

I/O

operations

are

performed

unless

you

also

specify

OPEN_READ,

OPEN_WRITE,

OPEN_UPDATE,

or

CLOSE:

v

If

you

specify

OPEN_xxxx

and

the

file

is

closed,

VSAMIO

opens

the

file

in

the

given

mode,

but

does

not

read,

write,

update,

or

delete

any

records.

If

you

specify

OPEN

and

the

file

is

open

in

a

different

mode,

VSAMIO

reopens

the

file

in

the

given

mode.

In

either

case,

if

you

are

processing

a

file

and

specify

operand

STARTREC

or

STARTKEY,

VSAMIO

sets

the

current

record

to

the

record

indicated

by

STARTREC

or

STARTKEY.

The

current

record

is

the

record

VSAMIO

is

to

be

read

next

without

repositioning.

By

default,

the

current

record

is

set

to

the

first

record

when

a

file

is

opened.

v

If

you

specify

CLOSE

and

the

file

is

open,

VSAMIO

does

not

process

any

records,

but

it

closes

the

file.

STARTREC

recnum

Positions

to

record

number

recnum

for

ESDS-filetype

data

sets

and

to

the

first

record

with

a

relative

record

number

greater

than

or

equal

to

recnum

for

RRDS-filetype

data

sets.

(Re-)positioning

always

starts

with

a

reset

to

the

first

record.

STARTKEY

key

Positions

to

the

first

record

with

a

key

greater

than

or

equal

to

the

specified

key

for

KSDS-filetype

data

sets

or

AIX-filetype

data

sets.

(Re-)positioning

always

starts

with

a

reset

to

the

record

with

the

smallest

key.

If

the

key

contains

blanks,

enclose

it

in

single

quotation

marks.

You

can

also

specify

a

key

in

hexadecimal

format,

for

example:

X’C1C2C3’.

If

you

specify

a

key

smaller

than

the

defined

key

length,

only

the

initial

part

of

the

key

is

used

for

positioning

(a

″generic

key

search″).

STEM

stemvar

Specifies

a

REXX

stem

variable

used

to

copy

data

from

a

VSAM

data

set

to

REXX

(READ)

or

from

REXX

to

a

VSAM

data

set

(WRITE,

UPDATE).

OPEN_READ

Opens

the

VSAM

data

set

only

for

reading.

You

can

open

a

closed

file

without

further

processing,

if

you

use

OPEN_READ

with

a

numrec

value

of

0.

If

the

data

set

is

currently

open

in

a

different

mode,

the

data

set

is

reopened

for

reading.

If

the

data

set

is

already

open

for

reading,

the

current

record

is

reset

to

the

record

defined

with

STARTREC

or

STARTKEY

if

specified,

otherwise

it

is

reset

to

the

first

record.

If

you

process

the

VSAM

data

set

via

CICS,

the

CICS

file

definitions

determine

whether

reading

is

allowed.

CICS

authorizations

for

Browsing,

and

Reading

should

be

set

to

YES.

OPEN_WRITE

Opens

the

VSAM

data

set

for

(re-)writing.

You

can

open

a

closed

file

without

further

processing,

if

you

use

OPEN_WRITE

with

a

numrec

value

of

0.

If

the

data

set

is

currently

open

in

a

different

mode,

the

data

set

is

reopened

for

writing.

If

you

process

the

VSAM

data

set

via

CICS,

the

CICS

file

definitions

determine

whether

writing

is

allowed.

CICS

authorizations

for

Adding,

Browsing,

Deleting,

Reading,

and

Updating

should

be

set

to

YES.

In

this

case

there

is

no

difference

between

OPEN_WRITE

and

OPEN_UPDATE.

VSAMIO

172

REXX/VSE

Reference

OPEN_UPDATE

Opens

the

VSAM

data

set

for

updating

and

appending.

You

can

open

a

closed

file

without

further

processing,

if

you

use

OPEN_WRITE

with

a

numrec

value

of

0.

If

the

data

set

is

currently

open

in

a

different

mode,

the

data

set

is

reopened

for

updating

and

appending.

If

operation

is

READ,

DELETE,

or

UPDATE,

the

current

record

is

reset

to

the

record

defined

with

STARTREC

or

STARTKEY

if

specified,

otherwise

it

is

reset

to

the

first

record.

If

you

process

the

VSAM

data

set

via

CICS,

the

CICS

file

definitions

determine

whether

writing

and

updating

is

allowed.

CICS

authorizations

for

Adding,

Browsing,

Deleting,

Reading,

and

Updating

should

be

set

to

YES.

In

this

case

there

is

no

difference

between

OPEN_WRITE

and

OPEN_UPDATE.

CLOSE

Closes

the

VSAM

data

set

after

VSAMIO

completes.

You

can

close

an

open

file

without

further

processing,

if

you

use

CLOSE

with

a

numrec

value

of

0.

The

language

processor

environment

is

terminated

after

the

end

of

a

step

in

a

batch

job

calling

REXX.

Within

this

termination

all

still

open

files

are

closed

automatically.

However,

it

is

good

programming

practice

to

explicitly

close

files

no

longer

needed.

If

you

process

the

VSAM

data

set

via

CICS,

this

data

set

is

only

removed

from

the

REXX

internal

administration,

but

it

is

kept

open

within

the

CICS

partition.

PASSWORD

pwd

Specifies

the

password

for

the

VSAM

data

set.

It

consists

of

one

through

eight

characters.

Password

specification

is

not

supported

for

CICS-processed

VSAM

files.

CICS_APPLID

applid

Specifies

the

CICS

Applid

of

the

CICS

used

to

process

the

operation

on

the

VSAM

data

set.

It

consists

of

one

through

eight

characters.

Specify

this

operand

when

″opening″

a

VSAM

data

set

that

should

be

processed

via

CICS.

REXX/VSE

saves

attributes

of

opened

data

sets

till

they

are

closed;

thus

if

CICS_APPLID

has

been

specified

at

open

time,

succeeding

operations

are

always

performed

via

the

given

CICS

even

without

extra

specification

of

CICS_APPLID

on

the

following

VSAMIO

commands.

A

specific

server

task

must

be

running

within

CICS

to

handle

CICS-processed

access

to

VSAM

files.

This

corresponding

CICS

server

task

is

usually

started

automatically

within

CICS.

If

not,

it

can

be

started

explicitly

invoking

transaction

ICVA.

The

CICS

server

task

can

be

stopped

explicitly

using

transaction

ICVP.

The

status

of

the

file

in

CICS

should

be

ENABLED.

FILETYPE

typvar

returns

one

of

the

values

ESDS,

KSDS,

RRDS,

ESDP

(ESDS_Path),

KSDP

(KSDS_Path),

NOTV

(NotVSAM),

or

UNKN

(Unknown)

RECLEN

rlenvar

returns

the

maximum

length

of

a

record

of

the

given

VSAM

data

set.

KEYPOS

kposvar

returns

position

of

the

VSAM

key

within

records

of

the

given

VSAM

data

set.

KEYLEN

klenvar

returns

the

length

of

the

VSAM

key.

PROCESSED

recvar

returns

the

number

of

processed

(read,

written,

updated,

deleted)

records.

VSAMIO

Chapter

10.

REXX/VSE

Commands

173

Return

Codes

Command

VSAMIO

returns

one

of

the

following

return

codes

in

the

REXX

special

variable

RC:

Return

Code

Meaning

0

Successful

processing

1

Successful

processing,

but

at

least

one

of

the

written

or

updated

records

has

been

truncated.

2

End-of-file

has

been

reached.

3

A

key

problem

has

been

detected.

Possible

reasons

are:

v

A

KSDS

file

is

to

be

updated,

but

there

exists

no

record

with

the

given

key

value.

v

A

RRDS

file

is

to

be

updated,

but

there

exists

no

record

with

the

given

Relative

Record

Number.

v

For

KSDS

files

is

the

given

STARTKEY

higher

than

all

existing

keys

in

the

file.

v

For

RRDS

files

is

the

given

STARTREC

higher

than

all

existing

Relative

Record

Numbers

in

the

file.

4

An

empty

data

set

is

tried

to

be

opened

for

reading

only

(VSAM

RC

8,

VSAM

error

code

110

from

OPEN).

7

The

VSE/VSAM

file

cannot

be

opened,

since

it

is

currently

in

use

by

another

program

(VSAM

RC

8,

VSAM

error

code

168

from

OPEN).

8

An

error

occurred

during

a

VSE/VSAM

I/O

operation.

Messages

ARX0690E

and

ARX0691E

contain

more

information.

9

The

record

to

be

written

contains

a

key

that

already

exists

in

the

file

(VSAM

RC

8,

VSAM

error

code

8).

12

One

of

the

VSAMIO

functions

WRITE,

UPDATE,

or

DELETE

is

specified,

but

the

file

is

opened

only

for

reading.

16

VSAMIO

fails

because

of

a

storage

problem.

Use

a

partition

with

more

GETVIS

space

to

run

the

REXX

program.

20

A

syntax

error

is

detected

in

the

VSAMIO

command.

One

of

the

operand

keywords

may

have

a

typing

error.

21

None

of

the

possible

VSAMIO

functions

READ,

WRITE,

DELETE,

or

UPDATE

is

specified.

22

Specification

of

operand

STEM

is

invalid

due

to

one

of

the

reasons:

v

For

functions

READ,

WRITE,

or

UPDATE

operand

STEM

is

not

specified.

v

Keyword

STEM

is

specified

without

a

token

following.

v

Stem

name

is

specified

without

a

dot

’.’

at

the

end.

23

Operand

FILENAME

specifies

an

invalid

filename:

v

FILENAME

is

not

specified.

v

Keyword

FILENAME

is

specified

without

a

token

following.

v

The

length

of

the

given

filename

is

greater

than

7.

24

Specification

of

operand

PASSWORD

or

operand

CICS_APPLID

is

invalid:

v

Operand

PASSWORD

specifies

an

invalid

password,

i.e.

its

length

is

greater

than

8,

or

keyword

PASSWORD

is

specified

without

a

token

following.

v

Operand

CICS_APPLID

specifies

an

invalid

CICS

application,

i.e.

its

length

is

greater

than

8,

or

keyword

CICS_APPLID

is

specified

without

a

token

following.

25

Specification

of

operand

STARTKEY

is

invalid

due

to

one

of

the

reasons:

v

STARTKEY

is

specified

together

with

VSAM

function

WRITE.

v

STARTKEY

is

specified

for

a

non-KSDS

file.

v

STARTKEY

is

specified

for

function

UPDATE

of

a

KSDS-file.

v

Length

of

the

STARTKEY

value

is

greater

than

the

keylength

defined

for

the

given

KSDS

file.

26

Specification

of

operand

STARTREC

is

invalid

due

to

one

of

the

reasons:

v

STARTREC

is

specified

together

with

VSAM

function

WRITE.

v

STARTREC

is

specified

for

a

KSDS

file.

v

STARTREC

is

specified

for

function

UPDATE

of

a

RRDS

file.

VSAMIO

174

REXX/VSE

Reference

Return

Code

Meaning

27

Operand

RECORDS

specifies

an

invalid

number

of

records.

28

Specification

of

the

opening

mode

is

invalid

due

to

one

of

the

reasons:

v

More

than

one

of

the

keywords

OPEN_READ,

OPEN_WRITE,

and

OPEN_UPDATE

are

specified.

v

OPEN_READ

is

specified

together

with

one

of

the

functions

WRITE,

UPDATE,

or

DELETE.

v

OPEN_WRITE

is

specified

together

with

one

of

the

functions

UPDATE,

or

DELETE.

29

Specification

of

a

Relative

Record

Number

as

the

first

word

of

an

RRDS

record

is

invalid

due

to

one

of

the

reasons:

v

All

the

first

12

characters

are

blanks.

v

The

first

word

in

the

record

does

not

start

with

a

digit.

v

The

first

word

starts

with

more

than

10

digits.

30

Function

DELETE

is

specified

for

an

ESDS

file.

44

CEEPIPI

invocation

returns

with

an

error.

Message

ARX0693

contains

more

information.

48

Invocation

of

ARXENTRY

fails.

This

is

usually

an

internal

error.

Messages

contain

more

information.

52

A

problem

occurred

with

the

Variable

Pool

Access

Interface

(ARXEXCOM)

of

REXX.

Possible

reasons

are:

v

The

value

of

a

variable

should

be

fetched,

but

the

buffer

for

the

copy

is

too

small.

v

A

variable

name

is

not

valid.

v

A

variable

value

is

not

valid;

it

is

may

be

too

long.

99

Internal

error,

which

should

not

occur.

Please

contact

IBM.

Using

the

VSAMIO

Command

Reading

Information

from

a

VSAM

file

To

read

information

from

a

VSAM

file

to

a

list

of

variables,

use

VSAMIO

with

the

READ

operand.

To

read

all

records

from

the

VSAM

file

MYINP,

you

could

use:

"VSAMIO

READ

FILENAME

MYINP

CICS_APPLID

DBDCCICS",

"RECORDS

*

STEM

newvar.

OPEN_READ

CLOSE"

VSAMIO

READ

places

records

from

the

file

in

compound

variables.

The

name

after

keyword

STEM

must

end

with

a

period.

If

10

lines

of

information

are

read,

newvar.1

contains

record

1,

newvar.2

contains

record

2,

and

so

forth,

up

to

newvar.10,

which

contains

record

10.

The

number

of

items

in

the

list

of

compound

variables

is

in

the

special

variable

newvar.0.

Thus,

if

10

lines

of

information

a

read

into

the

newvar.

variables,

newvar.0

contains

the

number

10.

Every

stem

variable

beyond

newvar.10

is

dropped,

i.e.

reset

to

its

initial

variable

name

value.

If

MYINP

is

an

RRDS

file,

the

Relative

Record

Number

of

every

record

is

stored

within

a

12-character

prefix

of

newvar.1,

newvar.2,

and

so

on.

’

0000000004

Crandall,

Amy

AMY

5421’

How

to

specify

the

number

of

records

to

read:

In

the

preceding

example,

the

asterisk

after

RECORDS

specifies

reading

the

entire

file.

To

read

a

specific

number

of

lines,

put

the

number

immediately

after

RECORDS:

"VSAMIO

READ

FILENAME

MYINP

RECORDS

25

STEM

newvar.

OPEN_READ

CLOSE"

To

read

just

one

record,

you

can

omit

specification

of

RECORDS,

since

reading

1

record

is

the

default.

"VSAMIO

READ

FILENAME

MYINP

STEM

newvar."

To

open

a

file

without

reading

any

records,

specify

0

immediately

after

RECORDS

and

specify

the

OPEN_READ

or

OPEN_UPDATE

operand.

"VSAMIO

READ

FILENAME

RECORDS

0

OPEN_READ"

VSAMIO

Chapter

10.

REXX/VSE

Commands

175

Using

OPEN_READ

or

OPEN_UPDATE:

Depending

on

the

purpose

you

have

for

the

input

file,

use

either

the

OPEN_READ

or

OPEN_UPDATE

operand.

v

OPEN_READ

-

Reading

Only

To

start

I/O

from

a

file

that

you

want

only

to

read,

use

the

OPEN_READ

operand.

The

CLOSE

option

closes

the

file

after

the

information

is

read.

"VSAMIO

READ

FILENAME

...

RECORDS

*

...

CLOSE"

Note:

Do

not

use

the

CLOSE

option

if

you

want

the

next

VSAMIO

in

your

program

to

continue

reading

at

the

record

immediately

following

the

last

record

read.

v

OPEN_UPDATE

-

Reading

and

Updating

To

start

I/O

to

a

file

that

you

want

to

read

and

update,

use

the

OPEN_UPDATE

operand

without

the

CLOSE

option.

More

about

using

OPEN_UPDATE

appears

in

“″Updating

Information...″”

on

page

177.

Option

of

specifying

a

starting

record:

If

you

want

to

start

reading

at

a

record

other

than

the

beginning

of

the

file,

specify

operand

STARTKEY

for

KSDS

or

AIX-files

and

operand

STARTREC

for

ESDS/RRDS-files.

For

example,

to

read

all

the

records

of

an

ESDS-

or

RRDS-file

starting

at

record

100,

you

could

use:

"VSAMIO

READ

FILENAME

MYINP

RECORDS

*

STEM

newvar.

STARTREC

100

CLOSE"

To

start

at

record

100

and

read

only

5

records,

use:

"VSAMIO

READ

FILENAME

MYINP

RECORDS

5

STEM

newvar.

STARTREC

100

CLOSE"

To

open

a

file

at

record

100

without

reading

any

records,

use:

"VSAMIO

READ

FILENAME

MYINP

RECORDS

0

STARTREC

100

OPEN_READ"

To

read

all

the

records

of

a

KSDS-file

starting

with

record

″Smith

″,

you

could

use:

"VSAMIO

READ

FILENAME

MYINP

RECORDS

*

STEM

newvar.

STARTKEY

’Smith

’"

Writing

Information

to

a

VSAM

File:

To

write

information

to

a

VSAM

file

from

a

list

of

variables,

use

VSAMIO

with

the

WRITE

operand.

To

write

from

the

compound

variables

newvar.1,

newvar.2,

newvar.3,

and

so

on

to

the

VSAM

file

MYINP,

you

could

use:

"VSAMIO

WRITE

FILENAME

MYINP

RECORDS

*

STEM

newvar.

CLOSE"

To

write

records

to

a

VSAM

RRDS

file,

specify

the

Relative

Record

Number

as

first

word

in

newvar.1,

newvar.2,

and

so

on.

’0004

Crandall,

Amy

AMY

5421’

How

to

specify

the

number

of

records

to

write:

There

exist

several

ways

to

define

the

number

of

records

to

write.

You

can

specifiy

a

number

immediately

after

VSAMIO:

"VSAMIO

WRITE

FILENAME

MYINP

RECORDS

25

STEM

newvar."

You

can

assign

a

numeric

value

to

stemvar.0

newvar.0

=

25

"VSAMIO

WRITE

FILENAME

MYINP

STEM

newvar."

An

asterisk

after

RECORDS

means

to

write

all

stem

variables

starting

with

stemvar.1,

stemvar.2,

...

until

a

null

value

or

an

uninitialized

compound

variable

is

reached:

Drop

newvar.

Do

i=1

to

25;

newvar.i

=

’some

data’;

End

"VSAMIO

WRITE

FILENAME

MYINP

STEM

newvar.

RECORDS

*"

If

neither

RECORDS,

nor

stemvar.0

is

specified,

only

data

in

stemvar.1

is

written.

VSAMIO

176

REXX/VSE

Reference

To

open

a

file

without

writing

records

to

it,

specify

0

after

RECORDS

and

specify

the

OPEN_WRITE

or

OPEN_UPDATE

operand.

"VSAMIO

WRITE

FILENAME

MYINP

RECORDS

0

OPEN_WRITE"

Note:

To

empty

a

batch-processed

file,

you

can

use

the

VSAMIO

command:

"VSAMIO

WRITE

FILENAME

MYINP

RECORDS

0

OPEN_WRITE

CLOSE"

Copying

Information

from

One

File

to

Another::

Copying

an

entire

file:

To

copy

the

entire

VSAM

file

MYINP

to

file

JOESINP,

you

could

use

the

following

instructions:

"VSAMIO

READ

FILENAME

MYINP

RECORDS

*

OPEN_READ

CLOSE

STEM

newvar."

"VSAMIO

WRITE

FILENAME

JOESINP

RECORDS

*

OPEN_WRITE

CLOSE

STEM

newvar."

Copying

a

specified

number

of

lines

to

a

new

file:

To

copy

10

lines

of

data

from

the

VSAM

file

MYINP

to

the

file

JOESINP,

you

could

use:

"VSAMIO

READ

FILENAME

MYINP

RECORDS

10

CLOSE

STEM

newvar."

"VSAMIO

WRITE

FILENAME

JOESINP

RECORDS

10

OPEN_WRITE

CLOSE

STEM

newvar."

Adding

lines

to

a

file:

To

add

5

records

from

the

VSAM

file

MYINP

to

the

file

JOESINP,

you

could

use:

"VSAMIO

READ

FILENAME

MYINP

RECORDS

5

CLOSE

STEM

newvar."

"VSAMIO

WRITE

FILENAME

JOESINP

RECORDS

5

OPEN_UPDATE

CLOSE

STEM

newvar."

Updating

Information

in

a

VSAM

File:

Updating

a

KSDS

file:

Suppose

you

have

a

VSAM

KSDS

file

named

MYKSDS

that

contains

a

list

of

employee

names,

user

IDs,

and

phone

extensions.

Its

key

starts

at

position

0

with

a

length

of

24

bytes.

One

record

is

this

one:

Crandall,

Amy

AMY

5421

You

can

change

this

information.

For

example,

to

change

phone

extension

to

5500,

you

could

use:

"VSAMIO

READ

FILENAME

MYKSDS

STARTKEY

’Crandall,

Amy’

RECORDS

1",

"STEM

newvar.

OPEN_UPDATE"

newvar.1

=

Substr(newvar.1,1,WORDINDEX(newvar.1,4)-1)

||

’5500’

"VSAMIO

UPDATE

FILENAME

MYKSDS

RECORDS

1

STEM

newvar.

CLOSE"

Updating

an

ESDS

file:

Suppose

you

have

a

CICS-defined

VSAM

ESDS

file

named

MYESDS

that

contains

a

list

of

employee

names,

user

IDs,

and

phone

extensions.

The

5th

record

is

this

one:

Crandall,

Amy

AMY

5421

You

can

change

this

information.

For

example,

to

change

phone

extension

to

5500,

you

could

use:

.

"VSAMIO

READ

CICS_APPLID

DBDCCICS

FILENAME

MYESDS

STARTREC

5

RECORDS

1",

"STEM

newvar.

OPEN_UPDATE"

newvar.1

=

Substr(newvar.1,1,WORDINDEX(newvar.1,4)-1)

||

’5500’

"VSAMIO

UPDATE

FILENAME

MYESDS

STARTREC

5

RECORDS

1

STEM

newvar.

CLOSE"

Updating

an

RRDS

file:

Suppose

you

have

a

VSAM

RRDS

file

named

MYRRDS

that

contains

a

list

of

employee

names,

user

IDs,

and

phone

extensions.

The

record

with

Relative

Record

Number

5

is

this

one:

Crandall,

Amy

AMY

5421

You

can

change

this

information.

For

example,

to

change

phone

extension

to

5500,

you

could

use:

"VSAMIO

READ

FILENAME

MYRRDS

STARTREC

5

RECORDS

1",

"STEM

newvar.

OPEN_UPDATE"

newvar.1

=

Substr(newvar.1,1,WORDINDEX(newvar.1,5)-1)

||

’5500’

"VSAMIO

UPDATE

FILENAME

MYRRDS

RECORDS

1

STEM

newvar.

CLOSE"

VSAMIO

Chapter

10.

REXX/VSE

Commands

177

The

VSAMIO

READ

returns

in

newvar.1:

’

0000000005

Crandall,

Amy

AMY

5421

’

Deleting

Information

in

a

VSAM

File:

Deleting

records

in

a

KSDS

file:

Suppose

you

have

a

VSAM

KSDS

file

named

MYKSDS

that

contains

a

list

of

employee

names,

user

IDs,

and

phone

extensions.

Its

key

starts

at

position

0

with

a

length

of

24

bytes.

One

record

is

this

one:

Crandall,

Amy

AMY

5421

You

can

change

this

information.

For

example,

to

change

phone

extension

to

5500,

you

could

use:

"VSAMIO

DELETE

FILENAME

MYKSDS

STARTKEY

’Crandall,

Amy’

RECORDS

1"

Deleting

Information

in

an

ESDS

file:

It

is

not

possible

to

delete

ESDS

file

records!

Deleting

Information

in

an

RRDS

file:

Suppose

you

have

a

VSAM

RRDS

file

named

MYRRDS

that

contains

a

list

of

employee

names,

user

IDs,

and

phone

extensions.

The

record

with

Relative

Record

Number

5

is

this

one:

Crandall,

Amy

AMY

5421

To

delete

this

record,

you

could

use:

"VSAMIO

DELETE

FILENAME

MYRRDS

STARTREC

5

RECORDS

1"

Examples:

1.

This

example

reads

an

entire

VSAM

file

into

input.1,

input.2,

and

so

on,

and

closes

the

file

when

done.

As

always,

you

must

previously

use

DLBL:

ADDRESS

JCL

"//

DLBL

VSMFILE,’VSAM.CLUSTER1’,,VSAM,CAT=VSESPUC"

ADDRESS

JCL

"/*"

’VSAMIO

READ

FILENAME

VSMFILE

STEM

input.

RECORDS

*

PASSWORD

THISPW

CLOSE’

SAY

input.0

’records

have

been

read.’

2.

This

example

creates

a

VSAM

ESDS

file

with

10

records.

input.0

=

10

Do

i=1

to

10

input.i

=

right(i,i,’0’)

||

’

this

is

record

’

i

End

’VSAMIO

WRITE

FILENAME

VSMESDS

STEM

input.

OPEN_WRITE

CLOSE’

,

’FILETYPE

ftyp

RECLEN

recl’

Three

records

are

updated.

Do

i=1

to

3

update_input.i

=

right(i+3,i+3,’0’)

||

’

this

is

update

’

i+3

End

’VSAMIO

UPDATE

FILENAME

VSMESDS

STEM

update_input.

RECORDS

3

STARTREC

4’

The

file

is

closed.

’VSAMIO

READ

FILENAME

VSMESDS

RECORDS

0

CLOSE’

3.

This

example

creates

a

VSAM

KSDS

file

with

10

records.

Key

consists

of

the

first

8

bytes

in

the

record.

input.0

=

10

Do

i=1

to

10

input.i

=

right(i,8,’0’)

||

’

this

is

record

’

i

End

’VSAMIO

WRITE

FILENAME

VSMKSDS

STEM

input.

OPEN_WRITE

CLOSE’

,

’FILETYPE

ftyp

RECLEN

recl

KEYLEN

keyl

KEYPOS

keyp’

Then

records

with

keys

00000009

and

00000010

are

deleted.

VSAMIO

178

REXX/VSE

Reference

’VSAMIO

DELETE

FILENAME

VSMKSDS

RECORDS

2

STARTKEY

00000009’

Three

other

records

are

updated.

Do

i=1

to

3

update_input.i

=

right(2*i,8,’0’)

||

’

this

is

updated

record

’

2*i

End

’VSAMIO

UPDATE

FILENAME

VSMKSDS

STEM

update_input.

RECORDS

3’

The

file

is

closed.

’VSAMIO

DELETE

FILENAME

VSMKSDS

RECORDS

0

CLOSE’

4.

This

example

creates

a

VSAM

RRDS

file

with

10

records.

input.0

=

10

Do

i=1

to

10

input.i

=

right(i,3,’0’)

||

’

this

is

record

’

i

End

’VSAMIO

WRITE

FILENAME

VSMRRDS

STEM

input.

OPEN_WRITE

CLOSE’

,

’FILETYPE

ftyp

RECLEN

recl’

Then

records

9

and

10

are

deleted.

’VSAMIO

DELETE

FILENAME

VSMRRDS

RECORDS

2

STARTREC

9’

Three

other

records

are

updated.

Do

i=1

to

3

update_input.i

=

right(2*i,8,’0’)

||

’

this

is

updated

record

’

2*i

End

’VSAMIO

UPDATE

FILENAME

VSMRRDS

STEM

update_input.

RECORDS

3’

The

file

is

closed.

’VSAMIO

DELETE

FILENAME

VSMRRDS

RECORDS

0

CLOSE’

5.

This

example

copies

VSAM

file

VSMESDA

into

file

VSMESDS,

and

appends

another

VSAM

file

VSMESDB

to

this

file

VSMESDS.

’VSAMIO

READ

FILENAME

VSMESDA

STEM

content.

RECORDS

*

CLOSE’

’VSAMIO

WRITE

FILENAME

VSMESDS

STEM

content.

OPEN_WRITE’

’VSAMIO

READ

FILENAME

VSMESDB

STEM

content.

RECORDS

*

CLOSE’

’VSAMIO

WRITE

FILENAME

VSMESDS

STEM

content.

CLOSE’

6.

This

example

copies

again

VSAM

file

VSMESDA

into

file

VSMESDS,

and

appends

another

VSAM

file

VSMESDB

to

this

file

VSMESDS.

Only

10

records

are

copied

at

once.

records_at_once

=

10

Files

VSMESDA

and

VSMESDS

are

opened.

’VSAMIO

READ

FILENAME

VSMESDA

RECORDS

0

OPEN_READ’

’VSAMIO

WRITE

FILENAME

VSMESDS

RECORDS

0

OPEN_WRITE’

VSMESDS

is

copied

into

VSMESDA.

recnum_A

=

records_at_once

Do

Until

recnum_A

<

records_at_once

’VSAMIO

READ

FILENAME

VSMESDA

STEM

content.

RECORDS

’

records_at_once

,

’PROCESSED

recnum_A’

’VSAMIO

WRITE

FILENAME

VSMESDS

STEM

content.’

End

File

VSMESDA

is

closed.

’VSAMIO

READ

FILENAME

VSMESDA

RECORDS

0

CLOSE’

File

VSMESDB

is

opened.

recnum_B

=

records_at_once

’VSAMIO

READ

FILENAME

VSMESDB

RECORDS

0

OPEN_READ’

VSAMIO

Chapter

10.

REXX/VSE

Commands

179

File

VSMESDB

is

appended

to

VSMESDS.

Do

Until

recnum_B

<

records_at_once

’VSAMIO

READ

FILENAME

VSMESDB

STEM

content.

RECORDS

’

records_at_once

,

’PROCESSED

recnum_B’

’VSAMIO

WRITE

FILENAME

VSMESDS

STEM

content.’

End

Files

VSMESDB

and

VSMESDS

are

closed.

’VSAMIO

READ

FILENAME

VSMESDB

RECORDS

0

CLOSE’

’VSAMIO

WRITE

FILENAME

VSMESDS

RECORDS

0

CLOSE’

VSAMIO

180

REXX/VSE

Reference

Chapter

11.

ADDRESS

POWER

Commands

The

POWER

host

command

environment

exploits

VSE/POWER

spool-access

services

requests,

GET,

PUT,

and

CTL.

(See

“The

POWER

Host

Command

Environment”

on

page

25

for

details

about

the

POWER

environment.)

ADDRESS

POWER

commands

include.

v

GETQE

command,

which

performs

the

GET

function.

This

retrieves

an

entry

from

a

POWER

queue.

v

PUTQE

command,

which

performs

the

PUT

function.

This

places

a

job

on

a

POWER

queue.

v

QUERYMSG

command,

which

returns

job

completion

message(s)

into

the

stem

specified

by

OUTTRAP.

v

POWER

commands

that

you

can

issue

through

a

CTL

service

request.

You

can

use

ADDRESS

POWER

to

send

these

commands

to

VSE/POWER.

“CTL”

on

page

196

lists

these

commands.

You

can

also

find

them

in

VSE/POWER

Application

Programming,

SC33-6736.

The

manual

VSE/POWER

Administration

and

Operation,

SC33-6733

contains

their

syntax.

Output

for

these

commands

or

error

information

is

trapped

by

the

OUTTRAP

function.

Please

refer

to

the

description

of

this

function

on

page

99.

Accessing

Entries

in

VSE/POWER

Queues

When

using

GETQE

or

a

CTL

command,

follow

the

programming

interface

rules

for

the

VSE/POWER

spool-access

services

interface

GET/CTL

Service.

That

is,

provide

a

user

ID

and

password

when

needed.

(See

VSE/POWER

Application

Programming,

SC33-6736,

for

details.)

The

user

ID

associated

with

the

GETQE

request

is

the

one

determined

according

to

the

rules

described

for

function

USERID

on

page

96.

It

must

match

the

user

ID

associated

with

the

queue

entry

(the

job)

being

retrieved.

The

password

associated

with

the

GETQE/CTL

request

is

the

last

one

specified

in

a

SETUID

command.

Access

is

possible

to

the

following

job

entries

in

the

VSE/POWER

RDR

queue

and

to

the

following

output

entries

in

the

VSE/POWER

LST

or

PUN

queue:

v

Job

or

output

entries

with

the

same

node

and

user

ID

as

origin

v

output

entries

with

the

same

node

and

user

ID

as

destination

v

Jobs

and

their

output

entries

which

contained

the

FROM

parameter

specifying

the

origin

user

ID

in

the

*

$$

JOB

statement

v

For

GETQE

only:

output

entries

with

destination

user

ID

ANY

If

an

installation

specific

POWER

master

password

has

been

defined

in

the

system,

unlimited

access

is

available

by

specifying

this

POWER

master

password

with

the

SETUID

command

(see

page

166).

It

provides

access

to

all

queue

entries

even

if

the

user

ID

does

not

match.

This

is

the

only

way

to

access

queue

entries

without

a

specified

FROM/TO

user

ID.

See

also

the

VSE/POWER

Application

Programming,

SC33-6736,

for

information

about

the

scope

of

access

to

queue

entries

and

how

POWER

sets

the

user

ID

for

a

job.

See

page

96

for

information

about

the

USERID

function.

©

Copyright

IBM

Corp.

1988,

2004

181

GETQE

��

GETQE

RDR

PUN

LST

FCB

fcb_var

UCS

ucb_var

FORMAT

formatvar

CTRLREC

ASATOMCC

�

�

Common

Operands

��

Common

Operands:

JOBNAME

jobn

(1)

A

CLASS

class

JOBNUM

jnum

(2)

JOBSUF

jsuf

QNUM

qn

CRE

�

�

(2)

OPTB

ostem

STARTREC

rpos

RECORDS

rnum

GETQE.

(3)

(3)

STEM

STARTPAG

ppos

PAGES

pnum

stem

RECORDS

rnumvar

(3)

PAGES

pnumvar

Notes:

1 You

can

include

optional

parameters

in

any

order.

2 LST,

PUN

Queue

only.

3 LST

Queue

only.

GETQE

retrieves

an

entry

from

a

POWER

queue

(RDR,

LST,

or

PUN)

and

stores

the

lines

it

retrieves

in

compound

variables.

Notes:

1.

If

GETQE

is

not

successful

stem.0

is

not

set.

2.

If

you

use

an

operand

but

do

not

specify

a

corresponding

value,

no

default

is

assumed.

But

v

if

you

do

not

specify

the

STEM

operand

it

defaults

to

GETQE

v

If

you

do

not

specify

the

CLASS

operand

it

defaults

to

A.

3.

Carriage

control

(CC)

characters

are

only

processed

if

the

FORMAT

parameter

is

specified.

4.

When

you

retrieve

an

entry

from

the

LST

or

PUN

queue

that

you

put

on

the

queue

with

PUTQE,

the

record

format

of

the

entry

is

MCC.

This

applies

if

FORMAT

is

not

specified

or

FORMAT=MCC

(default).

5.

For

VSE/POWER

there

are

2

types

of

records

within

a

LST

queue

entry:

v

logical

records

containing

user

data,

also

often

named

’lines’

v

immediate

control

records

like

’Skip

to

Channel

immediately’,

or

’Space

1

line

immediately’

If

the

CTRLREC

operand

has

not

been

specified,

only

the

logical

records

(the

’lines’)

are

considered.

If

the

CTRLREC

operand

has

been

specified,

both

types

of

records

are

taken

into

account.

Operands

RDR

LST

PUN

is

the

queue

from

which

to

obtain

the

specified

entry.

ADDRESS

POWER

Commands

182

REXX/VSE

Reference

FCB

fcb_var

specifies

a

variable

where

you

want

to

receive

the

name

of

the

FCB-image

phase

VSE/POWER

is

to

use

for

printing

the

related

LST

output.

UCS

ucb_var

specifies

a

variable,

where

you

want

to

receive

the

UCB

(universal

character

set

buffer)

information

assigned

to

a

LST

queue

entry.

The

information

is

returned

in

the

format

(<phasenam>,<op>),

where

<phasenam>

is

the

name

of

the

UCB-image

phase

loaded

into

the

UCB

of

the

printer,

and

<op>

is

either

’F

’,

’C

’,

or

’FC’.

An

’F’

indicates

that

the

UCB

is

to

be

loaded

with

the

folding

operation

code

causing

lowercase

letters

to

be

printed

in

uppercase,

and

’C’

prevents

data

checks

from

being

generated

because

of

print-line

mismatches

with

the

UCB.

If

none

of

the

two

options

are

set,

two

blanks

are

set.

If

no

UCB-image

phase

has

been

defined

for

a

LST

queue

entry,

<phasenam>

consists

of

8

blanks.

FORMAT

formatvar

specifies

a

variable

where

you

want

to

receive

the

type

of

printer

output

the

LST

queue

entry

contains.

formatvar

stores

one

of

the

following

values:

v

SCS

v

MAP

v

T3270

v

CPDS

v

ESC

v

MCC

v

ASA

If

a

FORMAT

operand

has

been

specified,

the

print

record

will

have

a

one

byte

prefix

containing

the

print

control

character

followed

by

at

least

one

byte

containing

the

data.

CTRLREC

requests

delivery

of

immediate

control

records.

If

CTRLREC

has

not

been

specified,

those

records

are

skipped.

Especially

if

output

of

GETQE

is

used

later

on

to

generate

another

entry

in

the

VSE/POWER

LST

queue

with

command

PUTQE,

carriage

control

characters

might

be

important

because

they

determine

the

page

count

maintained

by

VSE/POWER

for

formats

like

MCC

and

ASA.

ASATOMCC

Usually

GETQE

offers

ASA-controlled

data

records

unchanged.

But

you

can

request

ASA

to

matching

control

conversion

using

this

keyword.

Then

you

get

for

every

ASA

data

record

two

machine

control

records:

v

a

first

one

doing

the

forms

control

operation.

v

a

second

one

writing

the

actual

data

immediately.

JOBNAME

jobn

jobn

is

the

job

name

of

the

queue

entry

to

retrieve.

CLASS

class

class

is

the

class

of

the

queue

entry

to

retrieve.

If

you

do

not

specify

the

class,

it

defaults

to

A.

JOBNUM

jnum

jnum

is

the

number

VSE/POWER

has

assigned

to

the

queue

entry

you

want

to

retrieve.

If

you

omit

this,

REXX

does

not

pass

a

number

to

VSE/POWER.

JOBSUF

jsuf

jsuf

specifies

the

segment

number

to

be

retrieved

(provided

you

use

VSE/POWER

output

segmentation

for

LST

and

PUN

queue

entries).

jsuf

is

a

number

between

1

and

127.

If

JOBSUF

is

omitted,

GETQE

retrieves

the

first

segment.

ADDRESS

POWER

Commands

Chapter

11.

ADDRESS

POWER

Commands

183

QNUM

qn

qn

specifies

a

POWER

queue

entry

via

its

queue

record

number.

CRE

indicates

that

an

in-creation

entry

is

to

be

read.

OPTB

ostem

ostem

specifies

the

REXX

stem

to

receive

settings

of

user-defined

output

operands.

The

values

are

retrieved

in

the

form:

KEYWORDID={value|(value,...)}

in

ostem.n,

for

example,

OPTBSTEM.1

=

’001F=ABC’.

STARTREC

rpos

rpos

specifies

the

record

number

where

retrieval

is

to

start,

if

you

want

to

have

only

part

of

the

queue

entry

retrieved.

If

CTRLREC

is

not

specified

record

numbering

is

based

on

logical

records

only.

Otherwise

record

numbering

is

based

on

all

records

including

the

immediate

control

records.

RECORDS

rnum

rnum

specifies

the

number

of

records

to

be

retrieved,

if

you

want

to

have

only

part

of

a

queue

entry

retrieved.

Record

numbering

is

depended

on

the

existence

of

the

CTRLREC

operand.

If

CTRLREC

has

not

been

specified,

record

numbering

is

based

on

logical

records

only.

Otherwise

both

logical

records

and

immediate

control

records

are

counted.

STARTPAG

ppos

ppos

specifies

the

page

number

where

retrieval

is

to

start,

if

you

want

to

have

only

part

of

a

LST

queue

entry

retrieved.

If

the

LST

queue

entry

does

not

start

with

a

printer

control

record

to

start

a

new

page,

specify

STARTPAG

0

to

get

the

first

records

within

this

entry.

PAGES

pnum

pnum

specifies

the

number

of

pages

to

be

retrieved,

if

you

want

to

have

only

part

of

a

LST

queue

entry

retrieved.

STEM

GETQE.

STEM

stem

specifies

the

name

of

a

stem.

(A

stem

must

end

in

a

period.)

GETQE

stores

lines

into

compound

variables

whose

names

begin

with

this

stem.

GETQE.

is

the

default

stem.

The

stem

must

be

valid

according

to

REXX

rules

for

naming

stems.

(See

“Stems”

on

page

21.)

If

a

stem

is

not

valid,

the

return

code

in

the

special

variable

RC

is

-22.

RECORDS

rnumvar

rnumvar

specifies

a

variable

where

you

want

to

receive

the

number

of

records

of

a

queue

entry.

With

this

request,

you

may

not

specify

STARTREC

or

STEM.

Only

the

number

of

records

is

returned,

but

queue

entry

data

will

not

be

copied.

Record

numbering

is

depended

on

the

existence

of

the

CTRLREC

operand.

If

CTRLREC

has

not

been

specified,

the

number

of

the

logical

records

is

returned.

Otherwise

the

number

of

logical

records

plus

the

number

of

immediate

control

records

is

returned.

PAGES

pnumvar

pnumvar

specifies

a

variable

where

you

want

to

receive

the

number

of

pages

of

a

LST

queue

entry.

With

this

request,

you

may

not

specify

STARTPAG

or

STEM.

Only

the

number

of

pages

is

returned,

but

queue

entry

data

will

not

be

copied.

The

stem

is

first

dropped

(as

if

the

REXX

instruction

DROP

stem

had

been

used)

before

the

retrieval.

Then,

when

the

entry

is

returned,

each

line

of

it

is

stored

into

the

variable

stem.n,

where

n

is

the

record

number

of

the

entry.

Stem.0

contains

the

number

of

lines

in

the

entry.

Error

information

is

written

to

the

current

output

file.

ASSGN(STDOUT)

returns

the

name

of

the

current

output

file.

If

trapping

is

active,

error

information

is

also

stored

in

the

compound

variables

that

the

user

specifies

on

OUTTRAP.

The

error

information

contains

decimal

numbers

identifying

the

VSE/POWER

spool-access

services

return

and

feedback

codes

describing

the

failure.

REXX/VSE

error

message

ARX0950E

contains

the

return

code

from

the

VSE/POWER

spool-access

services

interface.

(See

page

99

for

details

about

using

OUTTRAP.)

ADDRESS

POWER

Commands

184

REXX/VSE

Reference

The

queue

element

disposition

is

unchanged

because

REXX

uses

a

MODE

of

BROWSE.

For

the

GETQE

command

the

POWER

access

rules

apply

as

described

on

page

181.

See

the

VSE/POWER

Application

Programming,

SC33-6736,

manual

for

more

details.

Security

Considerations

GETQE

allows

retrieval

of

VSE/POWER

queue

elements

for

all

user

IDs

set

by

the

SETUID

command.

However,

if

the

VSE

system

is

secured

(VSE

IPL

statement

SYS

SEC=YES),

REXX

introduces

the

following

security

checking

for

the

GETQE

command:

1.

If

you

specified

a

VSE/POWER

user

ID

and

password

via

SETUID,

then

the

password

and

user

ID

are

passed

to

VSE/POWER

for

further

security

checking.

If

VSE/POWER

refuses

access,

a

RC=-13

with

message

ARX0950E

occurs.

2.

If

you

specified

no

VSE/POWER

password

via

SETUID

and

the

VSE

security

user

ID

of

the

executing

job

is

authorized

as

administrator,

then

ADDRESS

POWER

GETQE

is

allowed

to

retrieve

all

queue

elements.

3.

If

you

specified

no

VSE/POWER

password

via

SETUID

and

the

VSE

security

user

ID

of

the

executing

job

is

not

authorized

as

administrator,

then

only

the

queue

elements

owned

by

the

VSE

security

user

ID

can

be

retrieved,

otherwise

a

security

violation

occurs

with

RC=-26.

The

REXX

user

ID

set

by

SETUID

must

be

equal

to

the

VSE

security

user

ID.

A

VSE

security

ID

can

be

set,

for

example,

by

the

ID

statement

(see

VSE/ESA

System

Control

Statements,

SC33-6713)

or

by

the

SEC

parameter

of

the

VSE/POWER

job

statement

(see

VSE/POWER

Application

Programming,

SC33-6736.)

Return

Codes

When

the

VSE/POWER

spool-access

services

interface

encounters

an

error,

the

REXX

special

variable

RC

is

set.

Error

information

is

written

to

the

current

output

stream.

You

can

use

ASSGN(STDOUT)

to

return

the

name

of

the

current

output

stream.

The

following

table

shows

how

GETQE

sets

the

REXX

special

variable

RC.

Return

Code

Meaning

0

Successful

processing.

-13

A

severe

XPCC

or

POWER

error.

-14

General

use

storage

could

not

be

obtained.

-16

Storage

problem

occurred

during

set

up

to

get

connection

to

VSE/POWER

spool-access

services

interface.

-17

Connection

to

VSE/POWER

spool-access

services

failed.

-19

Incorrect

input

from

parameter

list.

-20

Error

in

STEM

variable.

-22

The

stem

was

not

valid.

-26

Security

violation.

-29

Invalid

combination

of

operands

defining

the

part

of

the

VSE/POWER

queue

to

be

retrived,

for

example:

v

PAGES

are

specified,

but

POWER

queue

is

not

LST.

v

Starting

record

or

page

number

is

specified,

but

not

the

number

of

records

or

pages

to

be

retrieved.

v

As

well

the

starting

record

number

as

the

starting

page

number

are

specified.

v

The

number

of

records

or

pages

is

specified,

but

also

STEM.

v

Some

of

the

operands

STARTREC,

PAGES,

or

RECORDS

are

zero.

-32

Operand

QNUM

is

invalid.

-33

Operand

CRE

can

only

be

specified

together

with

operand

QNUM.

-36

Operand

UCS

is

invalid.

ADDRESS

POWER

Commands

Chapter

11.

ADDRESS

POWER

Commands

185

Note:

OUTTRAP

(page

99)

can

trap

error

information

from

GETQE.

If

trapping

is

active,

error

information

is

also

written

to

the

stem

that

you

specify

on

the

OUTTRAP

function.

Example

The

following

example

retrieves

the

job

with

name

MAKEJCL

from

the

RDR

queue.

The

job

is

class

B

and

has

job

number

3450.

GETQE

stores

the

lines

it

retrieves

in

compound

variables

beginning

with

the

stem

FORJCL..

"GETQE

RDR

JOBNAME

MAKEJCL

CLASS

B

JOBNUM

3450

STEM

FORJCL."

ADDRESS

POWER

Commands

186

REXX/VSE

Reference

PUTQE

��

PUTQE

(1)

RDR

RDR

Operands

PUN

PUN/LST

Operands

LST

FORMAT

format

��

RDR

Operands:

(2)

WAIT

time

MEMBER

memname

STEM

stem

(2)

CLASS

classvar

JOBNAME

jnamevar

�

�

GENCM

JOBNUM

jnumvar

NOGENCM

LONGREC

PUN/LST

Operands:

(1)

MEMBER

memname

STEM

stem

JOBNAME

jname

JOBNUM

jnumvar

FIRST

JOBNAME

jname

JOBNUM

jnumvar

NEWSEGM

segmvar

NEXT

JOBNAME

jname

JOBNUM

jnum

JOBSUF

jsuf

NEWSEGM

segmvar

LAST

JOBNAME

jname

JOBNUM

jnum

JOBSUF

jsuf

�

�

CLASS

class

DISP

D

PRIORITY

prio

DESTUSER

user

DESTNODE

node

K

H

L

�

�

COPIES

cop

JSEP

jsep_pages

USERINFO

userinf

OPTB

ostem

(3)

FCB

phasename

�

�

UCS

phasenam

(3)

(3)

(phasenam

)

FLASH_COUNT

fnum

FLASH_NAME

fnam

,F

,C

,FC

�

�

SYSIDn

(3)

FNO

formnam

Notes:

1 You

can

include

RDR

operands

and

LST

and

PUN

operands

in

any

order.

2 If

you

omit

the

WAIT

operand

or

specify

WAIT

0,

the

language

processor

ignores

the

CLASS

operand.

The

contents

of

classvar

is

only

considered

if

the

WAIT

option

was

specified.

3 LST

Queue

only.

ADDRESS

POWER

Commands

Chapter

11.

ADDRESS

POWER

Commands

187

PUTQE

places

a

job

on

a

VSE/POWER

queue

(RDR,

LST,

or

PUN).

This

job

can

be

one

that

already

exists

in

the

VSE

librarian

or

one

the

currently

running

REXX

program

created

(through

EXECIO)

and

stored

into

a

stem.

Notes:

1.

For

rules

about

naming

jobs

and

classes,

see

VSE/POWER

Application

Programming,

SC33-6736,

and

VSE/POWER

Administration

and

Operation,

SC33-6733.

2.

No

carriage

control

characters

are

processed

if

the

FORMAT

parameter

has

not

been

specified

or

FORMAT=NOCC.

3.

If

you

specify

PUN,

the

record

format

of

the

entry

is

Machine

Control

Character

(MCC).

For

each

supplied

data

record,

the

carriage

control

character

X'01'

is

used

for

PUN

queue

elements.

4.

If

the

characteristics

of

a

VSE/POWER

job

change

during

the

time

interval

for

the

PUTQE

RDR

WAIT

option,

the

results

are

unpredicatble.

5.

For

PUTQE

PUN

and

PUTQE

LST

a

null

line

causes

end

of

data.

Operands

RDR

the

PUT

RDR

command

generates

a

job

completion

message

if

the

job

submission

was

successful.

This

does

not

require

that

the

WAIT

option

is

specified.

The

job

completion

message

is

saved

in

a

VSE/POWER

message

queue

which

can

contain

up

to

99

messages

for

each

user

ID.

If

you

retrieve

a

job

completion

message

it

is

erased

from

the

VSE/POWER

message

queue.

If

the

VSE/POWER

message

queue

is

full

the

latest

message

overwrites

the

oldest

message.

It

is

therefore

possible

that

job

completion

messages

generated

by

PUTQE

RDR

are

lost.

If

a

WAIT

option

was

specified,

PUTQE

RDR

waits

until

timeout

occurs

and

returns

on

of

the

following

return

codes:

-1,

-2,

-6,

or

-9.

See

the

’Examples’

for

job

completion

messages

of

a

job

transmitted

to

another

VSE

node.

LST

PUN

is

the

name

of

the

VSE/POWER

queue

into

which

to

place

the

data.

FORMAT

format

specifies

the

type

of

the

record

format

for

all

output

records.

You

can

specify

format

for

the

LST

operand

only.

format

is

a

value

and

used

as

input.

One

of

the

following

values

is

valid:

v

MCC

v

ASA

v

NOCC

v

CDPS

If

FORMAT

NOCC

or

no

FORMAT

operand

has

been

specified,

the

input

record

consists

of

the

data

only.

REXX

adds

the

MCC

carriage

control

character

X’09’.

If

a

FORMAT

operand

has

been

specified,

the

print

record

must

have

a

one

byte

prefix

containing

the

print

control

character

followed

by

at

least

one

byte

containing

the

data.

If

the

print

record

is

not

two

bytes

long,

return

code

-25

occurs.

There

is

no

check

if

the

one

byte

prefix

contains

the

print

control

character.

WAIT

time

specifies

a

number

of

seconds

to

wait

for

the

execution

of

the

job

to

complete.

If

time

is

0,

no

wait

occurs

and

no

job

completion

message

is

available.

Specifying

this

option

causes

the

program

to

wait

for

the

job

to

be

executed

so

that

the

calling

program

can

examine

its

results.

A

job

completion

message,

ARX0970I,

may

be

available

through

OUTTRAP.

The

maximum

return

code

from

the

job

is

placed

in

the

REXX

special

variable

RC.

RC

contains

0

if

the

job

completes

with

a

return

code

of

0

or

if

the

completed

job

specifies

no

return

code.

ADDRESS

POWER

Commands

188

REXX/VSE

Reference

MEMBER

memname

STEM

stem

indicates

where

the

file

containing

the

job

or

output

data

resides.

If

you

specify

MEMBER

memname,

memname

must

be

one

of

the

following.

v

A

fully

qualified

name

in

the

format

library.sublibrary.member.type.

v

A

member

name

and

member

type

in

the

format

member.type.

To

use

this

form,

the

type

on

the

LIBDEF

statement

must

be

either

SOURCE

or

*.

Otherwise,

the

member

is

not

found,

and

you

receive

return

code

-23.

v

The

member

name

only.

In

this

case,

the

default

member

type

applies;

this

is

PROC.

If

you

use

STEM

stem,

the

stem

must

be

a

valid

REXX

stem

(it

must

end

with

a

period).

The

stem

indicates

the

compound

variables

containing

the

records

for

the

queue

entry.

stem.0

contains

a

number

indicating

the

number

of

records.

The

records

are

contained

in

stem.1

through

stem.n.

Data

records

are

input

to

the

queue;

no

checkpoints

are

taken.

CLASS

classvar

is

a

variable

to

which

you

have

previously

assigned

a

string

that

is

one

or

more

characters

representing

VSE/POWER

classes

that

exist

in

your

VSE

system.

The

class

is

whichever

of

the

following

is

available

first.

1.

the

class

from

the

job

stream

2.

class

A

3.

the

class

you

specify

Each

successive

class

is

tried

until

one

in

which

the

job

can

run

is

found.

That

class

is

stored

in

classvar

as

output.

If

you

omit

classvar,

the

job

runs

only

in

the

class

from

the

job

stream.

In

this

case

if

you

have

not

specified

the

class

in

the

job

stream,

the

VSE/POWER

default

class

A

applies.

See

note

2

on

page

188.

JOBNAME

jnamevar

specifies

the

name

of

a

REXX

variable

in

which

the

job

name

for

the

job

you

created

is

returned.

See

note

1

on

page

188.

Example

5

on

page

193

uses

this

parameter.

JOBNAME

jname

is

the

name

of

the

job

for

which

to

create

data

records.

JOBNUM

jnumvar

specifies

the

name

of

a

REXX

variable.

Into

this

variable,

VSE/POWER

stores

the

number

of

the

job

or

of

the

output

queue

entry

you

created.

JOBNUM

jnum

is

the

number

VSE/POWER

has

assigned

to

the

queue

entry

to

which

you

want

to

add

further

data

records.

GENCM

NOGENCM

GENCM

(which

is

the

default)

requests

that

the

VSE/POWER

job

that

had

been

put

into

the

RDR

queue

issues

a

job

completion

message

after

end-of-job.

NOGENCM

causes

suppression

of

the

VSE/POWER

job

completion

messages.

LONGREC

indicates

that

the

record

length

of

a

POWER

RDR

queue

entry

is

128

bytes.

If

not

specified,

the

default

length

is

80

bytes.

FIRST

indicates

that

the

given

data

is

only

the

first

portion

of

the

entire

data

that

will

make

up

the

output

queue

entry.

More

data

will

later

be

appended

to

this

first

portion.

jnumvar

of

JOBNUM

must

be

a

variable

that

contains

the

job

number.

The

resulting

disposition

of

the

output

queue

entry

is

A.

ADDRESS

POWER

Commands

Chapter

11.

ADDRESS

POWER

Commands

189

NEXT

indicates

that

the

given

data

is

appended

at

the

end

of

the

specified

output

queue

entry,

and

that

more

data

can

be

appended

later

on.

This

option

is

only

valid

if

the

output

queue

entry

was

created

by

a

previous

PUTQE

with

option

FIRST

(or

NEXT).

The

resulting

disposition

of

the

output

queue

entry

is

A.

If

you

specified

the

FORMAT

operand

for

PUTQE

FIRST,

you

must

repeat

it

for

PUTQE

NEXT.

Other

operands

describing

output

queue

entry

characteristics

(such

as

USERINFO,

COPIES,

PRIORITY,

DISP,

DESTUSER,

DESTNODE)

are

not

allowed

in

this

case.

LAST

indicates

that

the

given

data

is

appended

at

the

end

of

the

specified

output

queue

entry,

and

that

more

data

cannot

be

appended

later

on.

This

option

is

only

valid

if

the

output

queue

entry

was

created

by

a

previous

PUTQE

with

option

FIRST

(or

NEXT).

If

you

specified

the

FORMAT

operand

for

PUTQE

FIRST

and

NEXT,

you

must

repeat

it

for

PUTQE

LAST.

Other

operands

describing

output

queue

entry

characteristics

(such

as

USERINFO,

COPIES,

PRIORITY,

DISP,

DESTUSER,

DESTNODE)

are

not

allowed

in

this

case.

JOBSUF

jsuf

specifies

the

segment

number

of

the

POWER

output

queue

entry

where

the

given

data

is

to

be

appended.

NEWSEGM

segmvar

indicates

that

after

appending

of

the

given

data

to

the

specified

output

queue

entry

a

new

segment

is

to

be

started.

segmvar

specifies

a

variable

used

to

return

the

number

of

the

old

segment

where

the

given

data

was

appended.

CLASS

class

is

a

single

character

specifying

the

class

of

the

LST

or

PUN

queue

element.

If

you

specify

more

than

one

character,

only

the

first

character

is

used.

If

you

omit

this

option,

the

VSE/POWER

default

is

used.

Operand

CLASS

is

required

together

with

option

FIRST,

NEXT,

and

LAST.

See

note

1

on

page

188.

DISP

specifies

the

desired

disposition

of

the

output

entry.

Valid

dispositions

are

D,

K,

H,

and

L.

PRIORITY

prio

is

the

desired

priority

of

the

output

queue

entry.

prio

is

a

number

between

0

and

9.

DESTUSER

user

specifies

the

name

of

the

destination

user.

DESTNODE

node

specifies

the

name

of

the

destination

node.

COPIES

cop

is

the

number

of

desired

copies.

cop

is

a

number

between

1

and

125.

JSEP

jsep_pages

is

the

number

of

desired

job

separator

pages.

jsep_pages

is

a

number

between

0

and

9.

USERINFO

userinf

specifies

user

information

appearing

on

job

separator

pages

and

in

the

list

or

punch

account

record

for

the

job.

userinf

is

a

string

of

up

to

16

characters.

Notes:

1.

As

VSE/POWER

uses

the

OR

operation

with

an

X’40’value

for

all

characters

(not

only

letters),

to

perform

an

uppercase

translation,

some

non-letter

characters

may

change

to

non-printable

characters

(see

the

VSE/POWER

Administration

and

Operation,

SC33-6733,

manual

for

more

details).

2.

The

USERINFO

string

is

padded

with

blanks

at

the

end.

Use

X’00’

to

specify

blanks

at

the

beginning

or

in

the

middle

of

the

string.

VSE/POWER

converts

X’00’

to

X’40’.

ADDRESS

POWER

Commands

190

REXX/VSE

Reference

OPTB

ostem

specifies

the

REXX

stem

which

contains

the

keyword-value-pairs

of

the

output

operands

defined

by

the

user.

ostem

must

end

with

a

period

to

be

a

valid

REXX

stem.

ostem.0

contains

a

number

indicating

the

number

of

keywords.

stem.1

through

stem.n

contain

the

keyword-value-pairs.

To

be

able

to

use

OPTB,

the

automatic

startup

of

VSE/POWER

requires

the

corresponding

definitions

of

additional

JECL

output

operands

(see

the

description

of

the

DEFINE

statement

in

the

VSE/POWER

Administration

and

Operation,

SC33-6733,

manual).

To

pass

a

user

keyword

and

its

values

to

VSE/POWER,

assign

a

string

KEYWORD={value|(value,...)}

to

ostem.n,

for

example,

OPTBSTEM.1

=

’PAGEDEF=HUGO’.

VSE/POWER

matches

the

received

keyword

with

the

specifications

of

the

corresponding

DEFINE

autostart

statement.

If

two

or

more

keyword

OPTBs

specify

the

same

user

keyword,

only

the

last

specification

becomes

effective.

It

is

also

possible

to

specify

the

keyword

id

instead

of

the

keyword

for

a

user-defined

output

operand,

for

example

OPTBSTEM.1

=

’001F=HUGO’.

In

this

case

all

following

output

operand

specifications

in

ostem

must

use

this

keyword

ID

description

and

not

the

keyword.

FCB

phasename

specifies

the

name

of

the

FCB-image

phase

VSE/POWER

is

to

use

for

printing

the

related

job

output.

UCS

phasenam

UCS

(phasenam,<op>)

specifies

the

name

of

the

UCB-image

phase

loaded

into

the

UCB

(universal

character

set

buffer)

of

the

printer.

The

following

options

<op>

are

available:

F

to

indicate

that

the

UCB

is

to

be

loaded

with

the

folding

operation

code

causing

lowercase

letters

to

be

printed

in

uppercase.

C

to

prevent

data

checks

from

being

generated

because

of

print-line

mismatches

with

the

UCB.

FLASH_COUNT

fnum

This

operand

applies

to

IBM

3800

only.

fnum

is

a

number

from

0

to

255.

It

specifies

the

number

of

copies

to

be

flashed

with

the

overlay.

If

you

specify

a

count

without

a

FLASH_NAME,

the

forms-overlay

frame

loaded

at

the

time

of

printing

is

used.

If

you

specify

a

count

of

0,

then

the

operator

is

prompted

to

load

the

requested

forms-overlay

frame,

but

the

overlay

is

not

flashed.

FLASH_NAME

fnam

This

operand

applies

to

IBM

3800

only.

fnam

is

the

one-to-four-character

name

of

the

forms-overlay

frame

to

be

used

by

the

printer.

If

you

specify

an

overlay

name

without

a

count,

all

copies

are

flashed.

SYSID

n

This

operand

applies

to

shared

spooling.

n

is

either

the

character

N

or

a

number

between

1

and

9.

Specify

SYSID

N

if

the

output

is

to

be

available

on

any

of

the

sharing

systems.

Specify

a

digit

between

1

and

9,

if

your

output

is

to

be

available

on

a

certain

one

of

your

sharing

systems.

For

n,

give

the

number

with

which

the

systems

VSE/POWER

was

initialized

(by

SYSID=n

in

the

VSE/POWER

generation

macro).

FNO

formnam

specifies

the

form

name.

formnam

consists

of

one

to

four

alphameric

characters.

When

VSE/POWER

is

to

place

a

job

on

the

RDR

queue

or

create

an

output

queue

entry,

the

user

ID

for

this

entry

is

determined

according

to

the

rules

described

for

function

USERID

on

page

96.

A

password

for

output

queue

entries

is

the

one

last

specified

in

a

SETUID

command

(see

page

166).

When

the

VSE/POWER

spool-access

services

interface

encounters

an

error,

the

REXX

special

variable

RC

is

set

to

-13.

Error

information

is

written

to

the

current

output

stream.

You

can

use

ASSGN(STDOUT)

to

return

the

name

of

the

current

output

stream.

If

the

return

code

from

PUTQE

is

greater

than

-11,

classvar,

jnamevar,

and

jnumvar

contain

respectively

the

VSE/POWER

class,

job

name,

and

job

number

of

the

job

that

was

put

into

the

reader

queue.

If

classvar

includes

incorrect

VSE/POWER

classes,

for

example,

%

or

’

’,

return

code

-13

is

set.

ADDRESS

POWER

Commands

Chapter

11.

ADDRESS

POWER

Commands

191

The

following

table

shows

how

PUTQE

sets

the

REXX

special

variable

RC.

Return

codes

-1

through

-12

and

n

occur

only

for

the

RDR

queue.

Return

Codes:

Return

Code

Meaning

0

Successful

processing.

-1

Job

has

been

started.

Timeout

occurred;

no

job

completion

message

has

been

retrieved.

-2

Job

has

been

started.

VSE/POWER

Get

Completion

Message

service

(GCM

service)

is

not

active.

No

message

can

be

retrieved.

-4

Job

has

been

started

but

has

been

canceled.

-5

Job

has

been

submitted

but

cannot

be

started.

The

job

is

in

a

hold

state,

that

is,

DISP=L

or

H,

or

the

time

event

scheduling

has

not

expired.

-6

A

timeout

occurred.

The

job

has

been

submitted,

but

was

not

found

in

the

RDR

queue

and

a

job

completion

message

could

not

be

retrieved.

It

is

not

known

whether

the

job

has

been

started

or

completed.

-7

Job

has

been

submitted

but

not

started

because

the

specified

class

is

busy.

(This

is

returned

only

if

you

do

not

specify

class.)

-8

Job

has

been

submitted

but

not

started

because

class

is

not

defined

or

is

disabled.

(This

is

returned

only

if

you

do

not

specify

class.)

-9

Job

has

been

submitted.

It

was

not

found

in

the

RDR

queue

and

a

job

completion

message

could

not

be

retrieved

because

VSE/POWER

Get

Completion

Message

(GCM)

service

is

not

active.

It

is

not

known

whether

the

job

has

been

started

or

completed.

-10

Job

has

been

submitted

but

not

started

because

of

a

scheduling

error.

Possible

reasons

are.

v

The

class

or

classes

are

busy

v

The

class

or

classes

are

disabled

v

The

class

or

classes

are

not

defined

v

A

job

entry

is

not

found

in

the

RDR

queue.

(This

return

code

is

issued

only

if

class

had

at

least

one

character.)

-11

An

error

occurred

while

submitting

the

job.

Information

messages

are

retrieved.

Possible

reason

is:

Power

*

$$

JOB

JECL

statements

include

invalid

parameters

(DISP,

PRI,

CLASS

etc.

values

specified

may

be

incorrect).

-12

An

error

occurred

while

submitting

the

job.

No

information

message

is

available.

-13

A

severe

XPCC

or

VSE/POWER

error

or

incorrect

class

specification.

-14

General

use

storage

could

not

be

obtained.

-15

No

job

statements

are

available.

-16

A

storage

problem

occurred

during

the

set

up

to

get

a

connection

to

the

VSE/POWER

spool-access

services

interface.

-17

Connection

to

VSE/POWER

spool-access

services

failed.

-18

Record

is

larger

than

32K

-19

Error

in

an

operand.

Possible

reasons

are.

v

The

job

name

you

specified

may

be

longer

than

a

valid

VSE/POWER

job

name

v

The

job

number

may

be

larger

than

a

valid

VSE/POWER

job

number

v

A

required

operand

is

missing

v

A

keyword

is

misspelled.

-20

Error

in

an

internal

call

to

ARXEXCOM

to

fetch

or

set

a

variable

name.

This

could

be

because

the

variable

name

did

not

follow

the

rules

for

naming

variables.

(See

page

11

and

“Compound

Symbols”

on

page

20.)

-21

Error

from

MEMBER.

-22

The

stem

was

not

valid

ADDRESS

POWER

Commands

192

REXX/VSE

Reference

Return

Code

Meaning

-23

The

member

was

not

found

-24

The

member

name

was

not

valid

-25

Invalid

length

of

input

record

-27

Operand

NOGENCM

is

specified

together

with

a

WAIT

time

greater

than

zero.

-28

One

of

the

append

keywords

FIRST,

NEXT,

or

LAST

is

specified

and

at

least

one

of

the

following

conditions

is

true:

v

The

POWER

queue

is

neither

LST

nor

PUN.

v

The

operands

JOBNAME,

JOBNUM,

or

CLASS,

which

must

be

specified

when

appending

DATA

to

an

output

queue,

are

missing.

v

Operand

DESTNODE

is

specified.

This

is

invalid

as

it

is

not

possible

to

append

anything

to

an

entry

in

the

POWER

XMT

queue.

v

The

operands

COPIES,

PRIORITY,

DISP,

FORMAT,

USERINFO,

FCB,

or

DESTUSER

are

specified,

which

is

invalid

together

with

the

kewords

NEXT

and

LAST.

-29

No

data

is

specified

together

with

NEWSEGM.

This

does

not

work.

-30

The

stem

variable

for

ADDRESS

POWER

PUTQE

RDR

contains

empty

lines.

-31

FLASH_COUNT

or

FLASH_NAME

invalid.

-34

Operand

SYSID

is

invalid.

-35

Operand

FNO

is

invalid.

-36

Operand

UCS

is

invalid.

n

This

is

the

maximum

return

code

from

the

job.

Note:

OUTTRAP

(page

99)

can

trap

error

information

from

PUTQE.

If

trapping

is

active,

error

information

is

also

written

to

the

stem

that

you

specify

on

the

OUTTRAP

function.

This

error

information

can

include

VSE/POWER

messages.

See

VSE/ESA

Messages

and

Codes,

SC33-6796,

for

descriptions

of

VSE/POWER

messages.

Examples

1.

This

example

places

the

sublibrary

member

MYJOB.PROC

on

the

RDR

queue.

(Note

that

REXX/VSE

supplies

the

default

member

type,

PROC.)

ADDRESS

POWER

"PUTQE

RDR

MEMBER

MYJOB"

2.

This

example

does

the

same,

but

the

memname

includes

the

library.sublibrary

specification.

ADDRESS

POWER

"PUTQE

RDR

MEMBER

MYLIB.MYSUB.MYJOB.PROC"

3.

This

example

includes

the

CLASS

option

for

a

job

you

are

putting

on

the

RDR

queue.

Assume

that

the

original

class

is

B

and

that

classes

A

and

B

are

busy,

disabled,

or

not

defined

but

that

class

D

can

be

used.

First

use

an

assignment

statement

to

initialize

a

variable

to

the

class

or

classes

you

want

to

specify

on

PUTQE.

Then

specify

the

name

of

this

variable

after

the

keyword

CLASS.

myclass="AD9"

ADDRESS

POWER

"PUTQE

RDR

MEMBER

MYPROG.PROC

WAIT

5

CLASS

myclass"

REXX

puts

the

job

on

the

RDR

queue

with

class

D

and

returns

D

in

the

variable

myclass.

4.

This

example

includes

the

CLASS

option

for

a

job

you

are

putting

on

a

LST

queue.

After

the

keyword

CLASS,

you

specify

a

single

character

that

is

the

class

of

the

LST

queue

entry.

ADDRESS

POWER

"PUTQE

LST

MEMBER

MYPROG.PROC

CLASS

A"

5.

This

example

shows

the

result

when

you

use

the

jnamevar.

Assume

MYPROG.PROC

contains

the

following

JCL.

*

$$

JOB

JNM=GOODJOB,DISP=D,PRI=3,CLASS=B

//

JOB

LIZDIR

EXECUTE

PROGRAM

LISTDIR

//

LIBDEF

PHASE,SEARCH=IJSYSRS.SYSLIB

//

EXEC

LIBR,SIZE=(AUTO,64K)

ADDRESS

POWER

Commands

Chapter

11.

ADDRESS

POWER

Commands

193

LISTDIR

LIB=LIZH

/*

/&

*

$$

EOJ

If

you

use

the

following

PUTQE

command.

ADDRESS

POWER

"PUTQE

RDR

MEMBER

MYPROG.PROC

JOBNAME

mine

CLASS

class"

REXX

puts

GOODJOB

into

the

variable

mine

and

the

class

B

into

the

variable

class,

and

the

entry

on

the

RDR

queue

has

the

job

name

GOODJOB.

6.

This

example

includes

the

OPTB

option.

ostem.0

=

2

ostem.1

=

’PAGEDEF=HUGO’

ostem.2

=

’CICSDATA=xyz’

ostem.3

=

’0021=(PPP,QQQ,RR,SS)’

ADDRESS

POWER

"PUTQE

LST

STEM

ltfile.

OPTB

ostem."

7.

This

example

creates

a

LST

queue

entry

consisting

of

2

segments

in

3

steps.

ADDRESS

POWER

’PUTQE

LST

JOBNAME

PUTQTEST

JOBNUM

jn

FIRST’

,

’CLASS

Q

STEM

file1.’

’PUTQE

LST

JOBNAME

PUTQTEST

JOBNUM’

jn

’NEXT’

,

’CLASS

Q

STEM

file2.

NEWSEGM

segment_var’

jobsuf_num

=

segment_var

+

1

/*

start

of

new

segment

*/

’PUTQE

LST

JOBNAME

PUTQTEST

JOBNUM’

jn

’

LAST’

,

’CLASS

Q

STEM

file3.

JOBSUF

’

jobsuf_num

QUERYMSG

��

QUERYMSG

DELETE

KEEP

JOBNAME

jname

JOBNUM

jnum

WAIT

seconds

��

QUERYMSG

returns

job

completion

message(s)

into

the

stem

specified

by

OUTTRAP.

Seconds,

jname,

and

jnum

serve

as

input

parameters

only.

The

output

reflects

the

specified

search

arguments.

Search

arguments

can

be

Userid

as

given

by

the

USERID()

function,

JOBNAME

jname,

and

JOBNUM

jnum.

Notes:

1.

QUERYMSG

only

retrieves

job

completion

messages

of

jobs

submitted

to

VSE/POWER

via

PUTQE

RDR.

2.

QUERYMSG

retrieves

all

messages

available

at

the

time

the

command

is

issued.

The

maximum

value

of

the

OUTTRAP

function

does

not

limit

the

number

of

messages

deleted

by

QUERYMSG

DELETE.

It

only

limits

the

number

of

messages

stored

into

the

OUTTRAP

stem.

Operands

DELETE

specifies

that

the

messages

are

deleted

after

retrieval.

This

is

the

default.

KEEP

the

messages

are

kept

in

the

VSE/POWER

message

queue

and

can

be

retrieved

again.

JOBNAME

jname

the

name

of

the

job

you

want

completion

messages

from.

ADDRESS

POWER

Commands

194

REXX/VSE

Reference

JOBNUM

jnum

the

number

of

the

job

you

want

completion

messages

from.

If

you

specify

JOBNUM,

JOBNAME

must

be

specified,

too.

WAIT

specifies

the

maximum

amount

of

time

in

seconds

until

the

messages

are

returned.

The

following

table

shows

how

QUERYMSG

sets

the

REXX

special

variable

RC.

Return

Code

Meaning

0

Messages

are

available.

-1

Timeout

occurred

and/or

no

job

completion

message

has

been

retrieved.

-2

VSE/POWER

Get

completion

Message

service

(GCM)

is

not

available.

-13

VSE/POWER

error.

-19

Error

in

an

operand.

QUERYMSG

Examples:

1.

This

example

returns

all

job

completion

messages

for

USERID()

and

deletes

them

from

the

VSE/POWER

message

queue.

QUERYMSG

2.

This

example

returns

all

job

completion

messages

for

USERID()

and

leaves

them

in

the

VSE/POWER

message

queue.

QUERYMSG

KEEP

3.

This

example

returns

all

job

completion

messages

for

USERID()

and

JOBNAME

jname

and

leaves

them

in

the

VSE/POWER

message

queue.

QUERYMSG

KEEP

JOBNAME

jname

4.

This

example

returns

all

job

completion

messages

for

USERID(),

JOBNAME

jname,

and

JOBNUM

jnum,

and

leaves

them

in

the

VSE/POWER

message

queue.

QUERYMSG

KEEP

JOBNAME

jname

JOBNUM

jnum

5.

This

example

shows

job

completion

messages

of

a

job

transmitted

to

another

VSE

node.

For

example,

job

TSTSUB3

was

submitted

to

VSE

node

BOEVSE02

via

PUTQE

and

the

variable

jnumvar

returned

the

value

’05097’.

ADDRESS

POWER

"PUTQE

RDR

MEMBER

PRD2.REXX.TESTSUB3.Z"

,

"

WAIT

20

CLASS

class

JOBNAME

jobname

JOBNUM

jobnum"

Executing

this

job

on

the

VSE

node

BOEVSE03

leads

to

the

following

job

completion

message:

ARX0970I

JOB

TESTSUB3

00346

EXECUTED

NODE=BOEVSE03

DATE=08/12/94

TIME=7:31:20

MAXRC=0008

LASTRC=0008

ORG=05097

ORG=05097

specifies

the

job

number

on

the

original

node

BOEVSE02

and

00346

is

the

job

number

on

the

executing

node

BOEVSE03.

However,

if

the

job

is

executed

on

the

same

node

BOEVSE02,

it

generates

the

following

job

completion

message:

ARX0970I

JOB

TESTSUB3

05097

EXECUTED

NODE=BOEVSE02

DATE=08/12/94

TIME=7:31:20

MAXRC=0008

LASTRC=0008

Rules

for

Issuing

Job

Completion

Messages

There

are

two

cases

where

job

completion

messages

are

generated:

v

ADDRESS

POWER

PRELEASE

The

message

generated

by

this

command

is

called

the

message

for

the

releaser.

ADDRESS

POWER

Commands

Chapter

11.

ADDRESS

POWER

Commands

195

v

ADDRESS

POWER

PUTQE

RDR

The

message

generated

by

this

command

is

called

the

message

for

the

submitter.

The

following

applies:

1.

The

releaser

gets

a

completion

message

if

the

PRELEASE

command

has

been

successfully

processed.

If

more

than

one

PRELEASE

command

has

been

issued,

the

releaser

gets

the

completion

message

of

the

last

successfully

processed

command.

2.

If

the

PRELEASE

command

does

not

achieve

a

successfully

starting

of

the

mentioned

POWER

job,

message

1R88I

NOTHING

TO

RELEASE

is

issued.

There

will

be

no

completion

message

in

this

case.

3.

If

releaser

and

submitter

are

identical

only

one

completion

message

is

issued.

Otherwise

two

completion

messages

are

issued.

The

releaser

and

submitter

are

identical

if

they

use

the

same

partition

ID,

REXX

user

ID,

node

ID,

and

system

ID.

4.

There

will

be

no

job

completion

message

if

a.

a

job

is

being

executed

a

second

time

without

having

been

released

by

REXX.

This

can

be

a

job

which

is

scheduled

to

run

repeatedly

because

of

time

scheduling

operands

(DUEDAY,

for

example).

b.

the

POFFLOAD

command

has

been

used

to

write

the

job

to

tape

c.

a

child

job

has

been

created

by

a

parent

job

via

the

DISP=I

operand

within

the

*

$$

PUN

statement.

5.

In

a

shared

environment

a

completion

message

for

the

releaser

is

routed

back

to

the

system

on

which

the

PRELEASE

had

been

issued.

6.

In

a

network

a

completion

message

for

the

releaser

is

routed

back

to

the

node

on

which

the

PRELEASE

had

been

issued.

7.

The

original

jobnumber

of

a

message

for

the

submitter

may

not

be

same

as

the

original

jobnumber

for

the

releaser,

if

the

job

has

been

submitted

on

a

node

A,

sent

to

a

node

B,

and

has

then

been

released

on

node

B.

The

original

jobnumber

of

a

message

for

a

submitter

is

the

jobnumber

on

node

A

where

the

job

has

been

submitted.

The

original

jobnumber

of

a

message

for

a

releaser

is

the

jobnumber

on

node

B

where

the

job

has

been

released.

The

VSE/POWER

Diagnosis

Reference,

LY33-9163,

describes

how

VSE/POWER

generates

completion

messages

caused

by

a

PRELEASE

command.

CTL

The

CTL

(control)

service

is

part

of

the

VSE/POWER

access

services.

Through

a

CTL

service

request

you

can

send

commands

to

VSE/POWER.

Use

ADDRESS

POWER

to

send

the

following

commands:

PALTER

Alter

attributes

of

a

queue

entry

PBRDCST

Transmit

a

message

PCANCEL

Cancel

a

job

that

is

being

executed

PDELETE

Delete

a

reader

or

an

output

queue

entry

PDISPLAY

Display

status

information

about

a

reader

or

an

output

queue

entry

or

a

group

of

entries

PFLUSH

DEV4

Cancel

device

4. These

commands

are

for

authorized

users

only,

for

example

a

REXX

procedure

specifying

the

POWER

master

password

in

the

SETUID

command.

ADDRESS

POWER

Commands

196

REXX/VSE

Reference

PGO4

Reactivate

a

task

or

partition

PHOLD

Place

a

reader

or

an

output

queue

entry

into

the

hold

status

PINQUIRE

Display

various

kinds

of

job-

and

resource-status

information,

status

information

about

queue

entries

on

tape

or

network

related

information,

status

information

of

the

active

Dynamic

Class

Table.

PLOAD

DYNC4

Load

the

Dynamic

Class

Table

PRELEASE

Release

a

job

or

an

output

queue

entry.

If

you

are

not

interested

in

POWER-generated

job

completion

messages,

add

string

(NOGENCM

to

your

PRELEASE

RDR

command

(for

example:

ADDRESS

POWER

″R

RDR,MYJOB

(NOGENCM″)

PSETUP

Print

the

page

layout

of

one

or

more

pages

PSTART4

Start

a

device

driving

system

like

PSF,

LANRES,

or

CICS

Report

Controller

PSTOP4

Stop

a

device

driving

system

PVARY

DYNC4

Dis/enable

dynamic

classes.

PXMIT

Pass

a

command

for

processing

by

VSE/POWER

to

another

node.

For

the

commands

PALTER,

PCANCEL,

PDELETE,

PHOLD,

and

PRELEASE

the

POWER

access

rules

apply

as

described

on

page

181.

The

following

table

shows

how

a

CTL

service

request

sets

the

REXX

special

variable

RC.

Return

Code

Meaning

0

Successful

processing.

-13

A

severe

XPCC

or

POWER

error.

-14

General

use

storage

could

not

be

obtained.

-16

A

storage

problem

occurred

during

the

set

up

to

get

a

connection

to

the

VSE/POWER

spool-access

services

interface.

-17

Connection

to

VSE/POWER

spool-access

services

failed.

Note:

OUTTRAP

(page

99)

can

trap

error

information

from

CTL.

If

trapping

is

active,

error

information

is

also

written

to

the

stem

that

you

specify

on

the

OUTTRAP

function.

This

error

information

can

include

VSE/POWER

messages.

See

VSE/ESA

Messages

and

Codes,

SC33-6796,

for

descriptions

of

VSE/POWER

messages.

The

following

shows

an

example

of

a

CTL

service

request:

jobname

=

MYJOB

’SETUID

PAUL’

/*

POWER

FROM/TO

user

*/

oldtrap

=

OUTTRAP(pwr_ret.)

/*

POWER

return

info

*/

ADDRESS

POWER

’PDISPLAY

LST,’||

jobname

||’,CCLASS=X’

/*

POWER

command

*/

ADDRESS

POWER

Commands

Chapter

11.

ADDRESS

POWER

Commands

197

If

RC

=

0

Then

Do

i=1

To

pwr_ret.0

Say

pwr_ret.i

End

Submitting

and

Controlling

Power

Jobs

REXX

offers

various

types

of

job

management:

1.

Submitting

VSE/POWER

jobs:

A

job

taken

from

a

VSE

library

or

REXX

stem

is

placed

into

the

VSE/POWER

RDR

queue

via

PUTQE

RDR

command.

Here

is

an

example:

ADDRESS

POWER

"PUTQE

RDR

MEMBER

MYJOB"

PUTQE

does

not

wait

and

REXX

continues

with

the

next

instruction.

PUTQE

has

no

information

if

the

job

has

started

or

completed.

If

the

job

has

completed,

VSE/POWER

generates

a

job

completion

message

.

2.

Waiting

for

synchronously

running

jobs:

A

VSE/POWER

job

is

scheduled

in

a

different

partition

via

PUTQE

RDR

WAIT.

The

REXX

program

waits

and

continues

execution

if

one

of

the

following

occurs:

v

the

job

has

completed

v

a

scheduling

error

has

occurred

v

the

time

has

expired

Here

is

an

example:

/**/

/*

*/

/*

The

REXX

program

is

submitting

a

job

and

awaiting

its

*/

/*

execution.

*/

/*

The

job

resides

in

the

library

member

A.B.MYJOB.JCL

*/

/*

and

runs

an

utility

program.

It’s

output

is

retrieved.

*/

/*

Subroutine

CHECK_JOB_OUTPUT

scans

the

job

output

for

*/

/*

the

argument

NAME.

The

class

of

the

LST

queue

entry

*/

/*

will

be

the

default

class.

*/

/*

*/

/**/

ARG

name

.

CALL

OUTTRAP

out.

ADDRESS

POWER

class

=

’ABC’

’PUTQE

RDR

WAIT

60

MEMBER

A.B.MYJOB.JCL’,

’JOBNAME

jobname

JOBNUM

jobnum

CLASS

class’

IF

rc

=

0

THEN

DO

’GETQE

LST

STEM

job_output.’

,

’JOBNAME’

jobname

’JOBNUM’

jobnum

IF

Check_Job_Output(name)

THEN

SAY

’We

found

the’

name

END

ELSE

IF

rc

>

0

THEN

SAY

’Return

code

of

MYJOB

is:’

rc

ELSE

SAY

’Job

submission

failed’

EXIT

/*

Check_Job_Output:

Check

each

line

of

the

job

output

for

the

*/

/*

blank

delimited

word

passed

via

the

first

argument.

*/

/*

Return

1

if

found,

otherwise

return

0.

*/

Check_Job_Output:

arg

looking_for

do

line

=

1

to

job_output.0

ADDRESS

POWER

Commands

198

REXX/VSE

Reference

if

wordpos(looking_for,translate(job_output.line))¬=0

then

return

1

end

return

0

See

also

the

demo

program

REXXWAIT

described

on

page

263.

3.

Managing

asychchronously

running

jobs:

REXX

is

assumed

to

be

running

in

partition

F5.

Several

VSE/POWER

jobs

submitted

or

released

by

REXX

are

running

in

different

partitions.

After

the

jobs

have

ended,

VSE/POWER

generates

job

completion

messages

held

in

the

message

repositories

F5.USER_1

and

F5.USER_2.

If

at

least

one

job

completion

message

is

available,

QUERYMSG

retrieves

job

completion

messages.

Here

is

an

example:

Note

that

for

simplicity

only

one

job

completion

message

repository

and

the

job

naming

convention

MYJOBnnn

is

assumed

here.

/**/

/*

REXX

code

that

shows

the

management

of

asynchronously

*/

/*

running

jobs.

VSE/POWER

jobs

with

name

MYJOBnnn,

*/

/*

nnn=1,2,3,..,

are

submitted.

*/

/**/

ARG

number_of_jobs

SETUID

’USER’

CALL

OUTTRAP

msg.,,NOCONCAT

ADDRESS

POWER

DO

i=1

TO

number_of_jobs

’PUTQE

RDR

MEMBER

A.B.MYJOB’i’.JCL’

END

DO

WHILE

number_of_jobs

¬=

0

CALL

SLEEP

5

/*

Wait

for

messages

*/

’QUERYMSG

KEEP’

/*

Query

for

messages

*/

IF

rc=0

THEN

/*

Check

completion

*/

DO

i=1

TO

msg.0

while

number_of_jobs

¬=

0

IF

WORD(msg.i,1)

=

’ARX0970I’

THEN

DO

Figure

6.

Job

Management

Using

the

QUERYMSG

Function

ADDRESS

POWER

Commands

Chapter

11.

ADDRESS

POWER

Commands

199

PARSE

VAR

msg.i

.

.

jname

jnumber

.

.

.

.

maxrc

.

IF

SUBSTR(jname,1,5)

=

’MYJOB’

THEN

DO

’QUERYMSG

DELETE

JOBNAME’

jname

,

’JOBNUM’

jnumber

IF

maxrc

=

’MAXRC=0000’

THEN

SAY

’JOB’

jname

’run

successfully’

ELSE

SAY

’JOB’

jname

’failed

with’

maxrc

number_of_jobs

=

number_of_jobs

-1

END

END

END

END

See

also

the

demo

program

REXXJMGR

described

on

page

“REXXJMGR”

on

page

262.

ADDRESS

POWER

Commands

200

REXX/VSE

Reference

Chapter

12.

JCL

Command

Environment

The

JCL

Host

Command

Environment

The

JCL

command

environment

lets

you

isssue

JCL

commands

via

a

REXX

program.

The

syntax

of

the

JCL

host

command

environment

is

��

ADDRESS

JCL

jcl_command

��

Note:

Address

JCL

can

only

be

used

if

the

REXX

program

has

been

invoked

by

//

EXEC

REXX.

In

case

you

only

want

to

enter

one

JCL

command,

you

can

use

this

format:

ADDRESS

JCL

"jcl_command"

If

you

want

to

issue

several

JCL

commands,

you

can

use

the

following

format:

ADDRESS

JCL

"jcl_command_1"

"jcl_command_2"

...
"jcl_command_n"

In

case

a

JCL

command

requires

SYSIPT

data

as,

for

example,

SET

SDL,

use

the

REXXIPT

function.

With

REXXIPT

you

determine

the

name

of

the

stem

used

to

specify

the

SYSIPT

input

data.

The

following

example

loads

all

required

REXX/VSE

phases

into

the

SVA:

ADDRESS

JCL

CALL

REXXIPT

input.

input.0

=

4

input.1

=

’USERPGM1,SVA’

input.2

=

’USERPGM2,SVA’

input.3

=

’USERPGM3,SVA’

input.4

=

’/*’

’SET

SDL’

You

can

keep

the

input_stem

and

at

the

same

time

control

whether

a

JCL

command

reads

data

from

REXXIPT:

input.0

=

0

’SET

SDL’

/*

<=

Does

not

read

from

input

stem

*/

/*

No

phases

are

loaded

into

SVA

*/

input.0

=

1

’SET

SDL’

/*

<=

Reads

one

record

from

input

stem

*/

/*

Phase

ARXINIT

is

loaded

into

SVA

*/

If

you

issue

JCL

commands

which

do

not

read

data

from

SYSIPT,

either

do

not

specify

a

call

to

REXXIPT

before

the

ADDRESS

JCL

command,

or

make

sure

that

input

stem.0

is

set

to

0.

The

following

example

shows

a

REXX

program

which

defines

five

DLBL/EXTENTs

for

VSAM

files

and

writes

data

from

the

program

stack

on

a

file:

ADDRESS

JCL

DO

i=1

TO

5

"//

DLBL

RXTEST"||

i

||",’REXXVSE.TEST."||

i

||"’,,VSAM"

©

Copyright

IBM

Corp.

1988,

2004

201

"//

EXTENT

,CTS220"

END

"/*"

/*

Gives

an

indication

for

JCL

that

the

*/

/*

last

label

(RXTEST5)

together

with

its

*/

/*

extents

can

be

written

into

the

label

area

*/

Format

of

Address

JCL

Commands

ADDRESS

JCL

can

issue

a

JCL

command

of

up

to

407

characters.

REXX/VSE

breaks

the

command

string

into

appropriate

pieces

to

match

the

JCL

rules.

ADDRESS

JCL

supports

up

to

6

continuation

lines.

No

continuation

character

is

required

and

the

continuation

line

need

not

start

at

a

specified

column.

The

following

example

shows

a

long

LIBDEF

chain

which

does

not

fit

into

one

JCL

line:

ADDRESS

JCL

user_lib

=

’USERLIB.SUB1,USERLIB.SUB2,USERLIB.SUB3’

system_lib

=

’PRD2.PROD,PRD2.BASE,IJSYSRS.SYSLIB’

’LIBDEF

*,SEARCH=(’||user_lib||system_lib||’)’

VSE

JCL

ON

Conditions

VSE

JCL

deactivates

ON

$RC

conditions

set

by

job

control

during

//

EXEC

REXX

processing.

After

the

REXX

exec

has

finished,

ON

$RC

is

reset

to

active.

Any

non

zero

return

code

from

the

REXX

exec

sets

the

$RC

condition

to

ON.

The

ON

$ABEND

and

ON

$CANCEL

conditions

remain

active.

These

conditions

cannot

be

set

within

the

REXX

exec.

Options

ACANCEL,

JCANCEL,

and

SCANCEL

are

deactivated

as

long

as

REXX

is

running.

When

REXX

has

ended

they

are

set

to

ACTIVE

again.

Unsupported

JCL

Commands

ADDRESS

JCL

does

not

support

the

following

JCL

commands:

″/.″

″JOB″

″/+″

″ON″

″/&″

″OVEND″

″ALLOC″

″PAUSE″

″EXEC″5

″PROC″

″GOTO″

″ROD″

″IF″

″RSTRT″

″UNBATCH″

Invoking

these

commands

results

in

return

code

-7.

VSE

JCL

Output

Trapping

VSE

JCL

traps

all

information

and

decision

messages

normally

written

to

SYSLOG.

Use

the

OUTTRAP

function

to

retrieve

these

messages.

Note

that

these

messages

are

not

shown

at

the

operator’s

console.

An

exception

are

messages

causing

a

job

cancellation.

The

job

is

cancelled

and

JCL

does

not

return

to

REXX.

Messages

written

to

SYSLST

and

action

messages

written

to

SYSLOG

are

not

trapped.

Return

codes

from

the

JCL

Host

Command

Environment

Return

Code

Meaning

0

JCL

command

completes

with

return

code

0

or

with

no

return

code

(a

JCL

command

returns

either

0

or

no

return

code).

5. Instead

EXEC

PGM,PARM

you

may

use

ADDRESS

LINK.

See

“The

LINK

Host

Command

Environment”

on

page

206

JCL

Command

Environment

202

REXX/VSE

Reference

Return

Code

Meaning

-1

The

REXXIPT

input

stem

specifies

an

invalid

number

of

input

records.

-2

Error

from

ARXEXCOM

while

working

with

the

REXXIPT

input

stem.

-3

JCL

command

not

found.

-4

JCL

command

processing

failed,

an

appropriate

VSE

error

message

may

be

retrieved

via

the

OUTTRAP

function.

-5

A

Rexx

program

issues

ADDRESS

JCL

but

was

not

invoked

by

’//

EXEC

REXX=’

or

does

not

run

under

the

main

task.

-6

No

more

GETVIS

storage

available

by

ADDRESS

JCL

-7

Restricted

JCL

command,

not

allowed

by

ADDRESS

JCL.

-8

Error

while

ARXOUT

was

opened

to

accept

OUTTRAP

data

records.

JCL

Command

Environment

Chapter

12.

JCL

Command

Environment

203

JCL

Command

Environment

204

REXX/VSE

Reference

Chapter

13.

Host

Command

Environments

for

Loading

and

Calling

Programs

Host

Commands

REXX/VSE

provides

the

LINK

and

LINKPGM

host

command

environments

to

let

you

load

and

call

a

phase

from

the

active

PHASE

search

chain.

To

load

and

call

a

program,

specify

the

name

of

the

program

followed

by

any

parameters

you

want

to

pass

to

the

program.

For

example:

ADDRESS

LINKPGM

"PROGRAM

p1

p2

...

pn"

Enclose

the

name

of

the

program

and

any

parameters

in

single

or

double

quotation

marks.

The

LINK

and

LINKPGM

environments

all

support

programs

of

any

AMODE

or

RMODE.

These

environments

differ

in:

v

the

format

of

the

parameter

list

that

the

program

receives

v

the

capability

of

passing

multiple

parameters

v

variable

substitution

for

the

parameters

v

the

ability

of

the

called

program

to

update

the

parameters.

The

LINK

environment

offers

an

alternative

to

the

job

control

statement

EXEC

PGM.

The

parameter

list

is

the

same

as

if

you

specify

the

PARM

parameter

in

the

EXEC

PGM

statement.

For

details

see

“The

LINK

Host

Command

Environment”

on

page

206

and

“The

LINKPGM

Host

Command

Environment”

on

page

208

For

the

LINK

environment,

you

can

specify

only

a

single

character

string

to

pass

to

the

program.

The

LINK

environment

does

not

evaluate

the

character

string

and

does

not

perform

variable

substitution.

It

simply

passes

the

string

to

the

called

program.

The

program

can

use

the

character

string

it

receives.

However,

the

program

cannot

return

an

updated

string

to

the

REXX

program.

For

the

LINKPGM

environment,

you

can

pass

multiple

parameters

to

the

called

program.

The

environment

performs

variable

substitution

on

the

parameters

you

specify.

That

is,

the

environment

determines

the

value

of

each

variable.

When

the

environment

calls

a

program,

it

passes

the

value

of

each

variable

to

the

program.

The

program

can

update

the

parameters

it

receives

and

return

the

updated

values

to

the

REXX

program.

If

you

want

to

have

a

called

program

read

input

from

REXX

compound

variables

instead

of

reading

from

SYSIPT,

use

the

REXXIPT

external

function.

You

specify

a

stem

on

the

REXXIPT

external

function

and

call

REXXIPT

before

calling

the

program.

See

“REXXIPT”

on

page

102

for

details.

The

table

of

authorized

programs

(ARXEOJTB)

allows

programs

using

the

EOJ

macro

to

return

to

REXX

rather

than

terminating

the

jobstep.

After

you

load

and

call

a

program,

the

host

command

environment

sets

a

return

code

in

the

REXX

special

variable

RC.

For

the

LINK

and

LINKPGM

environments,

the

return

code

can

be

-3

if

the

host

command

environment

could

not

locate

the

program

you

specified.

For

the

LINK

and

LINKPGM

environments,

the

return

code

set

in

RC

can

also

be

-2.

For

the

LINKPGM

environment,

this

indicates

unsuccessful

processing

of

variables.

This

may

have

been

because

the

host

command

environment

could

not:

v

Perform

variable

substitution

before

loading

and

calling

the

program

v

Update

the

variables

after

the

program

completed.

©

Copyright

IBM

Corp.

1988,

2004

205

For

the

LINK

environment,

you

can

also

receive

an

RC

value

of

-2

if

the

length

of

the

value

of

the

parameter

you

pass

is

larger

than

the

length

that

can

be

specified

in

the

signed

halfword

length

field

in

the

parameter

list.

The

maximum

value

of

the

halfword

length

field

is

32,767.

On

exit

from

the

called

program,

register

15

contains

the

return

code

from

this

program.

Note

that

the

value

that

can

be

set

in

the

RC

special

variable

for

the

LINK

environments

is

a

signed

31

bit

number

in

the

range

-2,147,483,648

to

+2,147,483,647.

The

following

topics

describe

how

to

load

and

call

programs

using

these

host

command

environments.

The

LINK

Host

Command

Environment

The

LINK

environment

lets

you

load

and

call

a

non-REXX

program

in

the

same

partition

under

the

same

task

where

the

REXX

program

is

running.

For

the

LINK

environment,

you

can

pass

only

a

single

character

string

to

the

program.

The

LINK

host

command

environment

calls

programs

with

the

same

parameter

list

convention

as

the

JCL

parameter

list:

//

EXEC

PGM=pgmname,PARM=’character_string’

When

you

use

the

LINK

environment,

enclose

the

name

of

the

program

and

the

character

string

in

single

or

double

quotation

marks.

This

prevents

the

language

processor

from

performing

variable

substitution.

Here

are

two

examples:

ADDRESS

LINK

’TESTPGMA

varid’

ADDRESS

LINK

’TESTMODA

this

is

a

parameter

string’

If

you

want

to

pass

the

value

of

a

variable,

do

not

enclose

it

in

quotation

marks.

In

this

case,

the

language

processor

performs

the

variable

substitution

before

passing

the

string

to

the

host

command

environment.

The

following

excerpts

from

a

REXX

program

would

have

the

same

results

as

the

previous

examples:

parm_value

=

’varid’

ADDRESS

LINK

’TESTPGMA’

parm_value

parm_value

=

’this

is

a

parameter

string’

ADDRESS

LINK

’TESTMODA’

parm_value

The

host

command

environment

routines

for

LINK

do

not

evaluate

the

character

string

you

specify.

The

routine

simply

passes

the

character

string

to

the

program

that

it

loads

and

calls.

The

program

can

use

the

character

string

it

receives.

However,

the

program

cannot

return

an

updated

string

to

the

REXX

program.

Figure

7

on

page

207

shows

how

the

LINK

host

command

environment

routine

passes

a

character

string

to

a

program.

Register

0

points

to

the

ENVBLOCK

under

which

the

REXX

program

issuing

the

ADDRESS

LINK

is

running.

Register

1

points

to

a

parameter

consisting

of:

v

A

length

(of

a

character

string).

This

is

a

halfword.

v

A

character

string.

If

you

specify

no

parameters

when

loading

and

calling

a

program

with

ADDRESS

LINK,

then

register

1

contains

the

same

value

as

register

15.

If

you

specify

parameters,

the

high-order

bit

of

the

parameter

register

1

points

to

is

on.

The

halfword

length

field

contains

the

length

of

the

parameter

you

pass.

The

maximum

value

of

the

halfword

length

field

is

32,767.

LINK

and

LINKPGM

Host

Command

Environment

206

REXX/VSE

Reference

For

example,

suppose

you

use

the

following

instruction:

ADDRESS

LINK

’TESTMODA

numberid

payid’

When

the

LINK

host

command

environment

routine

loads

and

calls

the

TESTMODA

program,

the

address

of

the

character

string

points

to

the

string:

numberid

payid

The

length

of

the

character

string

is

14.

In

this

example,

if

numberid

and

payid

are

REXX

variables,

the

LINK

host

command

environment

performs

no

substitution.

You

can

use

the

LINK

environment

without

specifying

a

character

string.

For

example:

ADDRESS

LINK

"PROGA"

Return

Codes

from

the

LINK

Environment

On

return

from

the

called

program

the

contents

of

Register

15

is

stored

into

the

REXX

special

variable.

The

following

table

lists

return

codes

from

the

LINK

environment

that

are

stored

in

the

REXX

special

variable

RC.

Return

Code

Meaning

-1

The

contents

of

stem.0

is

not

a

positive

number

or

0.

(Calling

the

REXXIPT

function

specifies

a

stem

name;

stem.0

specifies

the

number

of

data

records

available

for

reading,

and

this

number

must

be

positive

or

0.)

-2

The

parameter

length

exceeded

32,767.

See

page

205

for

details.

-3

The

host

command

environment

could

not

find

the

program

you

specified.

You

may

get

message

ARX0565I

showing

the

failing

return

code

of

the

LOAD

or

CDLOAD

macro.

-4

The

host

command

environment

could

not

find

the

phase

ARXEOJTB

or

the

phase

resides

in

the

SVA.

-5

Usage

of

this

program

is

restricted

to

the

maintask

only.

-6

Not

enough

partition

GETVIS

storage

available

to

successfully

process

the

command.

Figure

7.

Parameters

for

the

LINK

Environment

LINK

and

LINKPGM

Host

Command

Environment

Chapter

13.

Host

Command

Environments

for

Loading

and

Calling

Programs

207

Return

Code

Meaning

-8

One

of

the

following:

v

REXX

tried

to

open

ARXOUT

to

accept

OUTTRAP

data

records

before

it

gives

control

to

the

program

specified

in

ADDRESS

LINK.

This

open

failed.

v

There

are

problems

filling

the

OUTTRAP

variable

during

an

invocation

of

ADDRESS

LINK

LIBR.

Check

if

your

startup

procedure

contains

the

statement

″//

EXEC

ARXLINK″

and

add

it.

This

statement

is

contained

in

the

startup

procedure

USRBG.PROC

in

library

IJSYSRS.SYSLIB

and

in

the

skeleton

SKUSERBG

in

the

ICCF

library

59.

See

also

the

description

of

SKUSERBG

in

the

VSE/ESA

Planning

manual.

v

Insufficient

storage.

-9

This

occurs

if

you

call

LNKEDT

for

one

of

the

following

reasons:

v

SYSLNK

was

not

opened.

The

invocation

of

LNKEDT

is

out

of

sequence

because

the

VSE

JCL

statement

CATAL

or

LINK

did

not

precede

the

LNKEDT

call.

v

Error

during

the

attempt

to

write

end-of-file

marker

on

SYSLNK.

-10

The

user

program

was

not

authorized

to

issue

SVC

14

(EOJ

macro)

when

it

was

called

by

ADDRESS

LINK.

See

also

message

ARX0980E.

-11

Program

does

not

fit

into

program

area

(SIZE

too

small).

The

LINKPGM

Host

Command

Environment

The

LINKPGM

environment

lets

you

load

and

call

a

non-REXX

program

in

the

same

partition

under

the

same

task

where

the

REXX

program

is

running.

Using

the

LINKPGM

environment,

you

can

pass

multiple

parameters

to

the

program.

The

parameters

do

not

have

a

length

field.

Upon

return

from

the

called

program,

the

value

of

the

passed

parameters

are

updated,

and

the

length

of

each

parameter

is

the

same

as

when

the

parameter

list

was

created.

To

use

the

LINKPGM

environment,

specify

the

name

of

the

program

followed

by

variable

names

for

each

of

the

parameters.

Separate

the

variable

names

with

one

or

more

blanks.

For

example:

ADDRESS

LINKPGM

"WKSTATS

var1

var2"

For

the

parameters,

specify

variable

names

instead

of

the

actual

values.

Enclose

the

name

of

the

program

and

the

variable

names

in

single

or

double

quotation

marks.

When

you

use

the

quotation

marks,

the

language

processor

does

not

evaluate

any

variables.

It

simply

passes

the

expression

to

the

host

command

environment

for

processing.

The

LINKPGM

environment

itself

evaluates

the

variables

and

performs

variable

substitution.

If

you

do

not

use

a

variable

for

each

parameter

and

enclose

the

expression

in

quotation

marks,

you

may

have

problems

with

variable

substitution

and

receive

unexpected

results.

After

the

LINKPGM

environment

routine

evaluates

the

value

of

each

variable,

it

builds

a

parameter

list

pointing

to

the

values.

The

routine

then

loads

and

calls

the

program

and

passes

the

parameter

list

to

the

program.

Figure

8

on

page

209

shows

how

the

LINKPGM

host

command

environment

routine

passes

the

parameters

to

the

program.

Register

0

points

to

the

ENVBLOCK

under

which

the

REXX

program

issuing

the

ADDRESS

LINKPGM

is

running.

Register

1

contains

the

address

of

a

parameter

list,

which

consists

of

a

list

of

addresses.

Each

address

in

the

parameter

list

points

to

a

parameter.

The

high-order

bit

of

the

last

address

in

the

parameter

list

is

1

to

indicate

the

end

of

the

parameter

list.

LINK

and

LINKPGM

Host

Command

Environment

208

REXX/VSE

Reference

On

output

from

the

called

routine,

the

value

of

the

parameter

is

updated

and

the

length

of

each

parameter

is

considered

to

be

the

same

as

when

the

parameter

list

was

created.

The

called

routine

cannot

increase

the

length

of

the

value

of

a

variable

that

it

receives.

However,

you

can

pad

the

length

of

the

value

of

a

variable

with

blanks

to

increase

its

length

before

you

load

and

call

a

program.

The

following

example

loads

and

calls

the

phase

TESTMODA,

passing

the

parameters

123456

and

ABCdef.

Before

using

ADDRESS

LINKPGM,

assign

the

values

to

variables.

Suppose

you

expect

the

called

program

to

pass

back

values

with

a

length

that

is

greater

than

6

(for

example,

20).

You

can

pad

the

parameter

with

blanks

on

the

right

before

passing

it.

One

way

to

do

this

is

to

use

the

LEFT

built-in

function

in

the

assignment

statement.

var1=left(’123456’,20)

var2=left(’ABCdef’,20)

ADDRESS

LINKPGM

’TESTMODA

var1

var2’

Here

is

another

example.

Suppose

you

want

to

load

and

call

to

the

RESLINE

program,

passing

one

parameter,

a

reservation

code

of

WK007816.

When

you

use

the

ADDRESS

LINKPGM

instruction,

specify

a

variable

name

for

the

parameter,

for

example,

revcode

for

the

reservation

code

WK007816.

Assign

the

value

to

revcode

before

using

ADDRESS

LINKPGM:

/*

REXX

program

that

loads

and

calls

RESLINE

program

*/

...
revcode

=

’WK007816’

...
ADDRESS

LINKPGM

’RESLINE

revcode’

Figure

8.

Parameters

for

the

LINKPGM

Environment

LINK

and

LINKPGM

Host

Command

Environment

Chapter

13.

Host

Command

Environments

for

Loading

and

Calling

Programs

209

...
EXIT

In

the

example,

you

assign

the

variable

revcode

the

value

WK007816.

On

the

ADDRESS

LINKPGM

instruction,

you

use

the

variable

name

for

the

parameter.

The

LINKPGM

host

command

environment

evaluates

the

variable

and

passes

the

value

of

the

variable

to

the

RESLINE

program.

The

length

of

the

parameter

(variable

revcode)

is

8.

If

the

RESLINE

program

wanted

to

update

the

value

of

the

variable

and

return

the

updated

value

to

the

REXX

program,

the

RESLINE

program

could

not

return

a

value

that

is

greater

than

8

bytes.

To

let

the

called

program

return

a

larger

value,

you

could

pad

the

value

of

the

original

variable

to

the

right

with

blanks.

For

example,

in

the

REXX

program

you

could

add

seven

blanks

and

assign

the

value

“WK007816

”

to

the

revcode

variable.

The

length

would

then

be

15

and

the

called

program

could

return

an

updated

value

of

up

to

15

bytes.

You

can

use

the

LINKPGM

environment

and

not

specify

any

parameters.

For

example:

ADDRESS

LINKPGM

"MONBILL"

If

you

do

not

specify

any

parameters,

then

register

1

is

equal

to

register

15.

Return

Codes

from

the

LINKPGM

Environment

On

return

from

called

program

the

contents

of

Register

15

is

stored

into

the

REXX

special

variable.

The

following

table

lists

return

codes

from

the

and

LINKPGM

environment

that

are

stored

in

the

REXX

special

variable

RC.

Return

Code

Meaning

-1

The

contents

of

stem.0

is

not

a

positive

number

or

0.

(Calling

the

REXXIPT

function

specifies

a

stem

name;

stem.0

specifies

the

number

of

data

records

available

for

reading,

and

this

number

must

be

positive

or

0.)

-2

Processing

the

variables

of

LINKPGM

or

REXXIPT

was

not

successful.

See

page

205

for

details.

-3

The

host

command

environment

could

not

find

the

program

you

specified.

You

may

get

message

ARX0565I

showing

the

failing

return

code

of

the

LOAD

or

CDLOAD

macro.

-4

The

host

command

environment

could

not

find

the

phase

ARXEOJTB

or

the

phase

resides

in

the

SVA.

-5

Usage

of

this

program

is

restricted

to

the

maintask

only.

-6

Not

enough

partition

GETVIS

storage

available

to

successfully

process

the

command.

-8

REXX

tried

to

open

ARXOUT

to

accept

OUTTRAP

data

records

before

it

gives

control

to

the

program

specified

in

ADDRESS

LINKPGM.

This

open

failed.

-9

This

occurs

if

you

call

LNKEDT

for

one

of

the

following

reasons:

v

SYSLNK

was

not

opened.

The

invocation

of

LNKEDT

is

out

of

sequence

because

the

VSE

JCL

statement

CATAL

or

LINK

did

not

precede

the

LNKEDT

call.

v

Error

during

the

attempt

to

write

end-of-file

marker

on

SYSLNK.

-10

The

user

program

was

not

authorized

to

issue

SVC

14

(EOJ

macro)

when

it

was

called

by

ADDRESS

LINKPGM.

See

also

message

ARX0980E.

-11

Program

does

not

fit

into

program

area

(SIZE

too

small)

Table

of

Authorized

Programs

If

you

call

a

program

using

the

EOJ

macro

by

ADDRESS

LINK

or

ADDRESS

LINKPGM,

you

have

to

code

an

entry

in

the

table

of

authorized

programs

ARXEOJTB

if

you

want

the

EOJ

macro

to

return

to

the

calling

REXX

program.

It

also

ensures

that

the

programs

having

an

entry

in

the

ARXEOJTB

table

can

only

be

invoked

from

a

REXX

program

running

under

the

main

task.

LINK

and

LINKPGM

Host

Command

Environment

210

REXX/VSE

Reference

If

a

user

program

uses

the

EOJ

macro,

and

no

entry

exists

in

table

ARXEOJTB,

message

ARX0980E

is

issued

and

the

REXX

program

is

terminated.

IMPORTANT

1.

If

an

entry

exists

in

table

ARXEOJTB,

the

EOJ

macro

(SVC

14)

does

not

end

the

jobstep

and

does

not

clean

up

any

task

related

resources.

It

is

your

responsibility

to

make

sure

that

your

program

does

not

hold

any

system

resources,

e.g.

LOCK

or

GETVIS.

2.

The

completion

of

the

//

EXEC

REXX

jobstep

cleans

up

task

related

resources.

PRD1.BASE

contains

a

sample

job

named

ARXEOJTB.Z.

When

adding

or

deleting

entries

from

the

ARXEOJTB

table

the

ARXEOJTB_TOTAL

and

ARXEOJTB_USED

fields

must

be

updated.

This

entry

specifies

the

name

of

the

linked

phase.

In

addition,

you

may

specify

if

REXX

is

to

load

the

user

program

into

the

program

area

via

LOAD

or

into

GETVIS

storage

via

CDLOAD.

If

LOAD

is

to

be

used,

you

can

choose

between

2

options

of

space

checking

within

the

program

area:

Either

all

phases

are

to

be

considered

that

start

with

the

first

4

bytes

of

the

given

phasename

(option’A’

or

blank,

for

instance

overlay

program

MSHP),

or

only

the

size

of

the

single

given

phasename

is

checked

(option

’S’).

Also

you

may

define

an

8

byte

synonym

for

the

user

program.

For

example,

entry

1

in

Figure

9

on

page

212

specifies

that

issuing

ADDRESS

LINK

LIBR

actually

calls

phase

ARXLIBR.

LINK

and

LINKPGM

Host

Command

Environment

Chapter

13.

Host

Command

Environments

for

Loading

and

Calling

Programs

211

$$$$

JOB

JNM=ARXEOJTB,CLASS=0,DISP=L

$$$$

LST

DISP=D,CLASS=A

//

JOB

ARXEOJTB

ASSEMBLE

&

LINK

/.

X

THIS

JOB

ASSEMBLES

AND

LINKS

THE

REXX/VSE

MODULE

ARXEOJTB

/.

X

USING

THE

HIGH

LEVEL

ASSEMBLER.

/.

X

BEFORE

YOU

SUBMIT

THE

JOB

UPDATE

THE

LIBDEF

CHAIN

TO

YOUR

NEE

//

LIBDEF

*,SEARCH=PRD1.BASE

//

LIBDEF

PHASE,CATALOG=PRD2.CONFIG

//

OPTION

ERRS,SYM,CATAL,NODECK,SXREF

PHASE

ARXEOJTB,*

//

EXEC

ASMA90,SIZE=(ASMA90,50K)

*/***START

OF

SPECIFICATIONS**/

/

*/

*/*01*

MODULE-NAME

=

ARXEOJTB

*/

/

*/

*/*01*

DESCRIPTIVE-NAME

=

REXX

EOJ

Return

Table

*/

/

*/

/

**

*/

/

*

*

*/

/

*

LICENSED

MATERIALS

-

PROPERTY

OF

IBM

*

*/

/

*

THIS

MODULE

IS

"RESTRICTED

MATERIALS

OF

IBM"

*

*/

/

*

5686-066

(C)

COPYRIGHT

IBM

CORP.

1995

*

*/

/

*

SEE

COPYRIGHT

INSTRUCTIONS

*

*/

/

*

*

*/

/

**

*/

/

*/

/

*/

/

*/

*/*01*

FUNCTION

=

Declare

the

REXX

EOJ

Return

table

used

by

*/

/

LINKxxx

Host

Command

Environments.

*/

/

*/

/

*/

/

DESCRIPTION

=

Each

entry

of

this

table

represents

*/

/

a

phase

to

be

loaded

by

ADDRESS

LINK

*/

/

or

ADDRESS

LINKPGM.

*/

/

You

may

assign

a

synonym

under

which

*/

/

the

phase

is

to

be

invoked

by

the

LINK

*/

/

and

LINKPGM

environment.

You

can

also

*/

/

determin

whether

the

phase

can

be

CDLOADed

*/

/

into

the

partition

getvis

or

LOADed

into

the

*/

/

program

area

of

the

partition.

*/

/

*/

/

An

entry

in

ARXEOJTB

allows

a

program

*/

/

called

by

ADDRESS

LINK/LINKPGM

to

use

the

*/

/

EOJ

macro

(SVC

14)

to

pass

control

back

*/

/

to

REXX.

*/

/

*/

/

An

entry

in

ARXEOJTB

ensures

that

a

program

*/

/

called

by

ADDRESS

LINK/LINKPGM

is

processed

*/

/

under

the

maintask

only.

*/

/

*/

/

*/

/

*/

/

.--.

*/

/

|

NOTE:

This

phase

must

not

be

loaded

into

the

SVA

|

*/

/

’--’

*/

Figure

9.

Table

of

Authorized

Programs

(Part

1

of

3)

LINK

and

LINKPGM

Host

Command

Environment

212

REXX/VSE

Reference

/

*/

/

*/

*/*02*

CHANGE-ACTIVITY

=

*/

/

*/

/

*/

*/***END

OF

SPECIFICATIONS**/

ARXEOJTB

CSECT

ARXEOJTB

AMODE

31

ARXEOJTB

RMODE

ANY

TITLE

’ARXEOJTB

-

REXX

EOJ

Return

Table’

ARXEOJTB_HEADER

DS

0F

/*

Set

up

the

ARXEOJTB

Header

*/

DC

CL8’ARXEOJTB’

*

/*

Addr

of

first

ARXEOJTB

entry

*/

ARXEOJTB_FIRST

DC

A(ARXEOJTB_ENTRIES)

ARXEOJTB_TOTAL

DC

F’9’

/*

Total

#

of

entries

*/

ARXEOJTB_USED

DC

F’6’

/*

#

of

entries

used

*/

ARXEOJTB_LENGTH

DC

F’28’

/*

Length

of

each

entry

*/

ARXEOJTB_FFFF

DC

X’FFFFFFFFFFFFFFFF’

/*

Set

Header

end

marker

*/

*

/*

START

OF

TABLE

ENTRIES

*/

ARXEOJTB_ENTRIES

EQU

*

/*

Start

of

entries

is

here

*/

*/**/

/

Do

not

change

the

entries

below

*/

*/**/

ARXEOJTB_ENTRY_1

EQU

*

/*

ARXLIBR

Entry

1

*/

DC

CL8’LIBR

’

/*

Synonym

used

in

ADDRESS

LINK

*/

DC

CL8’ARXLIBR

’

/*

Name

of

phase

*/

DC

AL4(0)

/*

Must

be

Zero

*/

DC

CL1’NO’

/*

Phase

Loaded

in

program

area

*/

DC

CL7’

’

/*

Reserved

*/

ARXEOJTB_ENTRY_2

EQU

*

/*

ARXIDCMS

Entry

2

*/

DC

CL8’IDCAMS

’

/*

Synonym

used

in

ADDRESS

LINK

*/

DC

CL8’ARXIDCAM’

/*

Name

of

phase

*/

DC

AL4(0)

/*

Must

be

Zero

*/

DC

CL1’NO’

/*

Phase

Loaded

in

program

area

*/

DC

CL7’

’

/*

Reserved

*/

ARXEOJTB_ENTRY_3

EQU

*

/*

ARXEOJTB

Entry

3

*/

DC

CL8’MSHP

’

/*

Synonym

used

in

ADDRESS

LINK

*/

DC

CL8’MSHP

’

/*

Name

of

phase

*/

DC

AL4(0)

/*

Must

be

Zero

*/

DC

CL1’YES’

/*

Phase

Loaded

in

program

area

*/

DC

CL1’ALL’

/*

Consider

all

phases

@56301UB

*/

DC

CL6’

’

/*

Reserved

@56301UB

*/

ARXEOJTB_ENTRY_4

EQU

*

/*

ARXEOJTB

Entry

4

*/

DC

CL8’ASSEMBLY’

/*

Synonym

used

in

ADDRESS

LINK

*/

DC

CL8’ASMA90

’

/*

Name

of

phase

*/

DC

AL4(0)

/*

Must

be

Zero

*/

DC

CL1’NO’

/*

Phase

Loaded

in

program

area

*/

DC

CL7’

’

/*

Reserved

*/

ARXEOJTB_ENTRY_5

EQU

*

/*

ARXEOJTB

Entry

5

*/

DC

CL8’LNKEDT

’

/*

Synonym

used

in

ADDRESS

LINK

*/

DC

CL8’$LNKEDT

’

/*

Name

of

phase

*/

DC

AL4(0)

/*

Must

be

Zero

*/

DC

CL1’NO’

/*

Phase

Loaded

in

program

area

*/

DC

CL7’

’

/*

Reserved

*/

ARXEOJTB_ENTRY_6

EQU

*

/*

ARXEOJTB

Entry

6

*/

DC

CL8’DITTO

’

/*

Synonym

used

in

ADDRESS

LINK

*/

DC

CL8’DITTO

’

/*

Name

of

phase

*/

DC

AL4(0)

/*

Must

be

Zero

*/

DC

CL1’YES’

/*

Phase

Loaded

in

program

area

*/

DC

CL1’SINGLE’

/*

Consider

this

phase

@56301UB

*/

DC

CL6’

’

/*

Reserved

@56301UB

*/

Figure

9.

Table

of

Authorized

Programs

(Part

2

of

3)

LINK

and

LINKPGM

Host

Command

Environment

Chapter

13.

Host

Command

Environments

for

Loading

and

Calling

Programs

213

Invoking

VSE

Utilities

You

can

use

the

ADDRESS

LINK

command

environment

to

invoke

VSE

utilities

such

as

LIBR,

IDCAMS,

Assembler,

DITTO

and

MSHP.

Note

that

only

LIBR

and

IDCAMS

are

able

to

write

output

into

OUTTRAP.

Invoking

LIBR

using

ADDRESS

LINK

ADDRESS

LINK

’LIBR

option_list’

option_list

can

only

be

MSHP.

Use

SYSIPT

or

REXXIPT

to

supply

input

statements

to

ADDRESS

LINK

LIBR.

Here

is

an

example:

ARG

sublib

ADDRESS

LINK

CALL

OUTTRAP

libr_output.

CALL

REXXIPT

libr_input.

libr_input.0

=

2

libr_input.1

=

’ACC

S=’||sublib

libr_input.2

=

’LD

ARX*.PHASE’

’LIBR’

IF

word_found(’ARXINIT’)

THEN

SAY

’REXX/VSE

was

installed

into’

sublib

ELSE

SAY

’REXX/VSE

is

not

installed

into’

sublib

EXIT

word_found:

ARG

search_for

*/**/

/

Do

not

change

the

entries

above

*/

*/**/

ARXEOJTB_ENTRY_7

EQU

*

/*

ARXEOJTB

Entry

7

*/

DC

CL8’

’

/*

Synonym

used

in

ADDRESS

LINK

*/

DC

CL8’

’

/*

Name

of

phase

*/

DC

AL4(0)

/*

Must

be

Zero

*/

DC

CL1’NO’

/*

Phase

Loaded

in

program

area

*/

DC

CL7’

’

/*

Reserved

*/

ARXEOJTB_ENTRY_8

EQU

*

/*

ARXEOJTB

Entry

8

*/

DC

CL8’

’

/*

Synonym

used

in

ADDRESS

LINK

*/

DC

CL8’

’

/*

Name

of

phase

*/

DC

AL4(0)

/*

Must

be

Zero

*/

DC

CL1’NO’

/*

Phase

Loaded

in

program

area

*/

DC

CL7’

’

/*

Reserved

*/

ARXEOJTB_ENTRY_9

EQU

*

/*

ARXEOJTB

Entry

9

*/

DC

CL8’

’

/*

Synonym

used

in

ADDRESS

LINK

*/

DC

CL8’

’

/*

Name

of

phase

*/

DC

AL4(0)

/*

Must

be

Zero

*/

DC

CL1’NO’

/*

Phase

Loaded

in

program

area

*/

DC

CL7’

’

/*

Reserved

*/

*

DC

C’PATCH

AREA

-

ARXEOJTB’

DS

32F

Patch

area

END

ARXEOJTB

$$/*

//

EXEC

LNKEDT,PARM=’MSHP,AMODE=31,RMODE=ANY’

$$/&

$$$$

EOJ

Figure

9.

Table

of

Authorized

Programs

(Part

3

of

3)

LINK

and

LINKPGM

Host

Command

Environment

214

REXX/VSE

Reference

DO

line

=

1

to

libr_output.0

IF

WORDPOS(search_for,translate(libr_output.line))¬=0

THEN

RETURN

1

END

RETURN

0

See

also

demo

program

SETSDL

described

on

page

“REXXSSDL”

on

page

263.

Invoking

IDCAMS

using

ADDRESS

LINK

Invoke

IDCAMS

via

ADDRESS

LINK

’IDCAMS

option_list’

option_list

corresponds

to

the

options

of

the

PARM

command.

See

VSE/VSAM

Commands

for

a

description

of

the

PARM

command.

Use

SYSIPT

or

REXXIPT

to

supply

input

statements

to

ADDRESS

LINK

IDCAMS.

Here

is

an

example:

ARG

file_name

CALL

OUTTRAP

idcams_output.

CALL

REXXIPT

idcams_input.

idcams_input.0

=

1

idcams_input.1

=

’LISTCAT

CLUSTER’

ADDRESS

LINK

’IDCAMS

MARGINS(1

80)’

IF

rc

=

0

THEN

CALL

Print_Only_Lines_Including

file_name

ELSE

SAY

’IDCAMS

LISTCAT

fails

with

RC=’rc

EXIT

Print_Only_Lines_Including:

ARG

search_name

DO

line

=

1

to

idcams_output.0

IF

WORDPOS(search_name,translate(idcams_output.line))¬=0

THEN

SAY

idcams_output.line

END

RETURN

Invoking

ASSEMBLE

and

LNKEDT

This

program

assembles

the

source

program,

linkedits

the

phase

and

executes

it.

CALL

REXXIPT

rexx_sysipt.

rexx_sysipt.0

=

5

rexx_sysipt.1

=

"

PUNCH

’

PHASE

EXAMPLE,*

’"

rexx_sysipt.2

=

’EXAMPLE

START

0’

rexx_sysipt.3

=

’

SR

15,15’

rexx_sysipt.4

=

’

BR

14’

rexx_sysipt.5

=

’

END

,’

ADDRESS

JCL

’//

OPTION

CATAL’

ADDRESS

LINK

’ASSEMBLY’

IF

rc

=

0

THEN

DO

ADDRESS

JCL

’//

LIBDEF

PHASE,CATALOG=DEVLIB.TEST’

ADDRESS

LINK

LINK

and

LINKPGM

Host

Command

Environment

Chapter

13.

Host

Command

Environments

for

Loading

and

Calling

Programs

215

’LNKEDT

MSHP,AMODE=31,RMODE=24’

IF

rc

=

0

THEN

DO

ADDRESS

JCL

’//

LIBDEF

PHASE,SEARCH=DEVLIB.TEST’

ADDRESS

LINK

’EXAMPLE’

END

END

EXIT

rc

See

also

demo

program

REXXASM

described

on

page

“REXXASM”

on

page

263.

Invoking

DITTO

/*

This

exec

copies

tapes

and

compares

them

*/

/*

Parameters:

*/

/*

in:

cuu

of

input

tape

unit

*/

/*

out:

cuu

of

output

tape

unit

*/

/*

nfiles:

number

of

files

to

be

copied

*/

ARG

in

out

nfiles

.

input.1

=

’$$DITTO

TT

INPUT=’in’,OUTPUT=’out’,NFILES=’nfiles

input.2

=

’$$DITTO

REW

OUTPUT=’in

input.3

=

’$$DITTO

REW

OUTPUT=’out

input.4

=

’$$DITTO

TTC

INPUT=’in’,OUTPUT=’out’,NFILES=’nfiles

input.5

=

’$$DITTO

REW

OUTPUT=’in

input.6

=

’$$DITTO

REW

OUTPUT=’out

input.7

=

’$$DITTO

RUN

OUTPUT=’out

input.8

=

’$$DITTO

EOJ’

input.0

=

8

CALL

REXXIPT

input.

ADDRESS

JCL

’//

UPSI

1’

ADDRESS

LINK

’DITTO’

EXIT

LINK

and

LINKPGM

Host

Command

Environment

216

REXX/VSE

Reference

Chapter

14.

REXX/VSE

Console

Automation

Benefits

of

a

Programmable

REXX

Console

REXX/VSE

Console

Automation

enables

you

to

automate

and

make

more

productive

the

operation

of

your

VSE/ESA

console.

REXX/VSE

Console

Automation

is

centered

around

a

REXX

VSE/ESA

programmable

console.

It

provides

an

easy-to-use

VSE/ESA

console

command

environment

that

allows

to

activate

and

deactivate

one

or

more

VSE/ESA

console

sessions.

VSE/ESA

console

commands

may

be

imbedded

into

a

REXX

program.

A

GETMSG

function

receives

command

responses

and

console

messages.

There

is

also

a

rich

set

of

REXX

external

functions

that

make

it

easy

to

write

REXX

console

applications.

Thereby,

a

REXX

program

can

retrieve

and

process

console

commands

and

react

on

events.

VSE/ESA

Console

Automation:

By

having

a

REXX

VSE/ESA

programmable

console

you

can

v

Write

a

REXX

program

that

issues

VSE

console

commands

and

retrieves

the

command

responses.

These

commands

include

–

VSE

AR

commands

–

Console

redisplay

commands

–

VSE/POWER,

VSE/ICCF,

CICS,

VTAM,

SQL

commands.

v

Program

VSE

console

operator

(inter)actions

v

Monitor

programs

and

subsystems

running

in

VSE/ESA

partitions

and

react

on

messages

by

giving

appropriate

replies.

v

Control

batch

job

processing.

A

Look

at

VSE/ESA’s

Console

Support

REXX

Console

Automation

has

to

do

with

the

data

flow

from

and

to

consoles.

The

following

text

gives

an

overview

of

VSE/ESA’s

handling

of

console

traffic

and

how

REXX/VSE

console

automation

fits

in.

The

entire

console

traffic

is

managed

by

the

Console

Router:

v

A

message

written

by

a

program

is

queued

in

the

Console

Router

and

then

routed

to

the

appropriate

console(s).

v

A

command

entered

at

a

console

is

queued

and

routed

to

the

responsible

command

processor.

v

A

command

response

issued

by

a

command

processor

is

queued

and

routed

to

the

console

that

issued

the

command.

v

A

reply

entered

at

a

console

is

queued

and

routed

to

the

program

that

is

waiting

for

the

reply.

The

following

figure

serves

as

an

illustration.

Please

keep

in

mind

that

″consoles″

(on

the

right

hand

side)

does

not

necessarily

mean

physical

consoles,

but

rather

console

programs.

For

example,

behind

every

CICS

terminal

there

is

a

console

program.

A

REXX

procedure

that

uses

the

console

command

environment

is

also

is

a

console

program.

The

figure

shows

the

names

of

macros

(such

as

WTO,

MCSOPER)

that

are

associated

with

a

given

activity.

These

macros

are

important

elements

of

REXX/VSE

Console

Automation.

They

are

discussed

after

the

figure.

©

Copyright

IBM

Corp.

1988,

2004

217

On

each

side

of

the

Console

Router

there

is

a

set

of

interfaces:

v

I/O

interfaces

for

the

system

and

for

applications

to

communicate

with

consoles.

v

General-use

console

interfaces

for

the

console

programs

to

interface

with

the

system.

The

interfaces

are

briefly

described

in

the

following.

Together

with

each

individual

element,

a

reference

to

an

equivalent

REXX

Console

Automation

function

is

given.

Console

I/O

Interfaces

Any

program

can

perform

I/O

to

and

from

a

console:

it

can

write

a

message

to

a

console,

or

read

the

input

that

was

entered

at

the

console.

It

can

also

delete

a

message

from

the

console.

For

these

purposes

three

macros

are

available

which

are

presented

in

the

following.

For

detailed

descriptions

refer

to

the

IBM

manual

VSE/ESA

System

Macros

Reference.

WTO

-

Write

to

Operator

The

WTO

macro

is

used

to

write

a

(single

or

multi-line)

message

to

one

or

more

consoles.

In

REXX

Console

Automation,

the

SENDMSG

function

uses

the

WTO

macro.

Because

REXX

Console

Automation

is

able

to

maintain

one

or

more

console

sessions

of

its

own,

the

SENDMSG

function

allows

for

console-to-console

communication.

Figure

10.

Console

Data

Flow

VSE/ESA

Console

Support

218

REXX/VSE

Reference

WTOR

-

Write

to

Operator

with

Reply

This

macro

works

much

like

the

WTO

macro,

but

additionally

requests

a

reply

from

the

operator.

In

REXX,

PULL

from

SYSLOG

uses

the

WTOR

macro.

DOM

-

Delete

Operator

Message

Some

messages

are

displayed

with

highlighting.

They

do

not

disappear

from

the

screen,

rather

remain

in

HOLD

state.

For

example,

a

message

written

via

the

WTOR

macro

is

displayed

in

highlighted

form

to

permanently

draw

attention

to

the

fact

that

a

reply

is

needed.

When

a

program

recognizes

that

the

reason

for

the

highlighting

does

no

longer

exist,

it

issues

a

DOM

macro.

This

removes

the

highlighting,

and

the

message

usually

disappears

from

the

screen.

Likewise,

the

operator

may

request

″deletion″

(dehighlighting,

to

be

exact)

of

a

highlighted

message.

Again,

this

causes

the

DOM

macro

to

be

activated.

In

REXX

Console

Automation

this

task

is

performed

by

the

DELMSG

function.

General-Use

Console

Interfaces

These

privileged

macro

interfaces

are

intended

for

system

programs.

A

portion

of

their

functionality

is

generally

available

to

REXX

programs

through

REXX

Console

Automation.

To

understand

the

concept

and

possible

error

messages,

a

brief

overview

of

the

general-use

console

interfaces

follows.

MCSOPER

-

Activate

Console

This

macro

is

used

to

activate

(or

deactivate)

a

console

session.

A

console

session

is

required

for

communicating

with

the

system.

Communication

means

retrieving

messages

from

the

system

and/or

passing

input

like

commands

or

replies

to

the

system.

In

REXX

Console

Automation

a

console

session

is

established

through

the

ADDRESS

CONSOLE

’ACTIVATE...’

command.

Along

with

this

command,

a

console

profile

can

be

specified

which

determines

the

subset

of

message

traffic

to

be

handled.

A

console

session

is

terminated

through

the

ADDRESS

CONSOLE

’DEACTIVATE...’

command.

MCSOPMSG

-

Retrieve

Message

This

macro

is

used

to

retrieve

a

message

from

the

system.

In

REXX

Console

Automation,

the

GETMSG

function

and,

for

retrieval

by

special

search

criteria,

the

FINDMSG

function

use

the

MCSOPMSG

macro.

A

command

response

that

the

system

sends

to

the

console

is

a

special

type

of

message.

The

GETMSG

allows

to

select

only

the

command

responses

from

the

entire

collection

of

console

messages.

A

Note

of

Caution...

Console

automation

is

a

system

function.

Incorrect

usage

may

impact

overall

system

performance.

Make

sure

that

only

persons

who

know

what

they

are

doing

have

access

to

console

automation

facilities.

REXX

module

ARXPARMS

is

a

good

vehicle

to

control

that

access.

Please

refer

to

section

“Console

Host

Command

Replaceable

Routine”

on

page

228.

VSE/ESA

Console

Support

Chapter

14.

REXX/VSE

Console

Automation

219

MGCRE

-

Create

Command

or

Reply

This

macro

is

used

to

pass

input

like

a

command

or

a

reply

to

the

system.

In

REXX

Console

Automation,

v

the

command

ADDRESS

CONSOLE

’command_or_reply_string’

and

v

the

SENDCMD

function

use

the

MGCRE

macro.

The

MGCRE

macro

allows

to

pass

a

command

and

response

correlation

token

(CART).

The

CART

can

later

be

used

to

select,

from

a

heterogeneous

collection

of

console

messages

coming

from

all

kinds

of

sources,

just

the

right

command

response.

REXX

Console

Automation

has

a

special

console

command

(the

CART

command)

that

establishes

a

CART

for

the

current

console

session.

This

CART

is

then

attached

to

any

command

that

is

issued

from

the

current

console

session.

Master

Console

versus

User

Console

Master

console

and

user

console

are

distinguished

by

the

level

of

command

authorization.

Master

Console

A

master

console

has

unrestricted

authorization

to

reply

to

all

outstanding

messages

and

to

issue

any

kind

of

system

command.

One

or

more

master

consoles

can

be

active

at

the

same

time.

The

system

console

is

one

such

master

console,

mainly

used

to

IPL

the

system

or

as

backup

when

no

other

master

console

is

active.

User

Console

A

user

console

can

only

issue

a

restricted

set

of

system

commands,

just

enough

to

perform

operation

tasks

within

its

own

scope

and

without

impacting

system

wide

operation.

It

can

only

respond

to

messages

that

are

directed

to

it.

A

user

console

receives

only

those

messages

that

are

specifically

directed

to

it.

They

are

messages

that

relate

to

its

own

activities.

For

example,

v

The

system

response

to

the

REPLID

command

is

sent

only

to

the

console

that

issued

the

command.

v

Job-related

messages

are

sent

to

the

console

that

is

designated

as

the

recipient

of

those

messages,

very

often

the

console

that

submitted

the

job.

Redisplay

from

the

hardcopy

file

is

only

possible

for

messages

that

were

originally

routed

to

this

user

console.

Message

routing

to

user

consoles

can

be

controlled

by

the

ECHO/ECHOU=user-id

option

of

the

VSE/POWER

JOB

statement.

When

this

option

is

included

in

a

submitted

job,

all

messages

related

to

the

execution

of

that

job

are

routed

to

the

console

of

the

ECHO/ECHOU

user-id.

Routing

Codes

There

are

two

sides

to

the

routing

code.

On

the

one

side,

the

originator

of

a

message

indicates,

in

terms

of

routing

code(s),

the

console

type

where

the

message

is

to

be

delivered.

On

the

other

side

is

the

console

which

has

routing

codes

defined

to

indicate

which

messages

it

wants

to

have

delivered.

When

both

routing

codes

match,

a

message

is

delivered

at

that

console.

Examples

of

routing

codes

are:

2

The

message

indicates

a

change

of

the

system

status

that

requires

action

by

an

operator

with

master

authority.

VSE/ESA

Console

Support

220

REXX/VSE

Reference

7

A

message

gives

information

to

the

unit

record

pool

about

a

unit

record

device,

for

example

a

request

to

mount

a

printer

train.

11

The

message

is

intended

for

the

problem

programmer

and

is

to

be

routed

to

the

console

identified

by

an

ECHO/ECHOU

option

or

to

a

terminal

of

the

Interactive

Interface.

In

REXX

Console

Automation,

routing

codes

of

a

console

are

defined

in

its

console

profile

(see

“Activating

a

Console

Session”

on

page

222).

For

example,

REXALLRC

means

″receive

all

routing

codes,″

or

in

other

words:

a

master

console

that

receives

all

messages.

REXNORC

means

″receive

no

routing

codes,″

or

in

other

words:

a

master

console

that

does

not

want

to

see

any

messages.

This

is

useful

when

your

REXX

program

is

primarily

concerned

with

issuing

commands

and

reacting

on

the

corresponding

command

responses.

Service

Offerings

Console

Command

Environment

REXX

Console

Automation

allows

you

to

establish

(activate)

one

or

more

VSE

console

sessions

from

your

REXX

program.

After

you

have

activated

a

console

session,

you

can

issue

VSE

system

and

subsystem

commands

and

retrieve

the

corresponding

responses.

You

can

only

work

with

one

console

at

a

time.

By

default,

this

is

the

console

that

has

been

activated

as

the

most

recent

one.

This

is

referred

to

as

the

current

console.

You

can

switch

from

one

active

console

to

another

which

becomes

the

new

current

console.

The

VSE

system

and

subsystem

commands

that

you

may

issue

during

a

console

session

depend

on

the

authorization

of

the

userid

associated

with

the

job

that

starts

your

REXX

program.

Please

refer

also

to

section

“Security

Considerations”

on

page

223.

Console

Commands

At

the

REXX

console,

you

can

issue

either

v

REXX

console

commands,

or

v

VSE

console

commands.

REXX

Console

Commands

The

REXX

console

command

environment

provides

unique

REXX

console

commands.

Using

ADDRESS

CONSOLE,

you

may

issue

one

of

the

following

commands:

v

ACTIVATE

v

CART

v

CONSTATE

v

CONSWITCH

IBM

offers...

...to

develop

custom-tailored

console

applications

that

are

based

on

(and

possibly

extend)

REXX/VSE

Console

Automation

functions.

Further

information

as

well

as

prices

and

terms

and

conditions

are

available

from

your

IBM

branch

office.

For

technical

information,

you

may

also

contact

the

IBM

Development

Laboratory

in

Boeblingen,

Germany

(feel

free

to

use

the

Readers’

Comments

form

in

the

back).

VSE/ESA

Console

Support

Chapter

14.

REXX/VSE

Console

Automation

221

v

DEACTIVATE

VSE

Console

Commands

Commands

that

are

not

REXX

console

commands

get

passed

to

the

VSE

console

command

processor.

This

is

also

true

for

replies

to

messages.

Note:

To

be

able

to

issue

VSE

console

commands,

you

need

to

have

a

current

console.

Activating

a

Console

Session

You

activate

a

VSE

console

session

via

the

command:

��

ADDRESS

CONSOLE

’ACTIVATE

NAME

cons_name

PROFILE

prof_name

’

��

where:

cons_name

Specifies

the

name

of

the

console

that

you

want

to

activate.

The

name

is

an

alphanumeric

character

string

of

between

4

and

8

bytes.

You

choose

the

name.

If

the

NAME

parameter

is

not

specified,

cons_name

defaults

to

REXX.

prof_name

Specifies

the

profile

name

you

want

to

use

for

the

console

that

you

are

about

to

activate.

You

must

name

one

out

of

a

set

of

predefined

REXX

profiles

(tailored

to

the

master

or

the

user

console).

A

set

of

predefined

console

profiles

is

shipped

as

object

code.

Their

names

and

purpose

are

shown

in

the

table

below.

If

the

PROFILE

parameter

is

not

specified,

prof_name

defaults

to

REXX

which

is

one

of

the

predefined

console

profiles.

Name

Master/User

Description

REXX

User

Receives

only

messages

that

are

specifically

routed

to

this

console.

These

are:

1.

Messages

issued

from

a

job

that

names

this

console

in

the

VSE/POWER

JECL

parameter

ECHO.

2.

Messages

directed

to

this

console

from

the

WTO

macro.

3.

Responses

to

commands

that

were

issued

from

this

console.

REXALLRC

Master

Receives

command

responses

and

all

routing

codes.

REXNORC

Master

Receives

command

responses

but

no

routing

codes.

REXAUTO

Master

Receives

messages

from

an

automated

message

handling

program

such

as

VSE/OCCF.

Example:

As

an

example,

you

activate

a

VSE

console

session

with

console

name

myecho

via

ADDRESS

CONSOLE

’ACTIVATE

NAME

myecho’

or

via

ADDRESS

CONSOLE

’ACTIVATE

NAME

myecho’

Because

the

default

profile

name

REXX

applies,

this

command

establishes

a

user

console

and,

therefore,

gives

only

limited

command

authority.

The

console

name

(myecho

in

this

example)

is

significant

for

routing

messages

issued

by

a

VSE/POWER

job

to

this

REXX

console.

This

is

illustrated

in

“Routing

Messages

From

and

Replies

To

a

Specific

Partition”

on

page

227.

Console

Commands

222

REXX/VSE

Reference

Return

Codes:

For

return

codes

of

the

ACTIVATE

command

and

their

explanations,

please

refer

to

“ARXCONAD

Return

Codes”

on

page

228.

Security

Considerations

To

what

extent

you

can

establish

a

master

console

or

a

user

console

depends

on

whether

security

is

active

in

your

system.

If

your

system

runs

with

security

not

active,

there

are

no

limitations.

But

be

aware

that

your

system

resources

may

not

be

adequately

protected

against

unauthorized

accessing.

If

your

system

runs

with

security

active

(IPLed

with

SEC=YES

in

the

SYS

command),

a

VSE

security

user-id

must

be

supplied

in

the

job

that

calls

the

REXX

program.

It

is

supplied

either

in

the

job

control

statement

//

ID

USER=user-id,...

or

in

the

VSE/POWER

JECL

statement

*

$$

JOB...

SEC=user-id,...

If

no

VSE

security

user-id

is

given,

the

ACTIVATE

command

fails

with

return

code

-12

(security

violation).

The

VSE

security

user-id

is

checked

against

a

user

profile

in

the

Access

Control

Table

(DTSECTAB).

The

profile’s

parameters

MCONS

and

AUTH

are

of

significance,

as

shown

in

the

diagram

below.

MCONS=YES

gives

master

console

authorization.

AUTH=YES

indicates

that

the

user

is

the

security

administrator

(this

implies

master

console

authorization,

or

MCONS=YES).

As

shown

in

the

following

table,

the

security

administrator

is

free

to

choose

any

cons_name.

Other

users

must

specify

the

VSE

security

user-id

in

order

to

get

access

to

the

desired

console.

DTSECTAB

Parameters

cons_name

of

REXX

Master

Console

cons_name

of

REXX

User

Console

AUTH=YES

any

any

MCONS=YES,AUTH=NO

VSE

security

user-id

VSE

security

user-id

MCONS=NO,AUTH=NO

none

VSE

security

user-id

Receiving

Messages

from

VSE/OCCF

You

may

have

the

VSE/ESA

optional

program

VSE/OCCF

(Operator

Communication

and

Control

Facility)

installed.

VSE/OCCF

is

an

operator

automation

program

by

itself

and

is

in

no

way

required

for

using

REXX

Console

Automation.

Through

VSE/OCCF,

messages

can

automatically

be

routed

to

a

NetView

console.

In

REXX

Console

Automation

you

may

request

that

these

messages

are

routed

to

a

REXX

console,

instead

of

to

a

NetView

console.

Rerouting

to

the

REXX

console

is

achieved

by

going

through

the

following

steps.

1.

Install

VSE/OCCF

Definitely

no

mix

!

!

You

should

definitely

not

use

the

two

operator

automation

facilities

REXX

Console

Automation

and

NetView

side

by

side.

Have

only

one

or

the

other.

Console

Commands

Chapter

14.

REXX/VSE

Console

Automation

223

VSE/OCCF

is

a

VSE/ESA

optional

program.

To

install

it,

you

are

encouraged

to

use

the

Install

Programs

dialog

of

the

VSE/ESA

Interactive

Interface.

2.

Build

a

VSE/OCCF

Message

Automation

Table

Library

59

contains

job

skeleton

SKOCCF

that

builds

the

VSE/OCCF

message

automation

table

for

the

VSE/ESA

Unattended

Node

Support.

You

can

use

it

as

a

model

for

your

own

coding.

3.

Start

VSE/OCCF

To

start

VSE/OCCF

issue

the

command

QSTART

matab

where

matab

is

the

name

of

the

message

automation

table.

4.

Request

rerouting

by

VSE/OCCF

Issue

the

REXX

command

SYSDEF

rc

=

SYSDEF(’CONNECT

OCCF’)

This

causes

VSE/OCCF

to

route

messages

that

are

designated

to

be

routed

to

NetView

to

the

REXX

console,

instead.

The

command

is

described

in

section

“SYSDEF”

on

page

241.

5.

Activate

a

REXX

console

with

profile

REXAUTO.

Issue

the

command

ACTIVATE

CONSOLE

...

PROFILE

REXAUTO

This

defines

the

REXX

console

as

a

type

that

receives

messages

from

an

automated

message

handling

program

such

as

VSE/OCCF.

When

your

REXX

program

has

finished

its

work,

it

should

reset

the

above

functions

through

the

following

commands:

QSTOP

(to

suspend

VSE/OCCF

functions)

rc

=

SYSDEF(’DISCONNECT

OCCF’)

QEND

(to

terminate

VSE/OCCF

processing)

Creating

a

Command

and

Response

Correlation

Token

(CART)

You

define

a

CART

for

the

current

console

via

the

command

��

ADDRESS

CONSOLE

’CART

cart

’

��

The

operand

specification

is

as

follows:

cart

Specifies

the

value

of

the

CART

as

a

string

of

up

to

8

bytes

(a

larger

string

will

be

truncated

down

to

8

bytes).

You

are

free

to

choose

any

value.

The

string

must

not

contain

any

blank.

The

CART

is

associated

with

every

command

that

is

issued

from

the

current

console.

The

CART

serves

to

distinguish

between

heterogeneous

command

responses,

each

coming

from

a

different

command.

The

GETMSG

function

will

then

not

pick

up

any

command

output

that

has

accumulated,

but

rather

in

a

selective

manner.

This

is

illustrated

in

the

following

example.

(The

GETMSG

function

is

described

in

“GETMSG”

on

page

233.)

mask1=

’FF0000000000000’X

/*

compare

CARTs

on

first

byte

*/

mask2=

’FFFFFF000000000’X

/*

compare

CARTs

on

first

3

bytes

*/

zero

=

’000000000000000’X

/*

no

checking

*/

’CART

AttenRtn’

’MAP’

/*

VSE

AR

command

*/

Console

Commands

224

REXX/VSE

Reference

’CART

RED’

’RED

10L,F5’

/*

REDisplay

command

*/

’CART’

zero

’REPLID’

/*

Console

Router

command

*/

rc

=

GETMSG(’MSG.’,’RESP’,’A’,mask1,5)

/*

get

MAP

output

*/

rc

=

GETMSG(’MSG.’,’RESP’,’RED’,mask2,5)

/*

get

REDisplay

output

*/

rc

=

GETMSG(’MSG.’,’RESP’,,,5)

/*

get

REPLID

output

*/

Note:

When

having

multiple

commands

processed

at

the

same

time,

their

output

could

very

well

be

intermixed.

Always

use

CARTs

to

get

the

outputs

separated

from

each

other.

The

direct

succession

of

the

three

commands

shown

above

is

only

possible

because

the

commands

are

each

handled

by

a

different

command

processor.

Outstanding

responses

from

one

VSE

command

(processor)

must

first

be

retrieved

before

you

can

start

another

command

belonging

to

the

same

command

processor.

This

subject

is

discussed

further

in

section

“Having

Command

Responses

Outstanding

in

Parallel”

on

page

227.

Return

Codes:

For

return

codes

of

the

CART

command

and

their

explanations,

please

refer

to

“ARXCONAD

Return

Codes”

on

page

228.

Querying

the

Current

Console

Setting

You

can

enquire

about

the

current

console

settings

via

the

CONSTATE

command.

The

command

has

the

following

format:

��

ADDRESS

CONSOLE

’CONSTATE

(1)

NAME

varname

(1)

CART

varcart

(1)

PROFILE

varprof

’

��

Notes:

1 The

variables

may

be

entered

in

any

order,

but

at

least

one

of

them

must

be

specified.

where

varname

Is

the

name

of

a

variable

that

returns

the

name

of

the

current

console.

varcart

Is

the

name

of

a

variable

that

returns

the

setting

of

the

current

cart.

varprof

Is

the

name

of

a

variable

that

returns

the

name

of

the

profile

that

is

associated

with

the

current

console.

Return

Codes:

For

return

codes

of

the

CONSTATE

command

and

their

explanations,

please

refer

to

“ARXCONAD

Return

Codes”

on

page

228.

Switching

to

a

Console

Session

You

can

only

work

with

one

console

at

a

time.

By

default,

this

is

the

console

that

has

been

activated

as

the

most

recent

one.

This

is

referred

to

as

the

current

console.

Via

the

CONSWITCH

command

you

can

switch

to

another

console

and

make

it

the

current

console.

The

CONSWITCH

command

resets

the

CART.

The

command

has

the

following

format:

Console

Commands

Chapter

14.

REXX/VSE

Console

Automation

225

��

ADDRESS

CONSOLE

’CONSWITCH

cons_name

’

��

where

cons_name

Specifies

the

name

of

the

console

you

want

to

switch

to.

Return

Codes:

For

return

codes

of

the

CONSWITCH

command

and

their

explanations,

please

refer

to

“ARXCONAD

Return

Codes”

on

page

228.

Deactivating

a

Console

Session

You

deactivate

a

VSE

console

session

via

��

ADDRESS

CONSOLE

’DEACTIVATE

cons_name

’

��

where:

cons_name

Specifies

the

name

of

the

console

to

be

deactivated.

It

is

the

name

of

the

console

that

you

activated

with

an

ACTIVATE

command.

The

default

name

is

REXX.

Return

Codes:

For

return

codes

of

the

DEACTIVATE

command

and

their

explanations,

please

refer

to

“ARXCONAD

Return

Codes”

on

page

228.

Note:

If

you

deactivate

the

current

console,

no

console

is

current.

To

make

another

console

the

current

console,

you

have

to

use

the

CONSWITCH

command.

Temporarily

Shutting

off

an

(Unknown)

Console

It

can

sometimes

happen

that

you

want

to

open

a

REXX

console

but

you

don’t

know

from

where

your

program

was

called

and

whether

another

console

is

active

out

there.

The

following

example

shows

how

you

could

proceed

(it

is

assumed

that

there

is

already

a

current

console).

ADDRESS

CONSOLE

’CONSTATE

NAME

oldcons

CART

oldcart’

/*

save

state

of

current

console*/

’ACTIVATE

MYCONS’

/*

activate

my

own

console

*/

/*

which

now

becomes

the

*/

/*

current

console

...

doing

my

thing

...

*/

’DEACTIVATE

MYCONS’

/*

deactivate

my

own

console

*/

’CONSWITCH’

oldcons

’CART’

oldcart

/*

make

the

previously

current

*/

/*

console

current

again

*/

Examples

of

REXX

and

VSE

Console

Commands

ADDRESS

CONSOLE

’ACTIVATE

NAME

master

PROFILE

rexnorc’

/*

Activate

master

console.

No

*/

/*

routing

codes

are

received

*/

’ACTIVATE

NAME

rexx’

/*

Activate

user

console

*/

’CONSWITCH

master’

/*

Switch

to

the

master

console*/

Console

Commands

226

REXX/VSE

Reference

’CART

syscmd’

/*

Specify

a

user

defined

cart

*/

’D

NET,APPLS’

/*

Issue

VTAM

command

*/

’DEACTIVATE

master’

/*

Deactivate

console

*/

’CONSWITCH

rexx’

/*

Switch

to

the

user

console

*/

’CONSTATE

NAME

consname’,

/*

Query

for

the

current

*/

’CART

cart

PROFILE

consprof’

/*

console

settings

*/

’MAP’

/*

Issue

AR

command

*/

’DEACTIVATE

rexx’

/*

Deactivate

console

*/

Having

Command

Responses

Outstanding

in

Parallel

The

VSE/ESA

console

support

requires

that

you

retrieve

the

outstanding

responses

for

one

VSE

system

command

before

you

send

the

next

VSE

system

command.

Therefore,

only

one

VSE

system

command

per

console

can

be

sent

at

a

time.

After

sending

a

VSE

system

command

to

the

console,

you

need

to

wait

until

the

response

is

complete.

You

must

retrieve

the

response

before

you

send

the

next

VSE

system

command.

This

is

illustrated

in

the

following

scenario:

ADDRESS

CONSOLE

"system_cmd_1"

fc

=

GETMSG(msg.,’RESP’,,,30)

...

...

"system_cmd_2"

fc

=

GETMSG(msg.,’RESP’,,,30)

You

may

get

return

code

-10

if

you

send

a

second

VSE

system

command

before

you

retrieve

the

response

via

the

GETMSG

function.

There

are

different

″types″

of

VSE

console

command

processors

(each

of

which

is

able

to

process

one

command

in

parallel

to

the

others):

1.

AR

commands

This

includes

VSE/POWER,

CICS

and

VTAM

commands.

2.

VSE

Redisplay

commands

3.

VSE

Console

Router

commands,

such

as

REPLID

or

CANCEL

AR.

Although

you

may

have

for

each

of

these

console

command

processors

one

command

response

outstanding

in

parallel,

it

is

strongly

recommended

that

you

retrieve

the

response

for

one

command

before

you

issue

the

next

command.

Routing

Messages

From

and

Replies

To

a

Specific

Partition

The

ECHO/ECHOU

parameter

of

the

VSE/POWER

JECL

statement

*

$$

JOB

relates

to

the

NAME

keyword

of

the

ACTIVATE

CONSOLE

command.

Consider,

for

example,

the

following

VSE

job.

*

$$

JOB

JNM=MYJOB

ECHO=(ALL,MYECHO)

//

JOB

MYJOB

....

....

/&

*

$$

EOJ

Console

Commands

Chapter

14.

REXX/VSE

Console

Automation

227

All

messages

issued

by

job

MYJOB

are

routed

to

the

REXX

console

which

was

activated

under

the

name

’MYECHO’

by

a

REXX

program.

In

order

to

retrieve

the

message,

the

REXX

program

issues

the

GETMSG

function.

The

REXX

program

replies

to

the

outstanding

reply

by

just

enclosing

the

reply

in

quotes:

ADDRESS

CONSOLE

’ACTIVATE

NAME

myecho’

.....

fc

=

GETMSG(msg.,’MSG’,,,5)

/*

retrieve

next

message

*/

/*

and

wait

max.

5

seconds*/

.....

GetReplyId(msg.1)

’...reply

text...’

/*

reply

to

message

*/

.....

GetReplyId:

ARG

message

position

=

POS(’-’,WORD(message,1))

/*

did

we

get

something

like:

*/

IF

position

>

0

/*

R1-47

//

PAUSE

*/

THEN

/*

extract

from

message...

*/

replyid

=

SUBSTR(WORD(message,1),position+1)

/*

reply

ID

*/

ELSE

replyid=

WORD(message,2)

/*

reply

ID

*/

RETURN

replyid

END

The

above

example

shows

how

to

handle

console

messages

that

are

″fresh,″

that

is,

messages

that

have

just

been

delivered

at

the

console.

Another

example

(see

“Scan

the

Hardcopy

File”

on

page

264)

shows

how

to

retrieve

messages

that

had

appeared

earlier

and

are

now

stored

on

the

hardcopy

file.

Tracking

of

Operator

Communication

Responses

to

operator-given

commands

are

only

routed

to

the

console

the

operator

is

using

for

his

communication,

not

to

other

defined

master

consoles.

Thus

it

is

not

possible

to

track

ongoing

operator

communication

via

a

REXX

console

program.

Since

operator

dialogs

are

logged

in

the

hardcopy

file,

they

can

be

scanned

using

the

REDISPLAY

command.

Console

Host

Command

Replaceable

Routine

Module

ARXCONAD

processes

all

host

commands

requested

by

ADDRESS

CONSOLE.

It

uses

the

REXX/VSE

interface

for

host

command

environment

routines

as

described

elsewhere

in

this

manual,

beginning

in

section

“Host

Commands

and

Host

Command

Environments.”

on

page

24.

Entry

for

ARXCONAD

in

Table

SUBCOMTB

The

Host

Command

Environment

Table

(SUBCOMTB)

contains

an

entry

for

the

CONSOLE

host

command

environment.

Via

this

table

entry,

you

can

control

whether

or

not

your

REXX

programmers

have

access

to

console

automation

functions.

To

invalidate

the

access,

make

a

copy

of

ARXPARMS,

blank

out

the

constants

NAME

and

ROUTINE,

and

catalog

the

copy

into

a

separate

sublibrary.

Through

different

LIBDEF

chains,

you

make

the

console

automation

functions

available

to

one

group

of

programmers

and

deny

them

to

another

group.

ARXCONAD

Return

Codes

ARXCONAD

may

issue

the

following

return

codes:

-1

Console

has

already

been

activated.

-2

Either

the

console

name

is

not

found

in

the

list

of

activated

consoles,

or

there

is

no

current

console.

-5

Syntax

error,

for

example

invalid

token,

or

invalid

profile.

-6

Error

in

ARXEXCOM.

Console

Commands

228

REXX/VSE

Reference

-7

Console

profile

table

ARXCPROF.PHASE

not

found.

-8

Console

profile

not

found

in

table

ARXCPROF.PHASE.

-9

No

more

storage.

-10

A

VSE

system

macro

failed.

REXX

message

ARX0565I

shows

the

macro

name.

You

can

call

the

SYSVAR

function

to

receive

the

return

and

reason

code.

Refer

to

“Return

and

Reason

Codes”

on

page

267

for

explanations

of

those

codes.

-11

Error

in

console

table

service

routine.

-12

Security

violation.

Console-related

REXX

Functions

REXX

Console

Automation

has

several

REXX

functions

that

allow

a

REXX

program

to

work

with

the

REXX

console.

These

functions

are

described

in

the

following

sections.

They

are

presented

in

alphabetical

order.

DELMSG

FINDMSG

GETMSG

LOCKMGR

MERGE

OPERMSG

SENDCMD

SENDMSG

SYSDEF

Some

functions

return

a

function

code.

Function

codes

are

listed

and

explained

together

with

the

function

descriptions.

Many

error

conditions

lead

to

messages

REXX

syntax

error

40

-

invalid

call

to

routine...

plus

ARX0960E

ERROR

Running

Function

xxxxxxxx,

RC=nn

You

find

explanations

for

each

error

code

RC

in

section

“Error

Codes

of

Failing

Functions”

on

page

243.

Some

error

conditions

are

detected

by

VSE

console

support

macros.

These

macros

give

return

and

reason

codes

which

you

can

retrieve

by

calling

the

SYSVAR

function.

The

return

and

reason

codes

are

explained

in

“Return

and

Reason

Codes”

on

page

267.

DELMSG

The

DELMSG

function

removes

the

HOLD

state

from

a

message.

On

a

real

console

screen,

the

HOLD

state

is

visible

from

the

highlighted

display

toward

the

top

of

the

screen

to

indicate

that

an

action

or

reply

is

pending.

DELMSG

does

not

truly

delete

a

message,

rather

resets

the

intensity

attribute

from

high

to

normal

and

positions

the

message

at

its

proper

place

within

the

entire

set

of

console

messages.

The

DELMSG

function

comes

into

play

when

the

condition

that

caused

a

message

to

be

displayed

does

not

exist

anymore,

for

example

when

a

device

became

ready.

DELMSG

has

the

following

format:

Console

Commands

Chapter

14.

REXX/VSE

Console

Automation

229

��

DELMSG(msgid)

��

where

msgid

Is

the

ID

of

the

message

to

be

deleted.

This

ID

can

be

obtained

from

the

Message

Data

Block

(MDB)

variable

MDBGMID

that

the

GETMSG

function

returns

(see

“Message

Data

Block

(MDB)

Variables”

on

page

234).

A

REXX

procedure

(see

“REXXDOM”

on

page

261)

is

included

in

your

system

for

demonstration

purposes.

It

uses

the

DELMSG

function

and

shows

how,

under

REXX

Console

Automation,

you

can

change

the

physical

message

presentation.

FINDMSG

This

function

retrieves

VSE

console

messages

until

the

find

criteria

is

fulfilled.

It

can

be

used

to

monitor

applications

that

issue

console

messages.

FINDMSG

searches

for

’findstr’

in

all

VSE

console

messages

that

have

accumulated

at

the

REXX

console

since

the

console

had

been

activated

(plus

earlier

messages

that

are

in

HOLD

state).

If

successful,

FINDMSG

returns

the

first

matching

console

message,

otherwise

a

null

string.

The

FINDMSG

function

sets

special

REXX

variables

as

output.

If

FINDMSG

cannot

find

a

matching

’findstr’,

these

variables

are

set

to

null

strings.

Name

Description

MDBCPNUM

5-digit

job

number

of

the

VSE/POWER

job

that

issued

the

message.

MDBCRET

Command

processor

return

and

reason

codeWORD(mdbcret,1)

is

the

4-digit

return

code.

WORD(mdbcret,2)

is

the

4-digit

reason

code.

Please

refer

to

“Command

Processor

Return

and

Reason

Codes”

on

page

270.

MDBGDOM

One

character

with

a

value

of

’1’

or

’0’.

A

’1’

indicates

that

a

message

whose

ID

is

stored

in

MDBGMID

is

to

be

deleted,

for

example

due

to

a

preceding

DOM

(Delete

Operator

Message)

macro

or

a

delete

request

from

the

operator.

MDBGHOLD

One

character

indicating

whether

the

message

is

a

highlighted

message

to

be

held

on

the

console

(’1’)

or

not

(’0’).

If

the

message

is

a

response

to

the

REDISPLAY

command

issued

with

the

HOLD

option,

MDBGHOLD

has

a

value

of

’0’.

MDBGJBNM

8-character

job

name

of

the

VSE/POWER

job

that

issued

the

message.

MDBGMID

Message

ID

as

an

8-character

representation

for

a

4-byte

field

of

8

hexadecimal

values.

If

the

message

is

a

response

to

the

REDISPLAY

command

and

is

not

a

highlighted

(″HOLD″)

message,

MDBGHOLD

contains

a

null

string;

a

valid

MDBGMID

is

only

returned

if

that

message

is

a

HOLD

message.

MDBGDSTP

Year

concatenated

by

day

of

the

year,

for

example

1995131

MDBGTIME

Time

of

the

day,

for

example

14:07:26.65

SYSTBLENTRY

Matching

table

entry

if

findstr

specifies

a

table.

FINDMSG

has

the

following

format:

��

FINDMSG(findstr,maxtime,zone,option)

��

Arguments

are

DELMSG

Function

230

REXX/VSE

Reference

findstr

character

string

to

be

found

as

substring

within

a

console

message.

findstr

can

be

specified

in

the

format

lib.sublib.mn.mt.

The

specified

library

member

is

then

considered

as

a

table.

Its

entries,

from

the

second

word

through

position

71,

serve

as

search

argument.

Assuming

that

your

message

action

table

contains

three

entries

AnyWord

Enter

Y

to

bypass

verification

another

new

data

and_a_3rd

Enter

and

among

the

console

messages

the

following

message

appears

BG

0000

Enter

new

data

set

name

then

the

second

entry

would

yield

a

match

(also

the

third

if

the

second

entry

were

not

there).

In

case

of

a

match,

the

corresponding

table

entry

is

returned

in

its

entirety

in

the

REXX

variable

SYSTBLENTRY.

In

the

above

example,

SYSTBLENTRY

would

contain

the

string

another

new

data

A

later

section

shows

the

practical

use

of

the

table

(see

Figure

11

on

page

250).

There

the

first

word

of

a

table

entry

indicates

an

action

to

be

taken

in

case

of

a

match.

The

table

is

therefore

called

REXX

message

action

table.

If

you

do

not

specify

the

’findstr’

parameter,

FINDMSG

uses

the

REXX

message

action

table

previously

loaded

into

main

storage.

If

not

available,

message

ARX0960E

is

raised

together

with

error

code

48.

Note:

If

the

search

string

happens

to

be

of

the

format

lib.sublib.mn.mt,

you

must

use

the

″table

approach,″

that

is,

place

the

string

into

a

table

entry.

Placed

directly

into

the

function

call,

it

would

be

interpreted

as

name

of

a

message

action

table

instead

of

a

search

string.

When

using

the

″table

approach,″

be

aware

that

I/O

takes

place

when

the

message

action

table

is

being

read.

In

the

example

below,

the

first

coding

sequence

would

yield

a

better

performance

than

the

second

because

only

one

read

operation

is

needed.

call

FINDMSG

’prd1.base.rexxtabl.z’,,,’LOADACTN’

/*

Load

message

action

table

into

main

storage

*/

do

forever

....

message

=

FINDMSG(,10)

....

end

do

forever

....

message

=

FINDMSG(’prd1.base.rexxtabl.z’,10)

....

end

maxtime

maximum

number

of

seconds

to

run.

Default

is

5

seconds.

zone

specifies,

after

the

keyword

ZONE,

a

beginning

position

and

an

ending

position

within

the

message

where

a

match

with

’findstr’

is

searched

for:

’ZONE

mm

nn’

If

not

specified,

the

entire

message

is

searched.

option

is

either

a

concatenation

option

with

keywords

CONCAT

or

NOCONCAT

(NOCONCAT

is

the

default),

or

a

load-table

option

with

keyword

LOADACTN.

FINDMSG

Function

Chapter

14.

REXX/VSE

Console

Automation

231

CONCAT

requests

that

multiple

text

lines

of

a

message

are

treated

as

one

long

message

string

for

the

purpose

of

searching.

See

also

the

section

below,

“Handling

of

Multi-line

Messages.”

LOADACTN

requests

that

a

message

action

table

gets

loaded

into

main

storage

in

a

format

that

can

be

used

by

the

FINDMSG

function.

As

an

example

of

the

layout

of

the

message

action

table,

you

may

use

the

table

contained

in

member

REXXTABL.Z.

Please

refer

to

section

Figure

11

on

page

250.

With

the

LOADACTN

keyword,

only

the

first

parameter

of

the

function

call

is

relevant.

It

is

the

member

name

of

the

source,

that

is,

the

message

action

table

in

the

format

lib.sublib.mn.mt.

Note:

The

non-matching

console

messages

are

no

longer

available

after

FINDMSG

has

looked

through

them.

In

other

words,

a

subsequent

function

call

of

FINDMSG

would

not

be

able

to

access

those

messages

once

more.

Examples

of

Functions

Calls

message

=

FINDMSG(’ENTER

DATA’,60)

message

=

FINDMSG(’PRD2.PROD.MSG.TABLE’,60,’ZONE

1

20’)

Handling

of

Multi-line

Messages

Messages

that

are

longer

than

80

characters

appear

in

the

REXX

console

as

text

lines

of

up

to

80

bytes.

When

option

NOCONCAT

is

set,

the

FINDMSG

function

searches,

with

a

given

’findstr,’

against

every

text

line

as

if

this

were

a

complete

message

by

itself.

A

ZONE

specification

would

be

valid

for

every

text

line.

A

string

that

continues

from

one

text

line

into

the

next

will

not

yield

a

match

with

’findstr.’

When

the

concatenation

option

is

set

to

CONCAT,

FINDMSG

treats

all

text

lines

as

one

long

message

for

the

purpose

of

searching.

In

this

situation

it

could

be

cumbersome

to

determine

the

proper

ZONE

value.

If

a

match

comes

true,

FINDMSG

connects

the

individual

text

lines

into

one

long

string

and

returns

the

string

as

its

value.

It

returns

the

matching

table

row

in

variable

SYSTBLENTRY.

This

is

valid

for

both

options,

CONCAT

or

NOCONCAT.

Note

that

when

’findstr’

comes

from

a

table,

the

concatenation

option

can

lead

to

different

matches.

Be

aware

that

with

option

NOCONCAT

each

text

line

(beginning

with

the

first,

then

the

second,

and

so

on)

is

checked

against

the

entire

table.

Consider

the

following

example:

Your

REXX

console

program

issues

the

VSE/POWER

command

d

rdr,rexx*

In

this

case

VSE/POWER

sends

a

multi-line

message.

F1

0001

1R46I

READER

QUEUE

P

D

C

S

CARDS

F1

0001

1R46I

REXXTRY

08089

3

L

0

6

FROM=(REXXLOAD)

F1

0001

1R46I

REXXASM

08090

8

L

Y

6

FROM=(REXXLOAD)

F1

0001

1R46I

REXXWAIT

08070

3

L

Y

6

FROM=(REXXLOAD)

Assume

that

a

message

action

table

had

been

loaded

via

FINDMSG(.....,’LOADACTN’)

Action_1

REXXWAIT

Action_2

REXXASM

Action_3

REXXTRY

FINDMSG(,10,,’NOCONCAT’)

leads

to

Action_3

FINDMSG(,10,,’CONCAT’)

leads

to

Action_1

This

result

is

due

to

the

particular

sequence

of

table

entries.

Both

options

would

lead

to

Action_1

if

the

table

had

been

arranged

like

so:

Action_1

REXXTRY

Action_2

REXXASM

Action_3

REXXWAIT

Error

codes

of

FINDMSG

are

listed

under

“Error

Codes

of

Failing

Functions”

on

page

243.

FINDMSG

Function

232

REXX/VSE

Reference

GETMSG

The

GETMSG

function

retrieves

a

message

(which

can

be

a

command

response)

depending

on

a

msgtype

parameter,

as

shown

in

the

function

format,

below.

It

returns

a

function

code

that

replaces

the

function

call.

Msgtype

’RESP’:

The

GETMSG

function,

with

msgtype

’RESP’

specified,

retrieves,

in

variables,

all

command

responses

that

have

accumulated

for

the

console

session.

The

command

response

consists

of

one

or

more

messages.

The

GETMSG

function

retrieves

the

response(s)

and

stores

the

text

into

successive

variables

until

the

last

message

of

the

response

is

found

and

no

more

responses

are

available,

or

until

a

timeout

occurs.

Msgtype

’MSG’:

The

GETMSG

function,

with

msgtype

’MSG’

specified,

retrieves

only

one

message

at

a

time.

The

message

itself

may

have

more

than

one

line.

Each

line

of

the

message

text

is

stored

into

successive

variables.

Function

Format

GETMSG

has

the

following

format:

��

GETMSG(msgstem,msgtype,cart,mask,time)

��

where

msgstem

is

the

stem

into

which

GETMSG

places

the

message

text.

For

example,

if

’msg.’

is

specified

as

msgstem

and

GETMSG

retrieves

three

lines

of

message

text,

GETMSG

places

these

lines

into

the

stem

consisting

of

msg.1,

msg.2

and

msg.3.

GETMSG

stores

the

number

of

lines

retrieved

into

the

variable

msg.0.

msgtype

is

the

type

of

message

to

be

retrieved

MSG

requests

retrieval

of

any

next

message

from

the

console.

Messages

are

retrieved

on

first-in-first-out

basis.

If

you

do

not

specify

any

msgtype,

’MSG’

is

the

default.

RESP

requests

retrieval

of

all

command

responses

that

have

accumulated

for

the

console

session.

In

addition

to

the

message

itself,

a

block

of

MDB

variables

(for

msgtype

MSG)

or

an

array

of

MDB

variables

(for

msgtype

RESP)

is

returned;

see

below

under

“Message

Data

Block

(MDB)

Variables”

on

page

234.

cart

applies

only

to

msgtype

RESP:

command

and

response

correlation

token

(CART)

specifies

which

command

responses

are

to

be

retrieved.

A

command

may

have

a

CART

associated

with

it

(see

also

“Creating

a

Command

and

Response

Correlation

Token

(CART)”

on

page

224).

By

matching

this

CART

against

the

CART

specified

here

in

GETMSG,

only

specific

command

responses

can

be

selected

for

retrieval.

The

cart

is

a

value

of

up

to

8

bytes.

If

you

do

not

specify

a

cart,

then

the

default

cart

of

8

bytes

with

hexadecimal

zeroes

(XL8’0’)

is

used.

mask

acts

as

a

filter

for

the

comparison

on

the

two

CART

values.

Only

the

bit

position

where

the

mask

contains

a

’1’

takes

part

in

the

comparison.

The

mask

is

specified

as

a

value

of

16

hexadecimal

digits,

enclosed

in

quotes

and

terminated

by

an

X.

A

value

of

’FFFF000000000000’X,

for

example,

requests

that

only

the

GETMSG

Function

Chapter

14.

REXX/VSE

Console

Automation

233

first

two

bytes

of

the

cart

are

to

be

compared.

If

you

do

not

specify

a

mask,

the

default

of

’0000000000000000’X

is

used,

in

other

words:

no

comparison

takes

place

and

GETMSG

retrieves

all

available

responses.

time

is

the

maximum

number

of

seconds

the

REXX

program

waits

for

the

message

or

the

response

to

arrive.

The

default

is

one

second.

GETMSG

Function

Codes

The

GETMSG

function

issues

the

following

function

codes:

0

GETMSG

processing

was

successful.

GETMSG

retrieves

a

message

(if

msgtype

is

’MSG’)

or

the

complete

response

(if

MSGTYPE

is

’RESP’).

4

GETMSG

processing

was

successful.

However,

GETMSG

did

not

retrieve

a

message

(when

msgtype

is

’MSG’)

or

a

response

(when

msgtype

is

’RESP’).

GETMSG

returns

function

code

4

if

one

of

the

following

occurs:

v

No

message

available

v

Search

criteria

did

not

match

v

Time

limit

expired.

5

Applies

only

to

msgtype

’RESP’:

search

criteria

did

not

match

but

there

is

at

least

one

other

message

queued

for

the

console.

8

GETMSG

function

failed

due

to

the

failure

of

a

VSE

macro.

REXX

message

ARX0565I

shows

the

macro

name.

You

can

call

the

SYSVAR

function

to

receive

the

return

and

reason

code.

Refer

to

“Return

and

Reason

Codes”

on

page

267

for

explanations

of

those

codes.

12

GETMSG

processing

failed.

A

console

session

is

not

active.

16

GETMSG

processing

failed.

A

console

session

was

being

deactivated

during

GETMSG

processing.

20

GETMSG

processing

failed

due

to

ARXEXCOM

error

or

stem

count

error.

Message

Data

Block

(MDB)

Variables

The

GETMSG

function

sets

the

following

REXX

variables,

either

as

one

block

(for

msgtype

MSG)

or

(for

msgtype

RESP)

as

multiple

blocks

thus

giving

an

array

of

variables.

Name

Description

MDBCPNUM

5-digit

job

number

of

the

VSE/POWER

job

that

issued

the

message.

MDBCRET

Command

processor

return

and

reason

code.

WORD(mdbcret,1)

is

the

4-digit

return

code.

WORD(mdbcret,2)

is

the

4-digit

reason

code.

Please

refer

to

“Command

Processor

Return

and

Reason

Codes”

on

page

270.

MDBGDOM

One

character

with

a

value

of

’1’

or

’0’.

A

’1’

indicates

that

a

message

whose

ID

is

stored

in

MDBGMID

is

to

be

deleted,

for

example

due

to

a

preceding

DOM

(Delete

Operator

Message)

macro

or

a

delete

request

from

the

operator.

MDBGHOLD

One

character

indicating

whether

the

message

is

a

highlighted

message

to

be

held

on

the

console

(’1’)

or

not

(’0’).

If

the

message

is

a

response

to

the

REDISPLAY

command

issued

with

the

HOLD

option,

MDBGHOLD

has

a

value

of

’0’.

MDBGJBNM

8-character

job

name

of

the

VSE/POWER

job

that

issued

the

message.

MDBGMID

Message

ID

as

an

8-character

representation

for

a

4-byte

field

of

8

hexadecimal

values.

If

the

message

is

a

response

to

the

REDISPLAY

command

and

is

not

a

highlighted

(″HOLD″)

message,

MDBGHOLD

contains

a

null

string;

a

valid

MDBGMID

is

only

returned

if

that

message

is

a

HOLD

message.

MDBGDSTP

Year

concatenated

by

day

of

the

year,

for

example

1995131

MDBGTIME

Time

of

the

day,

for

example

14:07:26.65

GETMSG

Function

234

REXX/VSE

Reference

There

are

situations

where

the

MDB

variables

are

reset

to

null

values.

Most

often,

this

happens

when

variable

msgstem.0

has

a

value

of

zero.

Examples:

1.

Assume

you

want

to

find

out

whether

CICS

is

up

and

running

and,

if

not,

restart

it

using

REXX

console

automation.

Key

to

this

task

are

retrieval

and

analysis

of

the

responses

to

the

VTAM

command

D

NET,APPLS

You

also

want

to

wait

up

to

30

seconds

for

the

complete

response.

ADDRESS

CONSOLE

/*

Establish

Console

Env

*/

’ACTIVATE

NAME

REXX

PROFILE

REXNORC

’

/*

Activate

Console

session

*/

/*

Must

be

master

console

to

be

*/

/*

able

to

issue

the

following

*/

/*

VTAM

command

*/

/*

*/

’D

NET,APPLS’

/*

VTAM

command

shows

APPLIDs

*/

IF

GETMSG(vtam_msg.,’RESP’,,,30)

=

0

/*

Wait

for

VTAM

messages

*/

THEN

/*

Analyse

the

VTAM

messages

*/

DO

i=1

TO

vtam_msg.0

pos

=

INDEX(vtam_msg.i,’PRODCICS’)

IF

pos

>

zero

THEN

IF

WORD(SUBSTR(vtam_msg.i,pos),2)

¬=

’ACTIV’

/*

CICS

down

?

*/

THEN

’R

RDR,PRODCICS’

/*

Release

CICS*/

END

’DEACTIVATE

REXX’

/*

Deactivate

console

session

*/

2.

This

example

shows

how

you

access

an

array

of

MDB

variables.

Notice

that

one

and

the

same

index

is

used

for

the

msgstem

and

for

the

MDB

variables.

...

’map’

fc

=

GETMSG(msg.,’RESP’)

DO

i=1

TO

msg.0

SAY

msg.i

SAY

mdbgtime.i

END

...

LOCKMGR

The

LOCKMGR

function

allows

to

serialize

a

REXX

program

(or

part

of

a

REXX

program)

by

means

of

a

lock/unlock

mechanism.

Serialization

is

system

wide

at

task

level.

If

several

REXX

programs

running

under

different

tasks

want

to

execute

the

same

REXX

program,

but

only

one

task

is

allowed

at

the

same

time,

then

you

must

lock

a

resource

via

LOCKMGR(’LOCK’,name).

This

causes

all

other

REXX

programs

that

also

issue

a

lock-resource

to

be

set

into

the

wait

state

until

the

REXX

program

unlocks

the

resource

via

LOCKMGR(’UNLOCK’,name).

LOCKMGR

has

the

following

format:

GETMSG

Function

Chapter

14.

REXX/VSE

Console

Automation

235

��

LOCKMGR(request,name)

��

request

’LOCK’

or

’UNLOCK’

name

8-byte

character

string

that

defines

the

name

of

the

resource

to

be

locked

or

unlocked.

A

name

that

is

longer

than

8

characters

will

be

truncated

to

8

characters.

A

name

that

is

shorter

than

8

characters

will

be

filled

with

blanks.

Function

Codes:

The

LOCKMGR

function

returns

a

function

code.

0

Resource

was

successfully

locked/unlocked.

2

The

resource

is

locked

already.

4

Resource

not

available.

8

Some

error

during

lock/unlock.

Also,

message

ARX0565E

will

be

issued.

Invalid

input

or

any

other

error

causes

REXX

syntax

error

40.

Example:

rc

=

LOCKMGR(’LOCK’,name)

/*

Obtain

a

lock

or

wait

until

somebody

*/

if

rc

<=

2

then

/*

unlocks

the

resource

name.

*/

do

/*

We

locked

the

resource

and

can

be

sure

*/

.....

/*

that

the

DO

block

of

this

REXX

program

*/

.....

/*

is

executed

ONCE

in

the

VSE

system.

*/

.....

call

LOCKMGR

’UNLOCK’,name/*

Unlock

the

resource

and

wake

up

all

*/

end

/*

REXX

programs

waiting

for

the

*/

/*

resource

to

be

unlocked

*/

MERGE

The

MERGE

function

creates

a

new

library

member

using

a

skeleton

and

input

variables.

The

skeleton

is

a

template

and

contains

user-defined

variables

(placeholders)

that

are

to

be

filled

in

with

actual

data.

The

MERGE

function

returns

the

new

library

member

name.

MERGE

has

the

following

format:

��

MERGE(string)

��

where

string

Is

a

character

string

that

consists

of

blank-delimited

tokens.

string

=

’token_1

token_2

...

token_n’

[’DATA=YES’]

Each

token

represents

the

assignment

of

a

variable.

A

token

is

of

type

varname=value.

There

are

user-defined

variables

and

system

variables.

v

A

value

must

not

contain

blanks.

v

A

user

variable

can

have

any

variable

name.

v

System

variables

have

reserved

variable

names.

System

Variables:

INNAME

Library

member

of

type

lib.sublib.mn.mt

that

is

to

be

used

as

template

to

create

a

new

job

(skeleton).

LOCKMGR

Function

236

REXX/VSE

Reference

OUTNAME

Library

member

of

type

lib.sublib.mn.mt

that

will

contain

the

newly

created

job.

DATA=YES

Library

member

specified

with

OUTNAME,

which

contains

SYSIPT

data.

User-Defined

Variables:

They

are

identified

by

two

leading

and

two

trailing

hyphens.

The

format

is

--varName--

When

specifying

the

variable

name

for

the

MERGE

function,

do

not

include

the

hyphens

(just

say

varName=

).

If

a

user-defined

variable

does

not

receive

a

value,

it

will

be

dropped.

This

is

useful

for

defining

optional

operands

in

JCL.

The

MERGE

function

recognizes

continuation

characters

at

position

72

of

the

skeleton.

Continuation

lines

have

to

follow

JCL

conventions.

If

the

merged

text

is

longer

than

71

bytes,

the

next

line

begins

at

position

16.

Output

lines

are

thus

formatted

according

to

the

rules

of

job

control

(JCL).

However,

continued

lines

may,

for

formatting

reasons,

loose

blanks

in

the

merge

process.

Example:

Assume

your

library

DEVLIB.EXEC

contains

in

member

SKJOB.Z

the

following

job

skeleton.

$$$$

JOB

JNM=--var001--,CLASS=Y,PRI=8,DISP=D

$$$$

LST

CLASS=Q,DISP=D

//

JOB

--var001--

Job

for

REXX

Console

Event

Processing

//

LIBDEF

*,SEARCH=--var002--

//

EXEC

REXX=--var001--,PARM=’REXXCOF5,00780,--var003--,--msg--’

$$/&

$$$$

EOJ

After

your

REXX

program

has

processed

the

following

two

statements

string

=

"INNAME=devlib.exec.skjob.z

OUTNAME=devlib.exec.myjob.z",

"var001=eventest

var002=prd1.base

var003=prd1.base.skrcjcl.z",

"msg=HALT_EXIT_REACHED,PRESS_ENTER_TO_END"

CALL

MERGE

string

four

variables

will

have

been

merged

into

the

skeleton,

and

library

member

MYJOB.Z

in

library

DEVLIB.EXEC

will

contain

this

job:

*

$$

JOB

JNM=EVENTEST,CLASS=Y,PRI=8,DISP=D

*

$$

LST

CLASS=Q,DISP=D

//

JOB

EVENTEST

Job

for

REXX

Console

Event

Processing

//

LIBDEF

*,SEARCH=PRD1.BASE

//

EXEC

REXX=EVENTEST,PARM=’REXXCOF5,00780,PRD1.BASE.SKRXJCL.Z,HALT_EXIX

T_REACHED,PRESS_ENTER_TO_END’

/&

*

$$

EOJ

Notice

that

the

conventions

of

the

VSE

utility

DTRIINIT

have

been

used

to

mask

leading

characters

*

$$

/*

/&

Error

Codes:

MERGE

does

not

issue

any

error

codes.

Invalid

input

or

any

other

error

causes

REXX

syntax

error

40.

MERGE

Function

Chapter

14.

REXX/VSE

Console

Automation

237

OPERMSG

This

function

adds

or

removes

an

operator

communication

exit.

This

exit

allows

the

VSE

operator

to

communicate

asynchronously

with

the

REXX

program

by

entering

the

VSE

attention

routine

command

MSG.

OPERMSG

has

the

following

format:

��

OPERMSG(request)

��

The

request

can

be

one

of

the

following:

ON

Returns

the

current

state

and

then

activates

support

for

the

operator

communication

exit

(OC

exit)

that

is

used

by

a

VSE

attention

routine

command

MSG

nn,DATA=msgdata

The

following

2-character

values

of

’msgdata’

have

a

special

significance

for

the

processing

of

the

OPERMSG

function.

When

activated,

the

exit

checks

for

the

occurrence

of

a

command

MSG

nn,DATA=xx

where

HI

Halt

Interpretation

DATA=HI

is

interpreted

as

an

external

interrupt.

By

preceding

the

OPERMSG

command

with

the

SIGNAL

ON

HALT

command,

the

REXX

program

can

provide

a

label

to

branch

to

when

the

HI

request

is

detected.

This

setup

is

useful

for

controlling

a

program

that

is

at

risk

of

going

into

a

loop.

TS

Trace

Start

DATA=TS

simulates

the

REXX

immediate

command

TS.

TS

puts

the

REXX

program

into

interactive

debug.

This

is

helpful

if

a

program

is

looping.

TE

Trace

End

HT

Halt

Typing

DATA=HT

simulates

the

REXX

immediate

command

HT.

This

command

suppresses

output

that

a

program

generates.

RT

Resume

Typing

For

detailed

information

on

the

above

facilities,

please

refer

to

Chapter

10,

“REXX/VSE

Commands,”

on

page

143

OFF

Returns

the

current

state

and

then

removes

the

operator

communication

exit.

()

Returns

the

current

state

(ON

or

OFF).

MSGDATA

Returns

the

last

msgdata

which

the

operator

entered

via

the

MSG

command.

OPERMSG

returns

the

null

string

if

no

OC

exit

request

was

entered

at

the

VSE

console.

OPERMSG

returns

one

blank

if

the

″MSG

nn″

was

entered

without

any

message

data.

Any

other

string

that

OPERMSG

returns

is

the

message

data.

Examples

SAY

OPERMSG(’ON’)

/*

returns

’OFF’

first

time

called

*/

/*

and

sets

the

OC

exit

support

ON

*/

SAY

OPERMSG(’MSGDATA’)

/*

returns

the

message

data

*/

SAY

OPERMSG()

/*

returns

’ON’

and

keeps

it

as

ON

*/

SAY

OPERMSG(’OFF’)

/*

returns

’ON’

and

switches

to

OFF*/

SAY

OPERMSG()

/*

returns

’OFF’

*/

OPERMSG

Function

238

REXX/VSE

Reference

PAUSEMSG

This

function

issues

a

console

message

and

waits

for

an

operator

reply.

If

successful,

PAUSEMSG

returns

the

operator

reply,

otherwise

a

null

string.

PAUSEMSG

has

the

following

format:

��

PAUSEMSG(message)

��

message

Any

string

of

1

to

122

bytes.

A

string

longer

than

that

will

be

truncated

to

122

bytes.

Examples

reply

=

PAUSEMSG(message)

SAY

PAUSEMSG(’Please

enter

your

name’)

SENDCMD

This

function

complements

the

standard

VSE

console

command

processing.

It

allows

to

issue

a

VSE

console

command

or

a

reply.

SENDCMD

can

be

used

to

give

a

single

reply,

for

example

the

reply

to

a

//

PAUSE

statement.

The

SENDCMD

function

does

not

require

an

active

console

session.

On

the

other

hand,

the

target

console

with

the

specified

(or

default)

consname

must

not

be

active

when

the

SENDCMD

function

is

issued.

Command

output

is

sent

to

all

master

consoles

that

are

defined

to

receive

all

messages

(″all

routing

codes″).

There

is

one

exception,

however:

if

the

job

that

started

the

REXX

program

specifies

an

ECHOU

user

ID,

the

command

output

is

sent

only

to

the

console

of

that

user

ID.

SENDCMD

has

the

following

format:

��

SENDCMD(message,consname)

��

message

Any

string

of

1

to

125

bytes.

A

string

longer

than

that

will

be

truncated

to

125

bytes.

consname

VSE

console

name.

The

default

name

is

’REXREPLY’.

Note

that

the

consname

parameter

does

not

determine

which

console

would

receive

command

output.

It

is

only

used

to

identify

the

command

in

the

hardcopy

file

and,

consequently,

in

any

redisplay

output.

If

your

system

runs

with

security

active

(IPLed

with

SEC=YES

in

the

SYS

command),

SENDCMD

uses

as

consname

the

VSE

security

user-id.

Any

other

consname

is

ignored.

Function

Codes:

The

SENDCMD

issues

the

following

function

codes:

0

SENDCMD

processing

was

successful.

8

SENDCMD

function

failed

due

to

the

failure

of

a

VSE

macro.

REXX

message

ARX0565I

shows

the

macro

name.

Call

the

SYSVAR

function

to

receive

the

return

and

reason

code.

Refer

to

“Return

and

Reason

Codes”

on

page

267

for

explanation

of

these

codes.

SENDMSG

This

function

sends

a

message

to

a

specific

VSE

console.

No

other

VSE

console

will

receive

the

message.

Exception:

If

you

specify

’ALL’

as

consname,

the

message

is

sent

to

all

active

master

consoles.

PAUSEMSG

Function

Chapter

14.

REXX/VSE

Console

Automation

239

SENDMSG

has

the

following

format:

��

SENDMSG(message,consname,cart,type)

��

message

Any

string

of

1

to

125

bytes.

A

string

longer

than

that

will

be

truncated

to

125

bytes.

consname

VSE

console

name

to

be

used

as

destination

for

the

message.

The

default

name

is

’REXX’.

Specify

’ALL’

to

send

the

message

to

all

master

consoles

active

in

your

VSE/ESA

system.

cart

Command

and

response

correlation

token.

Default

is

XL8’0’.

The

Command

And

Response

Token

(CART)

provides

a

selection

criteria

for

the

GETMSG

function

to

retrieve

one

or

more

particular

messages

from

the

set

of

console

messages.

Please

refer

also

back

to

section

“Creating

a

Command

and

Response

Correlation

Token

(CART)”

on

page

224.

The

’cart’

specification

in

SENDMSG

is

only

applicable

when

the

message

to

be

sent

is

a

command

response.

It

has

no

meaning

for

an

″ordinary″

message

such

as

a

notification

message.

Sending

a

command

response

comes

into

play

when

you

write

a

command

processor

in

REXX.

type

If

HIGH,

the

message

is

displayed

in

highlighted

form.

If

omitted,

the

message

is

displayed

in

non-highlighted

form.

Examples:

In

the

following

example,

the

SENDMSG

function

serves

to

find

out

whether

the

other

partition

is

already

active.

do

while

SENDMSG(’Hello

World’,’REXX’)

call

SLEEP

5

end

Sending

a

highlighted

message

to

all

active

master

consoles

is

done

in

the

following

example:

fc

=

SENDMSG(’Hello’,’ALL’,,’HIGH’)

Function

Codes:

The

SENDMSG

function

returns

a

function

code:

0

SENDMSG

processing

was

successful.

1

The

console

that

was

intended

as

receiver

of

the

message

is

not

active.

Invalid

input

or

any

other

error

causes

REXX

syntax

error

40.

SORTSTEM

This

function

sorts

a

stem

variable.

Sort

criteria

is

the

standard

″<″

-function

applied

to

EBCDIC-strings.

SORTSTEM

returns

function

code

0

that

replaces

the

function

call.

SORTSTEM

has

the

following

format:

��

SORTSTEM(stemname,zone,sortorder,range)

��

stemname

is

the

stem

to

be

sorted.

For

example,

if

’svar.’

is

specified

as

stemname,

variable

svar.0

has

to

contain

the

number

n

of

strings

to

be

sorted,

and

svar.1,

svar.2,

...

svar.n

have

to

contain

the

strings

to

be

sorted.

SENDMSG

Function

240

REXX/VSE

Reference

zone

specifies,

after

the

keyword

ZONE,

a

beginning

and

an

ending

position

within

the

strings

to

be

sorted

identifying

the

sort

criteria.

Due

to

the

implemented

sort

algorithm

(″heapsort″)

the

order

of

″equal″

strings

may

be

changed.

If

not

specified,

the

entire

strings

are

used

during

comparison.

If

string

lengths

do

not

match,

the

shorter

string

is

padded

with

blanks.

sortorder

defines

the

order

of

sorting

ASCENDING

means

sorting

in

ascending

order.

This

is

the

default.

DESCENDING

means

sorting

in

descending

order.

range

specifies,

after

the

keyword

RANGE,

a

beginning

and

an

ending

index,

identifying

the

part

of

the

stem

to

be

sorted.

Examples

of

Function

Calls

fc

=

SORTSTEM(’input.’)

fc

=

SORTSTEM(’svar.’,’ZONE

9

14’,’DESCENDING’,’RANGE

11

24’)

See

“Error

Codes

of

Failing

Functions”

on

page

243

for

error

codes

returned

by

the

SORTSTEM

function.

SYSDEF

This

function

is

used

for

two

different

purposes.

1.

It

tells

the

VSE/REXX

CPU

Monitor

which

elements

of

system

activity

are

to

be

checked.

It

also

sets

the

limits

which,

when

having

been

exceeded,

lead

to

a

console

message.

The

SYSDEF

function

has

the

following

format:

��

SYSDEF(’SYSACTIVITY’,cputime,cpurate,elaptime,iocount,iorate,partids)

��

where

the

5

variables

set

the

limits:

cputime

CPU

time,

in

1/100

seconds,

that

has

accumulated

in

a

partition.

A

value

of

1000,

for

example,

indicates

that

a

partition

after

having

used

up

10

seconds

of

CPU

time

has

reached

its

limit.

cpurate

CPU

time

as

a

percentage

of

elapsed

time

of

the

specified

interval

elaptime

Elapsed

time,

in

seconds,

that

has

accumulated

in

a

partition

iocount

number

of

I/Os

that

have

accumulated

in

a

partition

iorate

number

of

I/Os

per

second,

during

the

specified

interval

partids

a

string

of

2-character

partition

IDs.

It

indicates

those

partitions

that

are

to

be

excluded

from

monitoring.

Generic

notation

is

allowed:

by

specifying

an

’*’

in

the

second

position

you

exclude

the

entire

dynamic

partition

class

from

being

monitored.

For

example,

’F1F2F3Y*’

says

that

partitions

F1,

F2,

F3,

and

all

partitions

of

class

Y

should

not

be

monitored.

A

value

of

zero

for

any

of

the

numeric

parameters

indicates

that

the

corresponding

system

activity

should

not

be

checked.

If

a

parameter

is

specified

as

nullstring

or

not

specified

at

all,

the

corresponding

value

remains

unchanged.

SORTSTEM

Function

Chapter

14.

REXX/VSE

Console

Automation

241

2.

Request

rerouting

from

NetView

to

the

REXX

console

This

function

is

of

primary

interest

in

the

context

of

REXX

Console

Automation.

Through

the

console

profile

REXAUTO,

a

REXX

console

can

be

defined

as

receiver

of

messages

that

are

sent

from

an

automated

message

handling

program

such

as

VSE/OCCF.

The

SYSDEF

function

requests

that

VSE/OCCF

reroutes

messages

that

are

designated

(in

the

VSE/OCCF

message

automation

table)

to

be

routed

to

NetView

to

the

REXX

console,

instead.

Issue

the

SYSDEF

command

as

follows:

rc

=

SYSDEF(’CONNECT

OCCF’)

To

reset

the

above

definition,

you

have

to

disconnect

the

REXX

console

from

VSE/OCCF:

rc

=

SYSDEF(’DISCONNECT

OCCF’)

If

your

system

runs

with

security

active

(IPLed

with

SEC=YES

in

the

SYS

command),

you

can

use

the

SYSDEF

function

only

if

the

user-id

of

the

VSE

security

administrator

was

supplied

in

the

job

that

called

the

REXX

program.

The

SYSDEF

function

returns

either

of

the

following:

0

if

no

values

have

been

set

so

far

and

you

invoked

the

function

with

only

the

first

keyword

(’SYSACTIVITY’)

specified.

values

a

string

consisting

of

6

words.

These

words

contain

the

values

(limits

and

partition

IDs)

that

were

input

to

the

SYSDEF

function:

1.

CPU

time

2.

Elapsed

time

3.

I/O

count

4.

I/O

rate

5.

CPU

rate

6.

String

of

partition

IDs.

2

Applicable

only

to

CONNECT:

VSE/OCCF

was

already

connected.

This

could

be

a

connection

to

NetView

but

remember

that

you

should

not

use

REXX

Console

Automation

and

NetView

at

the

same

time.

4

VSE/OCCF

has

not

been

started.

If

a

parameter

was

excluded

in

the

function

call,

the

corresponding

word

contains

a

null

value.

SYSVAR

The

SYSVAR

function

described

on

page

106

has

an

argument,

SYSERRCODES,

that

specifically

relates

to

the

console

environment.

SYSERRCODES

contains

the

return

and

reason

code

of

the

VSE

system

macro

(such

as

MGCRE,

MCSOPER,

or

WTO)

which

is

used

to

issue

a

VSE

console

command.

The

following

example

demonstrates

that

you

cannot

call

for

the

service

of

a

command

processor

while

the

response

to

the

preceding

command

has

not

been

retrieved.

ADDRESS

CONSOLE

’ACTIVATE

NAME

REXX

PROFILE

REXNORC’

’RED’

’RED’

/*

REDISPLAY

command

a

second

time

*/

CALL

SYSVAR

’syserrcodes’

IF

syserrcodes

=

’0008

0001’

THEN

SAY

’Command

not

accepted

because

command

processor

is

busy’

Return

and

reason

codes

are

returned

as

decimal

values.

SYSDEF

Function

242

REXX/VSE

Reference

Please

refer

to

“Return

and

Reason

Codes”

on

page

267

for

explanations

of

all

return

and

reason

codes

issued

from

VSE/ESA

system

macros.

Error

Codes

of

Failing

Functions

The

following

message

indicates

an

error

ARX0960E

ERROR

Running

Function

xxxxxxxx,

RC=nn

RC=nn

points

to

a

specific

error.

Possible

error

codes,

together

with

an

explanation,

are

shown

in

the

following

table.

Function

Name

Error

Code

RC

Explanation

DELMSG

04

Invalid

number

of

arguments,

or

nullstring

as

argument

12

Invalid

parameter

list

FINDMSG

08

Failure

of

VSE

macro.

REXX

message

ARX0565I

shows

the

macro

name.

Call

SYSVAR

to

determine

return

and

reason

code.

Refer

to

“Return

and

Reason

Codes”

on

page

267.

12

No

active

console

session.

16

Console

session

deactivated

during

FINDMSG

processing

20

ARXEXCOM

error

or

stem

count

error

24

Unused

28

Invalid

library

member

in

connection

with

LOADACTN

option

29

Unused

32

Invalid

parameter

list

36

Invalid

TIME

40

Invalid

ZONE

44

Unused

48

Message

action

table

not

loaded

52

Problem

loading

library

member

56

Library

member

not

found

60

Storage

problem

64

Invalid

OPTION

68

Format

error

within

message

action

table

GETMSG

04

Invalid

number

of

arguments

12

Invalid

parameter

list

LOCKMGR

04

Invalid

number

of

arguments

12

Invalid

parameter

list

20

EXECIO

error

MERGE

24

Empty

input

string

28

EXECIO

DISKR

error

30

Invalid

parameter

list

(invalid

filename

for

INNAME

or

OUTNAME)

32

Invalid

parameter

list

(either

no

parameter

or

more

than

one

parameter)

34

Invalid

token

36

EXECIO

DISKW

open

error

40

EXECIO

DISKW

error

(unable

to

write)

44

EXECIO

DISKW

close

error

SYSVAR

Function

Chapter

14.

REXX/VSE

Console

Automation

243

Function

Name

Error

Code

RC

Explanation

OPERMSG

04

Invalid

number

of

arguments

08

STXIT

macro

failed

12

Invalid

parameter

list

16

Storage

problem

24

CDLOAD

failed

28

STXIT

OC

not

activated

PAUSEMSG

04

Invalid

number

of

arguments

08

WTOR

error

12

nullstring

as

argument

SENDCMD

04

Invalid

number

of

arguments

12

Invalid

parameter

list

SENDMSG

04

Invalid

number

of

arguments

08

WTO

macro

failed

12

Invalid

parameter

list

SORTSTEM

04

Invalid

number

of

arguments.

08

Invalid

ZONE.

12

Invalid

STEM

variable.

16

Storage

problem.

20

Stem

handling

problem.

24

Invalid

STEM.0

setting.

28

Invalid

sort

order

32

Invalid

range

SYSDEF

04

Invalid

number

of

arguments

12

Invalid

parameter

list

16

REXX

not

initialized

20

Security

violation

It

may

happen

that

module

ARXEFPLX

issues

an

RC=4.

Most

likely,

this

indicates

a

shortage

of

GETVIS

storage.

In

rare

cases,

the

setting

of

variable

pools

failed.

For

error

return

codes

issued

by

VSE

system

macros,

please

refer

to

v

Section

“Return

and

Reason

Codes”

on

page

267

--

for

macros

MCSOPER,

MCSOPMSG,

MGCRE,

v

The

manual

VSE/ESA

System

Macros

Reference

--

for

other

macros

such

as

CDLOAD

or

WTO.

Always

Keep

in

Mind...

This

section

contains

important

hints

and

tips

that

you

should

always

be

aware

of

when

working

with

REXX

Console

Automation.

The

entire

message

traffic

between

programs

and

consoles

goes

through

the

Console

Router

queue.

When

a

message

enters

the

Console

Router

queue,

the

target

console(s)

are

posted

to

retrieve

the

message.

Only

after

all

target

consoles

have

retrieved

the

message,

the

queue

space

occupied

by

this

message

is

eligible

to

be

reused

for

a

new

message.

SYSVAR

Function

244

REXX/VSE

Reference

Space

for

the

Console

Router

queue

is

not

unlimited.

Therefore,

if

messages

are

not

retrieved

at

the

target

consoles,

the

queue

can

become

flooded.

In

the

worst

case,

this

could

lead

to

a

complete

standstill

of

the

system.

To

take

precautions

against

this,

a

console

is

suspended

if

no

message

is

retrieved

within

the

next

15

seconds

after

arrival

of

a

message

at

this

console.

If

a

console

is

suspended,

no

more

messages

are

routed

to

this

console.

A

REXX

console

procedure

would

have

to

DEACTIVATE

and

re-ACTIVATE

the

console

in

this

case,

but

incoming

messages

during

suspend

are

lost.

By

observing

the

following

rules,

you

will

be

able

to

avoid

such

critical

situation.

Note

that

the

CORCMD

debugging

command

is

available

for

situations

where

your

console

functions

do

not

work

as

they

are

supposed

to.

Please

refer

to

“CORCMD

Command

for

Problem

Solving”

on

page

270.

Make

Frequent

Use

of

the

GETMSG

Function

A

prominent

task

of

a

console

program

is

to

retrieve

the

messages

that

are

sent

to

the

console.

The

console

program

can

be

a

console

presentation

program

such

as

the

system

console,

or

it

can

be

a

programmed

operator.

In

REXX

Console

Automation,

you

retrieve

messages

by

using

the

GETMSG

function.

You

are

urged

to

frequently

call

this

function.

This

helps

to

have

message

items

disappear

from

the

Console

Router

queue.

Do

not

Send

Messages

to

″Yourself″

After

your

REXX

program

has

activated

a

REXX

console

with

profile

REXALLRC

(″receive

all

routing

codes″),

it

should

not

send

messages

to

this

console.

Specifically,

it

should

not

issue

SAY

to

SYSLOG

REXX

TRACE

to

SYSLOG

A

sequence

like

the

following

is

deadly.

ADDRESS

CONSOLE

’ACTIVATE

...

PROFILE

REXALLRC’

DO

FOREVER

GETMSG...

SAY...

SAY...

END

Your

program

is

not

able

to

retrieve

messages

as

fast

as

it

sends

them.

Redirect

Some

Output

to

SYSLST

A

way

to

avoid

the

above

situation

is

to

direct

SAY

output

and

trace

output

to

SYSLST:

CALL

ASSGN

’STDOUT’,’SYSLST’

Direct

Messages

to

Only

One

Console

(ECHOU

Option)

Another

way

of

directing

high-volume

message

traffic

away

from

the

REXX

console

is

to

make

sure

that

it

is

not

routed

to

all

consoles.

This

is

accomplished

by

including

the

VSE/POWER

option

ECHOU

in

the

job

that

calls

your

REXX

program.

The

ECHOU

option

prevents

the

job’s

console

output

from

being

delivered

to

all

master

consoles

(one

of

them

being

the

REXX

console

which

had

been

activated

with

the

REXALLRC

profile).

Instead,

the

output

is

sent

to

the

console

that

is

associated

with

the

ECHOU

user-id.

Your

REXX

console

is

thus

freed

from

debug

and

tracing

messages;

it

receives

only

its

own,

very

specific

traffic

of

commands

and

command

responses.

Hints

and

Tips

Chapter

14.

REXX/VSE

Console

Automation

245

An

effect

similar

to

the

ECHOU

option

is

achieved

by

starting

your

REXX

program

at

a

master

console

via

a

r

rdr,pausexx

job.

An

ECHOU

option

for

this

master

console

has

been

made

effective

automatically

by

the

VSE

system.

Remember

the

REXNORC

Profile

The

discussion

so

far

had

assumed

that

the

REXX

console

is

activated

with

profile

REXALLRC

(″receive

all

routing

codes″).

This

profile

is

useful

for

global

systemwide

monitoring.

You

should

ask

yourself

whether

the

REXX

console,

at

a

particular

place

in

your

REXX

program,

would

do

better

with

the

REXNORC

(″receive

no

routing

codes″)

profile.

A

console

which

needs

to

receive

only

its

command

responses

should

be

defined

with

that

profile.

For

example,

in

a

scenario

like

the

following

ACTIVATE

...

PROFILE

REXNORC

...

REDISPLAY...

DEACTIVATE

...

the

REXX

console

is

reserved

for

receiving

only

the

REDISPLAY

output.

If

instead

it

is

activated

with

profile

REXALLRC,

a

lot

of

other

messages

can

pile

up

at

this

console

while

the

REDISPLAY

command

processor

is

still

searching

through

the

hardcopy

file.

Split

off

a

Time-consuming

Task

into

a

Separate

Job

Ask

yourself

how

much

synchronous

processing

you

can

afford

between

two

incidents

of

message

retrieval.

If

there

is

a

good

chance

that

this

processing

may

last

a

long

time

(for

example

waiting

for

a

certain

event

to

happen,

or

a

fair

amount

of

I/O

operations),

you

might

be

better

off

if

you

let

a

separate

job

perform

asynchronously

that

piece

of

processing.

You

either

use

the

PUTQE

command

directly.

Or

you

use

an

approach

that

is

shown

in

one

of

the

demo

applications

(see

“REXXSPCE”

on

page

257)

where

the

REXXCO

application

triggers

a

job

via

the

REXX

Message

Action

Table.

In

doing

so,

REXXCO

also

issues

the

PUTQE

command.

Finish

All

Preparatory

Work

Prior

to

ACTIVATE

CONSOLE

This

is

a

similar

line

of

thought

as

in

the

preceding

section.

Your

preparatory

work

might

involve

time-consuming

tasks

such

as

reading

and

processing

of

files.

Place

these

tasks

ahead

of

ACTIVATEing

your

REXX

console.

If,

instead,

these

tasks

are

started

after

ACTIVATE

and

take

a

long

time

to

finish,

they

might

hold

up

your

REXX

program

and

prevent

it

from

retrieving

all

other

messages

that

keep

accumulating.

Similarly,

DEACTIVATE

your

REXX

console

before

you

start

time-consuming

cleanup

tasks.

Handle

One

Command

at

a

Time

It

is

advisable

to

finish

processing

of

one

command

prior

to

issuing

the

next

command.

You

should

thus

adhere

to

the

following

sequence:

.

.

.

issue

command

retrieve

and

process

response

issue

command

Hints

and

Tips

246

REXX/VSE

Reference

retrieve

and

process

response

.

.

.

If

you

fail

to

do

that,

you

run

the

risk

of

getting

a

’COMMAND

PROCESSOR

BUSY’

condition.

This

is

indicated

by

a

return

code

of

-10

from

the

REXX

host

command

routine

plus

return

and

reason

codes

8

/

1

from

the

MGCRE

macro.

Start

Testing

on

a

Small

Scale

This

involves

two

rules:

1.

Start

testing

your

REXX

console

automation

program

in

a

test

environment

before

you

release

it

to

your

production

system.

2.

At

the

earlier

stages

of

testing,

let

a

REXX

master

console

run

with

profile

REXNORC

(″receive

no

routing

codes″).

This

helps

to

isolate

the

automated

handling

of

commands

and

associated

responses.

The

Most

Important

Rule...

At

the

end

of

this

section,

the

two

most

important

rules

are

summarized

for

you

to

remember:

v

Let

your

REXX

program

retrieve

the

messages

that

were

delivered

at

the

REXX

console.

v

Deactivate

a

REXX

console

that

is

no

longer

being

used.

Also

check

the

priority

of

the

partition

running

your

REXX

console

program.

Keep

in

mind

that

the

Console

Router

program,

whose

queue

space

may

soon

be

exhausted,

could

bring

the

entire

system

to

a

standstill.

REXX/VSE

CPU

Monitor

The

VSE/REXX

CPU

Monitor

is

a

CICS

program

that

checks

for

critical

performance

values

in

VSE

partitions.

It

issues

a

console

message

when

it

detects

that

user-defined

limits

have

been

exceeded.

The

user

sets

these

limits

using

the

SYSDEF

function

described

on

page

241.

The

CPU

Monitor

is

called

as

a

user

exit

from

CICS

transaction

IEXM,

a

CICS

background

transaction.

This

is

described

in

the

VSE/ESA

Enhancements

manual,

SC33-6629.

The

CPU

monitor

analyzes

the

data

that

the

CICS

transaction

recorded

up

to

the

last

measurement

interval.

It

checks

whether

in

any

partition

any

of

the

limits

set

by

function

SYSDEF

have

been

exceeded.

If

this

is

the

case,

the

program

sends

message

ARX0998I

to

the

console,

for

example

ARX0998I

PID

Y1

JOB

TEST

EXCEEDS

THE

LIMITS:

CPUTIME=10.15

Note

that

the

message

may

show

more

than

one

critical

value.

This

depends

on

how

many

of

the

five

system

activity

items

exceeded

their

limits.

The

entire

message

can

appear

more

than

once

within

a

measurement

interval:

for

each

partition

that

went

over

its

limit

you

get

one

such

message.

Using

the

REXX

Console

Automation

function,

you

can

provide

automated

actions

in

response

to

the

above

message.

For

example,

you

may

cancel

a

critical

partition

that

is

using

up

system

resources.

The

REXX

Console

Automation

function

includes

an

application

example

that

provides

a

mechanism

for

capturing

an

event

as

indicated

by

the

above

message.

You

find

statements

for

handling

the

event

in

member

REXXEVNT.Z

at

label

FLUSHCPU.

The

REXXCO

application

framework

is

described

in

the

following

section

REXX

Console

Application

Framework.

REXX

program

REXXCPUM

is

an

example

of

how

to

make

best

use

of

transaction

IEXM

in

conjunction

with

the

SYSDEF

function

and

the

CPU

Monitor.

See

“REXXCPUM”

on

page

259

for

a

description

of

REXXCPUM.

Hints

and

Tips

Chapter

14.

REXX/VSE

Console

Automation

247

REXX

Console

Application

Framework

An

example

application

framework

(its

name

is

REXXCO)

is

available

to

demonstrate

how

you

can

exploit

REXX

Console

Automation

to

your

best

advantage.

First

some

typical

operation

scenarios

are

described

which

are

addressed

with

this

framework.

Then

its

concept

is

briefly

discussed.

The

examples

are

presented

in

detail

further

below,

in

section

“Automated

Operation

Demos

(Examples)”

on

page

253.

Operation

Scenarios

v

Suppose

the

operator

has

to

flush

jobs

that

misbehave,

for

example

jobs

that

produce

too

much

output.

The

operator

would

notice

this

through

VSE/POWER

message

1Q52I

OUTPUT

LIMIT

EXCEEDED...

This

task

can

be

automated.

Job

REXXFLSH

demonstrates

this;

see

“REXXFLSH”

on

page

255.

v

Suppose

the

operator

has

to

conduct

a

defined

dialog

with

an

application.

For

example

the

operator

enters

some

data

via

the

operator

communication

facility

or

answers

an

outstanding

reply.

This

task

can

be

automated.

Job

REXXCXIT

demonstrates

this;

see

“REXXCXIT”

on

page

256.

v

Suppose

the

operator

has

to

schedule

a

job

sequence

according

to

clues

taken

from

console

messages.

A

more

complex

example

is

given

with

REXXSPCE;

see

“REXXSPCE”

on

page

257.

Jobs

request

work

file

space

via

messages

to

the

console.

These

requests

are

met

in

an

automated

way

through

the

REXXCO

application

framework.

Concept

The

REXXCO

application

framework

maintains

an

active

REXX

console.

It

is

designed

to

monitor

all

messages

that

are

available

at

this

console.

Jobs

issue

messages

for

various

purposes.

In

a

given

installation,

some

of

these

messages

may

trigger

a

request

to

perform

a

certain

function.

These

messages

are

recognizable

by

given

character

strings

within

the

message

text.

This

can

be

the

message

ID

up

front,

but

also

any

substring

inside

the

message

text.

The

REXXCO

application

framework

is

a

programmed

operator

who

finds

those

messages

and

automatically

initiates

a

predefined

action.

The

application

is

designed

to

be

highly

tailorable

so

that

it

can

be

adapted

to

various

needs.

The

tailoring

is

done

on

two

levels:

1.

Definition

of

message

-

action

pairs

A

message

is

identified

by

a

search

string,

the

action

by

a

name.

This

definition

has

the

form

of

a

table

and

is

called

Message

Action

Table.

You

can

build

your

own

table,

but

you

may

also

work

with

the

IBM-supplied

table

which

you

find

in

your

system

under

the

name

REXXTABL.Z.

2.

The

actions

can

be

one

of

three

programmed

responses:

v

Internal

REXX

program

v

External

REXX

program

v

VSE

job.

This

is

described

below,

in

section

“Actions”

on

page

249.

Message

Action

Table

Entries

An

entry

in

this

table

contains

the

following

information:

Find_String

This

string

extends

from

the

second

word

through

position

71

(trailing

blanks

are

not

considered).

It

serves

as

search

argument

to

select

from

the

set

of

console

messages

those

that

represent

a

functional

request.

Action

This

is

written

in

the

first

word

of

an

entry.

It

may

be

used

to

initiate

an

action

(function)

to

be

taken

after

a

match

of

Find_String

has

been

found

in

a

console

message.

Console

Application

Framework

248

REXX/VSE

Reference

Data

This

can

be

any

character

string

and

is

(optional)

additional

information

for

the

function

that

performs

Action.

It

is

recognizable

in

the

Message

Action

Table

as

continuation

line

(the

preceding

line

has

a

continuation

character

in

position

72).

Note:

In

this

context,

a

match

between

an

entry

in

the

Message

Action

Table

and

a

console

message

is

called

an

event.

The

interplay

between

messages

coming

in

at

the

console

and

entries

in

the

Message

Action

Table

is

illustrated

in

the

following

figure.

Actions

As

you

can

see

from

the

above

figure,

in

the

REXXCO

application

Action

can

be

performed

by

three

kinds

of

units:

v

Internal

REXX

Program

Console

Application

Framework

Chapter

14.

REXX/VSE

Console

Automation

249

This

is

one

out

of

a

set

of

REXX

programs

(also

called

REXX

procedures)

each

of

which

is

capable

of

providing

the

appropriate

action

for

an

event.

None

of

these

programs

is

a

complete

self-contained

program.

Instead,

this

type

of

program

consists

of

just

a

sequence

of

REXX

statements.

These

sequences

(procedures)

are

collected

together

into

a

larger

REXX

program.

The

procedure

is

uniquely

identified

by

a

label.

The

label

corresponds

to

the

first

word

(Action)

in

a

Message

Action

Table

entry.

v

External

REXX

program

In

the

Message

Action

Table,

this

is

indicated

by

an

ampersand

(&)

in

position

1.

Behind

the

&,

beginning

in

column

2,

is

the

name

of

the

program.

It

will

be

called

as

(external)

function:

rc

=

progname(..parameters..)

v

A

VSE

job

This

is

indicated

by

just

an

asterisk

(*)

in

position

1,

without

any

name

following.

The

REXXCO

application

creates

a

new

batch

job

using

a

given

job

skeleton

and

submits

this

job

to

the

VSE/POWER

reader

queue.

To

create

the

job,

the

application

uses

the

MERGE

function

(see

“MERGE”

on

page

98).

The

input

string

for

MERGE

consists

of

continuation

lines

(also

called

data

lines)

in

the

table

entry.

These

lines

must

at

least

supply

values

for

the

system

variables

INNAME

and

OUTNAME

of

the

MERGE

function.

In

addition,

these

data

lines

can

assign

values

to

user-supplied

variables

in

the

skeleton.

For

an

illustration

of

the

three

types

of

action

specification,

you

find

below

the

Message

Action

Table

that

is

supplied

by

default

in

your

system.

How

to

Use

the

REXX

Console

Application

REXXCO

Loading

The

REXXCO

application

must

first

be

loaded

as

a

member

of

type

PROC.

You

do

this

by

using

the

REXXLOAD

program.

This

program

is

described

in

section

“REXXLOAD”

on

page

254.

Invocation

You

start

the

application

from

a

job

by

supplying

the

statement

//

EXEC

REXX=REXXCO,PARM=’p1

p2...pn’

Your

system

includes

job

REXXCONS

which

activates

a

console

session

and

then

starts

the

REXXCO

application.

The

PARM

operand

allows

you

to

override

several

names

that

are

used

by

the

REXXCO

application

(there

is

no

checking

for

valid

names).

PARM

has

the

following

parameters.

Everyone

of

them

is

coded

as

p=value.

/*

REXXTABL

REXX/VSE

Message-Action-Table

for

Demonstration

Purposes

*/

/*

Action

FindString(2nd

word..pos

71)

Data,in

continuation

lines

*/

FLUSH1Q52I

1Q52I

FLUSHCPU

ARX0998I

REPLY

HIT

ENTER

TO

CLOSE

THE

FILE

REPLY

HALT

EXIT

REACHED,

PRESS

ENTER

TO

END

&REXXSTOP

THIS

LOOP

CAN

BE

STOPPED

*

REXXCO<<

VSAM

WORKFILE:

X

INNAME=PRD1.BASE.SKRXVSAM.Z

OUTNAME=PRD1.BASE.REXXSPCE.JOB

X

VAR001=REXXSPCE

VAR002=PRD1.BASE

VAR003=PRD1.BASE.SKRXJCL.Z

*

0D20E

X

INNAME=PRD1.BASE.SKRXPTLG.Z

OUTNAME=PRD1.BASE.REXXPTLG.JOB

X

VAR001=REXXPTLG

Figure

11.

Example

of

a

Message

Action

Table

Console

Application

Framework

250

REXX/VSE

Reference

MSGTABLE=

Fully

qualified

library

member

name

(lib.sublib.mn.mt)

of

the

Message

Action

Table.

The

REXXCO

application

uses

PRD1.BASE.REXXTABL.Z

as

default.

EVENTPROC=

Name

of

a

REXX

program

that

is

called

when

Action

is

provided

by

an

internal

REXX

program

(Action

in

the

Message

Action

Table

has

neither

an

’&’

nor

an

’*’

in

postion

1,

but

rather

the

label

of

that

internal

REXX

program).

The

REXX

program

named

by

EVENTPROC

has

one

or

more

of

internal

REXX

programs

bundled

together.

Each

of

them

is

uniquely

identified

by

a

label,

and

this

label

corresponds

to

an

Action

in

the

Message

Action

Table.

The

REXXCO

application

uses

PRD1.BASE.REXXEVNT.PROC

as

default.

Please

refer

also

to

“User-Supplied

REXX

Action

Program.”

CONSNAME=

The

8-byte

unique

console

name.

If

not

specified

it

defaults

to

REXXCOnn,

where

nn

is

the

partition

id.

PROFNAME=

The

8-byte

console

profile

name.

If

not

specified

it

defaults

to

REXALLRC.

LOCKID=

An

8-byte

name

to

be

used

by

the

LOCKMGR

function.

It

will

be

passed

to

an

Action

job

or

to

an

event-handling

REXX

program.

If

not

specified

it

defaults

to

REXXCOnn,

where

nn

is

the

partition

id.

Note

that

you

may

call

REXXCO

in

multiple

partitions.

This

would

allow

you

to

supply

different

tables,

event-handling

Action

programs

etc.

Termination

You

terminate

the

REXXCO

application

by

entering

at

the

console

the

command

MSG

part_ID,DATA=EXIT

or

MSG

part_ID,DATA=HI

Event

An

event

takes

place

if

a

console

message

retrieved

by

the

REXXCO

application

contains

the

Find_String

(as

substring)

specified

in

a

REXX

Message

Action

Table.

User-Supplied

REXX

Action

Program

As

was

described

earlier,

the

REXXCO

application

calls

a

REXX

program

to

perform

an

action

(unless

Action

in

the

Message

Action

Table

shows

an

’*’).

The

program

is

either

a

complete

REXX

program,

as

indicated

by

an

’&’

in

the

first

position

in

the

table.

Or

it

is

the

REXX

program

you

had

specified

in

the

parameter

EVENTPROC.

This

is

a

set

of

internal

REXX

programs

each

of

them

uniquely

identified

by

a

label.

You

might

access

REXX

statements

at

the

given

label

as

shown

below

(an

excerpt

from

member

REXXEVNT.PROC).

The

first

statement,

ARG,

serves

as

interface

between

REXXCO

and

the

REXX

program

defined

in

the

EVENTPROC

parameter.

Also,

any

external

Action

program

has

to

apply

this

interface.

ARG

lockid,message,tblentry

/*

lockid

is

the

lockid

you

should

use

for

the

LOCKMGR

function.

message

is

the

VSE

console

message

tblentry

is

the

matching

table

entry

of

REXX

console

message

table

Your

REXX

program

may

proceed

as

follows:

*/

...

Console

Application

Framework

Chapter

14.

REXX/VSE

Console

Automation

251

action

=

WORD(tblentry,1)

/*

Extract

Action

from

table

entry

*/

SIGNAL

action

...

...

LABEL1:

/*

This

code

will

get

control

if

action=’LABEL1’

*/

...

/*

Here

you

process

the

VSE

console

message

*/

RETURN

User-supplied

Job

Skeletons

You

can

create

your

own

job

skeleton.

This

is

a

VSE

library

member

whose

name

you

supply

in

the

INNAME=

parameter

of

the

message

action

table.

It

may

contain

variables

to

be

resolved.

Here

is

an

example

of

a

job

skeleton

that

contains

variables

to

be

resolved

by

the

MERGE

function.

Variable

Resolution

within

Job

Skeletons

Values

for

user-supplied

variables

in

a

job

skeleton

are

represented

as

--varNNN--

In

order

to

have

the

variables

resolved

by

the

REXXCO

application,

you

have

to

assign

data

to

the

variables.

You

do

this

via

the

continuation

lines

(data

lines)

in

the

REXX

Message

Action

Table

entry.

For

example,

*

any

substring

of

a

console

message

to

be

found

X

INNAME=PRD1.BASE.SKRXVSAM.Z

OUTNAME=PRD1.BASE.NEWJOB.Z

X

VAR001=EVENTEST

VAR002=PRD1.BASE

VAR003=PRD1.BASE.SKRXJCL.Z

The

INNAME

parameter

specifies

the

fully

qualified

name

of

the

job

skeleton.

The

OUTNAME

parameter

specifies

the

fully

qualified

name

of

the

output

library

member.

After

the

variables

are

merged

into

the

skeleton,

the

output

library

member

PRD1.BASE.NEWJOB.Z

looks

as

shown

below.

*

$$

JOB

JNM=EVENTEST,CLASS=Y,PRI=8,DISP=D

*

$$

LST

CLASS=Q,DISP=D

//

JOB

EVENTEST

Job

for

REXX

Console

Event

Processing

//

LIBDEF

*,SEARCH=PRD1.BASE

//

EXEC

REXX=EVENTEST,PARM=’REXXCOF5,00780,PRD1.BASE.SKRXJCL.Z,F5

0005

X

*

REXXCO<<

VSAM

WORKFILE:

TRACKS=5’

/&

*

$$

EOJ

Please

note

that

the

following

variables

are

generated

by

the

REXXCO

application

and

are

concatenated

implicitly

to

the

data

line.

Reserved

Variables

Examples

REXXPID

F5

REXXRPLY

0005

REXXLOCK

REXXCOF5

REXXJNUM

00780

$$$$

JOB

JNM=--var001--,CLASS=Y,PRI=8,DISP=D

$$$$

LST

CLASS=Q,DISP=D

//

JOB

--var001--

Job

for

REXX

Console

Event

Processing

//

LIBDEF

*,SEARCH=--var002--

//

EXEC

REXX=--var001--,PARM=’--rexxlock--,--rexxjnum--,--var003--,--reX

xxmsg--’

$$/&

$$$$

EOJ

/+

Figure

12.

Example

of

a

Job

Skeleton

Console

Application

Framework

252

REXX/VSE

Reference

Reserved

Variables

Examples

REXXMSG

F5

0005

*

REXXCO<<

VSAM

WORKFILE:

TRACKS=5

(the

first

76

characters)

Error

Handling

The

REXXCO

application

provides

only

limited

error

handling.

Two

execution

phases

must

be

distinguished:

1.

Initialization

This

phase

lasts

until

a

console

is

activated.

Error

conditions

during

this

phases

are

reported

via

error

codes

12,

16,

24

and

28

(see

below)

and

cause

the

program

to

be

terminated.

2.

Message

Monitoring

If

an

Action

program

fails

and

returns

a

nonzero

error

code,

REXXCO

goes

into

a

controlled

termination

with

error

code

8.

Syntax

errors

are

not

trapped.

Any

syntax

error

causes

immediate

termination

at

the

point

where

the

syntax

error

occurred,

for

example

when

SENDCMD

gives

a

reply

where

there

is

no

outstanding

reply

(″REXX

syntax

error

40

-

invalid

call

to

routine...

″).

Any

other

error

conditions

are

not

handled.

Proper

error

handling

can

only

come

from

the

Action

program

itself.

REXXCO

returns

the

following

Error

Codes:

8

An

(internal

or

external)

Action

terminated

with

a

nonzero

return

code.

12

Invalid

message

ID.

16

Invalid

parameter

format.

24

SYSVAR

failed.

28

ADDRESS

CONSOLE

failed.

Automated

Operation

Demos

(Examples)

REXX

Console

Automation,

as

delivered

to

you,

has

several

ready-to-run

jobs

and

REXX

programs

that

demonstrate

the

versatility

and

simplicity

of

implementing

an

automated,

or

programmed,

VSE/ESA

console.

Three

of

these

demo

programs

REXXFLSH

REXXCXIT

REXXSPCE

are

practical

applications

of

the

concept

presented

in

the

preceding

sections.

They

are

described

below

with

some

detail.

The

other

programs

address

a

great

variety

of

operation

tasks:

REXXCPUM

Shows

how

to

make

best

use

of

transaction

IEXM

in

conjunction

with

the

SYSDEF

function

and

the

CPU

monitor

REXXDOM

Shows

the

manipulation

of

messages

REXXTRY

Provides

a

dialog

with

the

operator

to

issue

REXX

commands

REXXJMGR

(this

and

the

following)

Manages

VSE/POWER

jobs

REXXWAIT

(this

and

the

preceding

one)

Manages

VSE/POWER

jobs

Console

Application

Framework

Chapter

14.

REXX/VSE

Console

Automation

253

REXXASM

(this

and

the

following)

Controls

the

interplay

between

JCL,

Assembler,

Linkage

Editor

and

Librarian

SETSDL

(this

and

the

preceding

one)

Controls

the

interplay

between

JCL,

Assembler,

Linkage

Editor

and

Librarian

This

group

of

programs

will

be

presented

more

or

less

in

an

overview

fashion.

For

detailed

information

you

are

advised

to

look

at

the

actual

source

code

which

has

ample

commentary

on

the

use

and

functionality

of

the

particular

program.

Before

you

start

using

any

of

the

demo

units,

you

have

to

load

them

into

a

predefined

place

using

the

REXXLOAD

program.

This

is

described

in

the

following

section.

REXXLOAD

This

REXX

program

phase

copies

library

members

that

are

shipped

to

you

into

v

A

member

of

type

PROC

-

if

the

library

member

contains

a

REXX

procedure

v

The

VSE/POWER

reader

queue

-

if

the

library

member

contains

a

job.

The

program

is

driven

by

a

special

member

which

specifies

the

source

library

member

as

first

word

of

each

record.

The

second

word

of

the

record

specifies

the

target

where

the

library

member

should

be

copied

to:

either

v

The

keyword

RDRCLASS=x

to

indicate

that

the

library

member

contains

a

job

to

be

transferred

into

the

VSE/POWER

reader

queue,

or

v

The

name

of

a

PROC

type

member.

The

special

member

might

contain

records

like

the

following:

PRD1.BASE.REXXCXIT.Z

RDRCLASS=Y

PRD1.BASE.REXXFLSH.Z

RDRCLASS=Y

PRD1.BASE.REXXDOM.Z

PRD1.BASE.DOM.PROC

PRD1.BASE.SETSDL.Z

PRD1.BASE.SETSDL.PROC

PRD1.BASE.REXXSAA.Z

PRD1.BASE.REXXTRY.PROC

PRD1.BASE.REXXCO.Z

PRD1.BASE.REXXCO.PROC

Your

system

already

has

such

a

member

ready

to

be

processed,

its

name

is

PRD1.BASE.REXXZBK.Z.

You

may

create

your

own

member.

If

you

give

it

a

different

name,

you

have

to

pass

this

name

as

a

PARM

argument

when

you

call

REXXLOAD.

Invocation

You

start

the

program

from

a

PAUSExx

job,

for

example

PAUSEBG.

The

partition

must

have

1MB

of

GETVIS

storage

available.

The

GETVIS

requirement

can

even

be

higher

if

very

large

members

are

to

be

copied.

r

rdr,pausebg

Then

enter

at

the

console

0

//

LIBDEF

*,SEARCH=PRD1.BASE

0

//

EXEC

REXXLOAD[,PARM=’l.s.mn.mt’]

A

word

about

warranty...

These

demo

programs

are

sample

code

created

by

IBM

Corporation.

This

sample

code

is

not

part

of

any

standard

IBM

product

and

is

provided

to

you

solely

for

the

purpose

of

assisting

you

in

the

development

of

your

applications.

The

code

is

provided

″AS

IS″,

without

warranty

of

any

kind.

IBM

shall

not

be

liable

for

any

damages

arising

out

of

your

use

of

the

sample

code,

even

if

they

have

been

advised

of

the

possibility

of

such

damages.

Console

Application

Framework

254

REXX/VSE

Reference

The

program

now

copies

the

library

members

one

by

one

to

their

targets,

according

to

the

specifications

given

in

the

special

member.

After

each

successful

copy

operation,

a

message

is

issued

telling

which

member

has

just

been

processed.

Error

Conditions

All

error

conditions

are

handled

via

routine

ARXERROR

which

issues

message

ARX0960E.

The

following

error

codes

may

show

up:

100+RC

where

RC

was

returned

from

EXECIO

200+ABS(RC)

where

RC

was

returned

from

PUTQE

(can

be

negative)

7

Invalid

member

specification

in

PARM.

8

*

$$

JOB

statement

is

missing

in

source

VSE/POWER

job.

9

Incorrect

member

specification

in

special

member.

If

REXX

has

not

been

initialized,

REXXLOAD

fails

with

RC

4094.

Note:

Running

REXXLOAD

multiple

times

results

in

duplicate

job

entries

in

the

VSE/POWER

reader

queue.

You

might

want

to

delete

the

superfluous

jobs.

REXXFLSH

This

demo

addresses

the

first

operation

scenario

that

was

presented

in

section

“Operation

Scenarios”

on

page

248.

It

contains

the

implementation

of

an

Action

Job

and

an

internal

Action

program.

Scenario

Suppose

the

operator

has

to

flush

jobs

that

misbehave,

for

example

jobs

that

produce

too

much

output.

The

operator

would

notice

this

through

VSE/POWER

message

1Q52I

OUTPUT

LIMIT

EXCEEDED...

This

task

can

be

automated.

Job

REXXFLSH

demonstrates

this.

Running

the

Demo

(Before

you

start

make

sure

that

you

loaded

the

necessary

jobs

and

program

modules

using

REXXLOAD;

see

“REXXLOAD”

on

page

254.)

The

first

step

is

to

start

the

REXXCO

application

which

activates

a

REXX

console.

You

do

this

by

entering

the

VSE/POWER

command

r

rdr,REXXCONS

The

job

REXXCONS

calls

the

REXXCO

application

by

using

an

EXEC

statement

as

described

in

section

“Invocation”

on

page

250.

Now

REXXCO

starts

watching

out

for

message

1Q52I.

As

a

second

step

you

start

the

job

REXXFLSH

r

rdr,rexxflsh

REXXFLSH

is

a

job

that

issues

(simulates

the

occurrence

of)

the

VSE/POWER

messages

0D20E

HARDCOPY

FILE

SHOULD

BE

PRINTED

1Q52I

OUTPUT

LIMIT

EXCEEDED

FOR

REXXFLSH

00987

xx,

180

A

PRINTLOG

is

started

automatically.

The

partition

xx

where

the

job

runs

is

then

PFLUSHed

by

the

console

application.

Background

Information

The

Message

Action

Table

has

entries

REXXLOAD

Chapter

14.

REXX/VSE

Console

Automation

255

FLUSH1Q52I

1Q52I

*

0D20E

X

INNAME=PRD1.BASE.SKRXPTLG.Z

OUTNAME=PRD1.BASE.REXXPTLG.JOB

X

VAR001=REXXPTLG

When

REXXFLSH

issues

its

message

0D20E,

REXXCO

builds

job

REXXPRTL

by

using

job

skeleton

SKRXPTLG

(please

refer

to

the

INNAME

parameter

in

the

Message

Action

Table).

The

job

name

REXXPRTL

is

taken

from

variable

VAR001

in

the

Message

Action

Table.

REXXCO

submits

job

REXXPRTL

to

the

VSE/POWER

reader

queue

to

invoke

the

PRINTLOG

utility.

When

REXXFLSH

issues

its

message

1Q52I,

REXXCO

calls

the

REXX

program

REXXEVNT.PROC

which

has

an

internal

REXX

procedure

at

label

FLUSH1Q52I.

This

procedure

initiates

the

PFLUSH

command.

REXXCXIT

This

demo

addresses

the

second

operation

scenario

that

was

presented

in

section

“Operation

Scenarios”

on

page

248.

It

contains

the

implementation

of

an

external

Action

program.

Scenario

Suppose

the

operator

has

to

lead

a

defined

dialog

with

an

application.

For

example

the

operator

enters

some

data

via

the

operator

communication

facility

or

answers

an

outstanding

reply.

This

task

can

be

automated

as

demonstrated

by

job

REXXCXIT.

Running

the

Demo

(Before

you

start

make

sure

that

you

loaded

the

necessary

jobs

and

program

modules

using

REXXLOAD;

see

“REXXLOAD”

on

page

254.)

The

first

step

is

to

start

the

REXXCO

application

which

activates

a

REXX

console.

You

do

this

by

entering

the

VSE/POWER

command

r

rdr,REXXCONS

The

job

REXXCONS

calls

the

REXXCO

application

by

using

an

EXEC

statement

as

described

in

section

“Invocation”

on

page

250.

Now

REXXCO

starts

watching

out

for,

among

several

other

strings,

for

the

string

’THIS

LOOP

CAN

BE

STOPPED’.

As

a

second

step

you

start

the

job

REXXCXIT

r

rdr,rexxcxit

The

job

REXXCXIT

issues

the

message

THIS

LOOP

CAN

BE

STOPPED

BY:

MSG

’SYSPID’,

DATA=HI

The

message

indicates

that

the

REXX

program

is

in

a

loop

and

that

the

loop

can

be

interrupted

by

an

operator

communication

exit.

The

string

’THIS

LOOP

CAN

BE

STOPPED’

triggers

the

REXXCO

application

to

stop

the

loop.

REXXCXIT

then

issues

a

message

with

an

open

reply

HALT

EXIT

REACHED,

PRESS

ENTER

TO

END

The

REXXCO

application

gives

the

reply.

Background

information

REXXCXIT

starts

the

operator

communication

exit

via

OPERMSG(ON).

It

defines

a

trap

for

the

HALT

condition

(SIGNAL

ON

HALT).

The

REXXCO

application

recognizes

the

message

THIS

LOOP

CAN

BE

STOPPED

BY:

MSG

’SYSPID’,

DATA=HI

in

the

Message

Action

Table

and

calls

an

external

REXX

Action

program.

This

program

issues

the

operator

command

REXXFLSH

256

REXX/VSE

Reference

MSG

xx,DATA=HI

HI

(″Halt

Interpretation″)

causes

REXXCXIT

to

end

its

loop

and

to

issue

the

open

reply

message.

Again,

the

REXXCO

application

recognizes

the

message.

Via

the

Message

Action

Table,

an

internal

REXX

program

at

label

REPLY

in

REXXEVNT.PROC

gets

control

and

gives

a

reply

(any

reply

will

do).

This

leads

to

a

normal

EXIT

from

REXXCXIT.

REXXSPCE

This

is

another,

more

elaborate

demo

of

what

the

REXXCO

console

application

is

able

to

achieve.

It

contains

the

implementation

of

an

Action

Job.

Scenario

In

this

demo,

the

REXXCO

application

monitors

incoming

messages

of

three

jobs:

REXXVSM1,

REXXVSM2

and

REXXVSM3.

Each

job

attempts

to

write

5

tracks

worth

of

data

into

VSAM

work

files.

The

jobs

do

not

know

if

and

where

this

workfile

space

is

available,

and

they

don’t

care.

All

they

know

is

the

amount

of

space

they

need.

They

communicate

this

need

by

way

of

a

message.

A

real-life

operator

normally

would

be

able

to

determine

how

much,

and

where

workfile

space

is

available,

and

then

enter

the

necessary

JCL

information.

The

REXXSPCE

application

shows

how

this

task

can

be

automated.

Before

Starting...

Remember

that

before

you

invoke

the

program

you

should

have

loaded

the

necessary

jobs

and

program

modules

using

the

REXX

program

REXXLOAD

(see

“REXXLOAD”

on

page

254).

Also,

in

order

to

run

the

demo

with

REXXVSM1/2/3,

you

need

at

least

7

dynamic

partitions

of

class

Y.

The

class

Y

needs

a

minimum

of

1M

allocation

space.

Approximately

800K

of

this

allocation

are

needed

as

GETVIS

storage.

Running

the

Application

The

first

step

in

starting

the

REXXCO

application

is

to

activate

a

REXX

console.

You

do

this

by

entering

the

VSE/POWER

command

r

rdr,REXXCONS

The

job

REXXCONS

calls

the

REXXCO

application

by

using

an

EXEC

statement

as

described

in

section

“Invocation”

on

page

250.

Now

REXXCO

starts

watching

out

for

specific

messages

issued

by

REXXVSMn

jobs.

You

now

start

these

REXXVSMn

jobs

by

entering

r

rdr,rexxvsm*

Make

sure

that

you

have

only

one

copy

of

each

job

REXXVMS1/2/3

in

the

reader

queue.

Delete

duplicate

job

entries

if

there

are

any.

Otherwise

the

demo

would

not

function

properly

because

very

likely

partition

class

Y

has

not

enough

partitions

available.

Please

note

that

you

could

start

only

one

of

the

REXXVSMn

jobs

and

still

get

the

benefit

of

the

demo.

Handling

REXXVSMn

Messages

Any

one

of

the

REXXVSMn

jobs

calls

the

REXX

program

REXXVSAM.

This

program

stops

itself

by

issuing

the

statement

Y2-0046

//

PAUSE

REXXCO<<

VSAM

WORKFILE:

WRQST=ALLOC

TRACKS=5

(Partition

ID

and

reply

ID

’Y2-0046’

are

arbitrary

example

values.)

By

looking

at

the

Message

Action

Table

shown

in

Figure

11

on

page

250

you

will

find

the

substring

within

the

above

message

REXXCO<<

VSAM

WORKFILE:

REXXCXIT

Chapter

14.

REXX/VSE

Console

Automation

257

as

a

Find_String

in

the

table.

The

corresponding

Action

column

shows

an

*.

This

indicates

that

a

job

is

to

be

built

and

submitted

to

VSE/POWER.

REXXCO

does

just

that:

it

builds

job

REXXSPCE

by

using

the

job

skeleton

SKRXVSAM

(please

refer

to

the

INNAME

parameter

in

the

Message

Action

Table).

The

job

name

REXXSPCE

and

the

name

of

the

program

to

be

invoked,

again

REXXSPCE,

are

taken

from

variable

VAR001

in

the

Message

Action

Table.

REXXCO

submits

job

REXXSPCE

to

the

VSE/POWER

reader

queue.

When

the

job

starts

running,

it

calls

program

REXXSPCE.

Creating

DLBL/EXTENT

Statements

The

REXXSPCE

program

finds

out

whether

a

workfile

of

required

size

is

available.

It

uses

information

from

the

given

message

(WRQST=ALLOC

and

TRACKS=5)

and

also

from

member

REXXCNTL.Z.

For

each

system

resource

used

by

the

job(s),

for

example

a

work

file,

there

is

an

entry

in

member

REXXCNTL.Z.

It

records

system-dependent

information

like

VSAM

master

catalog

or

volume

and

maximum

number

of

tracks.

The

master

catalog

is

assumed

to

reside

on

the

indicated

volume.

Here

is

an

example

entry:

/*

--

*/

/*

Resouce

Id

Used

System

related

info

*/

/*

--

*/

VSAM_WORKFILE

*

CAT=REXX.VSAM.CAT

VOL=SYSWK1

MAXTRACKS=7

Assuming

for

example

that

at

the

beginning

7

tracks

are

available

(MAXTRACKS=7),

the

request

of

job

REXXVMS1

can

be

satisfied.

Note:

This

demo

uses

an

oversimplified

method

of

computing

and

bookkeeping

of

available

workfile

space.

It

is

there

for

demo

purposes

only

and

should

not

be

considered

as

applicable

for

real-life

production

systems.

If

not

enough

work

space

is

available,

the

job

has

to

wait

until

a

free

resource

is

available.

Otherwise

the

REXXSPCE

program

builds

appropriate

JCL

statements

by

using

skeleton

SKRXJCL.Z

as

a

base.

The

skeleton’s

name

was

supplied

via

VAR003

in

the

Message

Action

Table

(see

Figure

11

on

page

250)

and

passed

as

a

parameter

(see

Figure

12

on

page

252).

Program

REXXSPCE

also

uses

information

from

member

REXXCNTL.Z

to

merge

into

the

skeleton.

As

a

result,

REXXSPCE

creates

a

JCL

procedure

that

contains

the

necessary

DLBL

and

EXTENT

information.

The

name

of

the

procedure

is

ALLOCnn

where

nn

is

the

reply

ID

of

the

waiting

job,

for

example

ALLOC46.

The

JCL

procedure

is

started

by

sending

a

(programmed)

reply

to

the

REXXVSMn

job:

46

//

EXEC

PROC=ALLOC46

Writing

into

and

Freeing

up

Work

Space

Job

REXXVSM1

ends

its

pause

and

writes

something

into

the

work

file.

When

done,

it

issues

the

message

Y2

0046

REXXVSM1

HIT

ENTER

TO

CLOSE

THE

FILE

By

looking

at

the

Message

Action

Table

shown

in

Figure

11

on

page

250

you

will

find

the

substring

within

the

above

message

HIT

ENTER

TO

CLOSE

THE

FILE

as

a

Find_String

in

the

table.

The

corresponding

Action

column

says

REPLY

which

points

to

a

REXX

procedure

within

member

REXXEVNT.Z.

Job

REXXVSM1

continues

and

requests

that

the

workfile

space

should

be

freed:

Y2

0046

*

REXXCO<<VSAM

WORKFILE:

WRQST=FREE

TRACKS=5

REXXSPCE

258

REXX/VSE

Reference

Again,

a

new

REXXSPCE

job

is

built

and

submitted

to

VSE/POWER.

The

job

frees

up

5

tracks

of

workfile

space.

It

also

computes

and

records

the

new

value

of

available

tracks.

The

flow

of

events

that

was

shown

for

one

job

should

really

be

thought

as

a

process

of

multiple

jobs

running

or

waiting.

Assuming

for

example

that

the

original

amount

of

available

tracks

is

7,

job

REXXVSM2

has

to

wait

until

REXXVSM1

frees

its

5

tracks.

Summary

Listing

of

Demo

Parts

The

demo

consists

of

the

following

parts:

--

Demo

Jobs

--

REXXVSMx.Z,

x=1,2,3

″Customer’s″

batch

job.

Calls

REXXVSAM.PROC.

This

is

the

source

of

what

will

be

loaded

into

the

VSE/POWER

reader

queue

by

REXXLOAD.

REXXCONS.Z

Starts

the

REXX

console

application

REXXCO.PROC.

This

is

the

source

of

what

will

be

loaded

into

the

VSE/POWER

reader

queue

by

REXXLOAD.

--

Demo

REXX

Programs

--

REXXSPCE.PROC

REXX

program

that

executes

the

ALLOC

and

FREE

work

requests.

REXXEVNT.PROC

REXX

program

that

contains

internal

REXX

Action

programs.

REXXVSAM.PROC

REXX

program

that

is

the

batch

application

accessing

VSAM

files.

--

Demo

Library

Members

--

REXXCNTL.Z

Job

Resource

Control

File

that

contains

VSAM

file

information

Please

be

aware

that

this

member

has

a

reference

to

volume

SYSWK1.

Also,

the

master

catalog

is

assumed

to

reside

on

SYSWK1.

If

you

use

different

volumes

you

have

to

adjust

the

reference.

REXXTABL.Z

Message

Action

Table

that

contains

strings

of

message

text

for

which

the

REXX

console

is

sensitive

in

order

to

schedule

the

workfile

request.

SKRXJCL.Z

JCL

PROC

skeleton

that

supplies

JCL

statements

for

REXXVSMx.

Will

be

used

by

REXXSPCE.PROC.

SKRXVSAM.Z

Skeleton

to

create

REXXSPCE

job

which

is

used

by

the

REXXCO

application

framework.

REXXCPUM

This

function

is

an

example

of

how

you

can

make

optimum

use

of

the

measurement

facilities

described

in

“REXX/VSE

CPU

Monitor”

on

page

247.

The

function

has

three

main

parts

1.

Verifying

that

CICS

is

active

2.

Setting

a

system

activity

limit

3.

Starting

CICS

transaction

IEXM.

It

also

allows

to

terminate

the

CPU

monitor

function.

REXXSPCE

Chapter

14.

REXX/VSE

Console

Automation

259

If

the

REXXCO

application

is

active

in

another

partition,

it

can

monitor

the

ARX0998I

messages

generated

by

transaction

IEXM

in

combination

with

user

exit

ARXITCPU.

Scenario

Suppose

the

operator

has

to

flush

jobs

that

consume

too

much

CPU

time.

Using

the

REXX

CPU

Monitor,

the

operator

would

notice

this

through

message

ARX0998I

PID

Y1

JOB

TEST

EXCEEDS

THE

LIMITS:

CPUTIME=10.15

This

task

can

be

automated.

REXX

procedure

REXXCPUM

demonstrates

this.

Invocation

The

REXXCPUM

function

is

called

according

to

the

following

format:

CALL

REXXCPUM

CICS_prompt,CPU_Time_Limit,Elapsed_Time_Limit,

I/O_Count_Limit,I/O_Rate_Limit,CPU_Rate_Limit,Interval,runMonitor

where

CICS_prompt

Identifies

the

CICS

partition,

for

example

’F2-0002’

(which

is

also

the

default).

CPU_Time_Limit

Limit

of

accumulated

CPU

time,

in

1/100

seconds,

that

should

not

be

exceeded.

The

default

is

0.

A

value

of

0

causes

REXXCPUM

not

to

set

the

CPU

time

limit,

that

is,

the

current

limit

remains

unchanged.

This

parameter

can

have

a

special

value:

STOP.

This

tells

REXXCPUM

to

terminate

CPU

monitoring;

message

ARX0998I

will

no

longer

appear.

You

code

the

REXXCPUM

call

as

follows:

CALL

REXXCPUM

,’STOP’

Elapsed_Time_Limit

Limit

of

elapsed

time

a

job

is

running,

in

seconds,

that

should

not

be

exceeded.

The

default

is

0.

A

value

of

0

causes

REXXCPUM

not

to

set

the

elapsed

time

limit,

that

is,

the

current

limit

remains

unchanged.

I/O_Count_Limit

Limit

of

job

I/Os,

as

an

absolute

number,

that

should

not

be

exceeded.

The

default

is

0.

A

value

of

0

causes

REXXCPUM

not

to

set

the

I/O

count

limit,

that

is,

the

current

limit

remains

unchanged.

I/O_Rate_Limit

Limit

of

job

I/Os,

in

numbers

per

second,

that

should

not

be

exceeded

within

a

measurement

interval.

The

default

is

0.

A

value

of

0

causes

REXXCPUM

not

to

set

the

I/O

rate

limit,

that

is,

the

current

limit

remains

unchanged.

CPU_Rate_Limit

Limit

of

job

CPU

time,

in

percent

of

total

CPU

time,

that

should

not

be

exceeded

within

a

measurement

interval.

The

default

is

0.

A

value

of

0

causes

REXXCPUM

not

to

set

the

CPU

rate

limit,

that

is,

the

current

limit

remains

unchanged.

Interval

The

time

between

two

measurement

activities

in

the

format

hhmmss.

For

example

’000015’

is

15

seconds

’001230’

is

12

minutes

and

30

seconds.

The

smallest

value

is

10

seconds,

the

default

is

15

seconds.

REXXCPUM

260

REXX/VSE

Reference

runMonitor

The

duration

of

how

long

the

CPU

monitor

is

to

run,

starting

from

the

current

time.

The

format

is

’hh:mm:ss’

The

program

uses

this

value

to

compute

the

STOptime

which

it

passes

to

CICS

transaction

IEXM.

The

default

is

12:00:00,

i.e.

12

hours.

The

REXXCPUM

function

is

intended

to

be

called

as

subroutine

or

as

function

from

another

REXX

program,

for

example

CALL

REXXCPUM

’F2,1000’

or

x

=

(REXXCPUM

’F2’)

If

you

want

to

invoke

REXXCPUM

via

//

EXEC

REXX=REXXCPUM...

or

EXEC

REXXCPUM...

within

a

REXX

program

(for

example

REXXTRY),

then

you

must

remove

the

comment

around

the

PARSE

ARG

instruction

and

put

the

following

ARG

instruction

inside

a

comment.

This

is

also

described

in

the

source

code.

Also

note

that

you

may

want

to

modify

the

first

instruction

partIds

=

’F1F2F3’

/*<====

Modify

here

to

your

needs

*/

which

sets

some

default

values

for

partitions

to

be

excluded

from

monitoring.

Error

Codes

REXXCPUM

issues

the

following

error

codes:

40

CICS

not

active

48

Activate

console

failed

52

ADDRESS

CONSOLE

cons_cmd

failed

56

Invalid

runMonitor

argument

60

Invalid

cpu_time_limit

argument

64

Invalid

elapsed_time_limit

argument

68

Invalid

io_count_limit

argument

72

Invalid

io_rate_limit

argument

76

Invalid

cpu_rate_limit

argument

80

Invalid

interval

argument

REXXDOM

This

demo

shows

at

a

real

console

how

under

REXX

Console

Automation

the

presentation

characteristics

(highlighting,

in

this

case)

of

messages

can

be

changed.

REXXDOM

is

an

example

for

scanning

the

hardcopy

file

from

a

REXX

program.

Running

the

Demo

It

takes

three

steps

to

run

the

demo:

1.

Generate

a

phase

with

name

REXXWTO.

This

program

writes

highlighted

messages.

You

generate

the

phase

by

submitting

the

following

JCL

statement:

//

EXEC

REXX=REXXDOM,SIZE=(ASMA90,50K),PARM=’LINK’

2.

Create

10

highlighted

messages

by

invoking

the

above

program,

either

v

from

a

PAUSE

job:

//

EXEC

REXXWTO

or

REXXCPUM

Chapter

14.

REXX/VSE

Console

Automation

261

v

in

a

REXX

procedure:

ADDRESS

LINK

REXXWTO

3.

Invoke

REXXDOM

again,

this

time

to

remove

one

or

more

highlighted

messages

from

the

HOLD

state

(that

is:

dehighlight

it).

Submit

the

instruction

EXEC

REXXDOM

n

where

n

is

the

number

of

messages

(between

1

and

10)

to

be

dehighlighted.

You

place

this

statement

either

in

a

REXX

procedure,

or

you

enter

it

from

a

REXXTRY

prompt

(REXXTRY

is

presented

in

the

following

section).

When

you

run

the

demo

again,

you

can

start

with

step

2

and

leave

out

the

first

step.

Background

Information

REXXDOM

uses

the

command

REDISPLAY

...,HOLD

to

retrieve

from

the

hardcopy

file

messages

that

are

in

HOLD

state.

It

counts

these

messages

(excluding

messages

about

outstanding

replies

which

will

not

be

deleted).

It

then

uses

the

MDBGMID

variable(s)

to

initiate

the

DELMSG

function

as

often

as

requested

by

the

user.

Other

Examples

(Not

Related

to

Console

Functions)

REXXTRY

Before

you

start

using

any

of

the

demo

units,

you

have

to

load

them

into

a

predefined

place

using

the

REXXLOAD

program.

This

is

described

in

section

“REXXLOAD”

on

page

254.

This

job

calls

REXX

program

REXXTRY

which

prompts

you

to

interactively

try

REXX

statements,

possibly

including

REXX

commands

that

you

developed

yourself.

If

you

run

REXXTRY

with

no

parameter,

or

with

a

question

mark

as

a

parameter,

it

will

briefly

describe

itself.

You

may

also

enter

a

REXX

statement

directly

on

the

command

line

for

immediate

execution,

for

example

4

call

sysdef

’connect

occf’

or,

to

utilize

REXXTRY

as

an

interactive

execution

environment,

4

exec

rexxasm

or

one

of

your

own

REXX

programs.

REXXJMGR

This

program

implements

a

simple

job

manager.

VSE/POWER

jobs

with

name

MYJOBnnn,

nnn=1,2,3,..,

are

submitted.

When

starting

REXXJMGR,

you

specify

in

PARM

how

many

jobs

are

to

be

submitted

(the

default

is

2).

Asynchronous

execution

will

be

controlled.

This

subject

is

discussed

at

some

detail

in

section

“Submitting

and

Controlling

Power

Jobs”

on

page

198.

REXXJMGR

writes

a

report,

an

example

is

shown

below:

0

exec

rexxjmgr

Y3

0001

1Q47I

Y3

MYJOB2

08172

FROM

BOEVSE16(REXXJMGR)

,

TIME=12:10:56

Y3

0047

//

JOB

MYJOB2

DATE

08/30/95,CLOCK

12/10/56

Y2

0001

1Q47I

Y2

MYJOB1

08171

FROM

BOEVSE16(REXXJMGR)

,

TIME=12:10:56

Y2

0046

//

JOB

MYJOB1

DATE

08/30/95,CLOCK

12/10/56

REXXDOM

262

REXX/VSE

Reference

Y3

0047

EOJ

MYJOB2

MAX.RETURN

CODE=0004

DATE

08/30/95,CLOCK

12/10/58,DURATION

00/00/01

Y2

0046

EOJ

MYJOB1

MAX.RETURN

CODE=0000

DATE

08/30/95,CLOCK

12/10/58,DURATION

00/00/01

BG

0000

JOB

REPORT

BG

0000

MYJOB2

failed

MAXRC=0004

TIME=12:10:58

BG

0000

MYJOB1

run

successfully

TIME=12:10:58

BG

0000

END

OF

REPORT

BG

0000

rc

=

0

..

REXXTRY

on

VSE

BG-0000

REXXWAIT

This

program

submits

a

job

and

awaits

its

execution.

The

job

runs

a

utility

program

in

another

partition.

It

issues

a

List

Directory

command.

Its

output

is

retrieved

and

scanned

for

a

user-supplied

string

(the

default

is

ARXINIT).

An

example

of

console

output

is

shown

below.

45

exec

rexxwait

Y2

0001

1Q47I

Y2

MYJOB

04584

FROM

BOEVSE16(REXX)

,

TIME=12:05:18

Y2

0046

//

JOB

MYJOB

DATE

07/13/95,CLOCK

12/05/18

Y2

0046

EOJ

MYJOB

MAX.RETURN

CODE=0000

DATE

07/13/95,CLOCK

12/05/19,DURATION

00/00/00

Y1

0045

--

Y1

0045

Job

output

was

analysed.

Match

found

at

line

40

Y1

0045

--

Y1

0045

ARXINIT

PHASE

95-05-09

95-07-11

303032

B

307

NO

YES

31

ANY

Y1

0045

rc

=

0

..

REXXTRY

on

VSE

REXXASM

This

program

works

with

VSE

JCL

and

VSE

utilities.

A

small

assembler

program

will

be

compiled,

linked

and

executed.

Its

name

can

be

supplied

in

PARM

(the

default

is

DEMOSVA).

The

size

of

the

program

will

be

shown

via

a

LIBR

LD

SDL

excerpt.

You

may

invoke

the

program

from

a

REXXTRY

prompt.

An

example

of

console

output

is

shown

below.

45

exec

rexxasm

Y1

0045

--

Y1

0045

(1)

Module

DEMOSVA

assembled

Y1

0045

(2)

Module

DEMOSVA

linked

Y1

0045

(3)

Module

DEMOSVA

executed:

RC=

0

Y1

0045

(4)

Module

DEMOSVA

found

in

library

PRD1.BASE:

Y1

0045

DEMOSVA

PHASE

95-07-03

95-07-13

6

B

1

YES

YES

31

24

Y1

0045

--

Y1

0045

rc

=

0

..

REXXTRY

on

VSE

Y1-0045

REXXSSDL

This

program

communicates

with

the

VSE

Librarian

to

either

v

load

a

phase

into

the

SVA

(using

the

JCL

function

SET

SDL)

and

to

show

the

phase’s

address

in

the

SVA,

or

to

v

just

show

the

address.

In

this

case,

you

invoke

the

program

via

exec

rexxssdl

demosva

(noload

The

phase

name

can

be

supplied

as

a

parameter

(the

default

is

DEMOSVA).

An

example

of

a

REXXSSDL

output

is

shown

below.

REXXJMGR

Chapter

14.

REXX/VSE

Console

Automation

263

0

exec

rexxssdl

demosva

BG

0000

--

BG

0000

M

E

M

B

E

R

ORIGIN

SVA/MOVE

LOADED

PHASE

ADDRESS

ENTRY

POINT

BG

0000

NAME

TYPE

SYSLIB

MODE

INTO

SVA

SIZE

IN

SVA

IN

SVA

BG

0000

--

BG

0000

DEMOSVA

PHASE

NO

YES

YES

6

001E68F8

001E68F8

BG

0000

rc

=

0

..

REXXTRY

on

VSE

BG-0000

Miscellaneous

Examples

of

Using

the

REXX

Console

Retrieve

Messages

using

Filter

and

Timestamp

ADDRESS

CONSOLE

’ACTIVATE

NAME

REXX

PROFILE

REXNORC’

/*

Activate

console

session

*/

’RED

10L,’0S03I’

/*

VSE

console

REDisplay

command

*/

/*

to

get

message(s)

0S03I

*/

’RED

E’

/*

End

redisplay

*/

rc

=

GETMSG(consmsg.,’RESP’,,,30)

/*Retrieve

response

of

redisplay

*/

.....

.....

’DEACTIVATE

REXX’

/*

Deactivate

console

session

*/

EXIT

Scan

the

Hardcopy

File

The

VSE

system

command

REDISPLAY

allows

to

retrieve

messages

from

a

specific

partition.

ADDRESS

CONSOLE

’ACTIVATE

NAME

REXX

PROFILE

REXNORC’

/*

Activate

console

session

*/

’RED

34L,F5,E’

/*

VSE

console

REDisplay

command

*/

/*

to

get

message

from

partition

F5

*/

rc

=

GETMSG(consmsg.,’RESP’,,,30)

/*Retrieve

response

of

redisplay

*/

.....

.....

’DEACTIVATE

REXX’

/*

Deactivate

console

session

*/

EXIT

Just

like

the

VSE

utility

PRINTLOG,

the

REDISPLAY

command

allows

to

view

records

from

the

hardcopy

file

in

a

selective

manner.

You

can

specify

a

filter

so

you

will

see

only

messages

from

a

particular

partition,

or

messages

with

a

particular

message

ID.

Scan

Job

Messages

for

One

Partition

REXX

program

REXXSCAN,

by

utilizing

the

VSE

command

REDISPLAY

and

the

GETMSG

function

of

REXX

Console

Automation,

creates

a

report

covering

all

jobs

that

have

been

running

in

a

given

partition

since

a

given

date.

The

partition

ID

and

the

date

are

passed

as

PARM

information

when

invoking

the

program:

//

EXEC

REXX=REXXSCAN,PARM=’partid

date’

SETSDL

264

REXX/VSE

Reference

/***/

/*****

REXXSCAN:

******/

/*****

Scan

Job

Messages

REXX

program

for

REXX

Console

Automation

*/

/*****

Demo

Purposes.

*/

/*****

*/

/*****

Test

VSE

console

REDISPLAY

command

together

with

the

REXX

*/

/*****

Console

GETMSG

function.

Create

a

job

report

of

all

jobs

*/

/*****

that

have

been

running

in

a

given

partition

since

a

given

*/

/*****

date.

Job

report

is

contained

in

the

POWER

LST

queue

and

*/

/*****

displays

POWER

jobname,

POWER

jobnumber,

POWER

starttime,

*/

/*****

VSE

jobname,

startdate,

starttime,

endtime,

enddate,

*/

/*****

duration,

and

the

maximum

return

code

of

a

VSE

job.

*/

/*****

*/

/*****

INVOCATION:

//

EXEC

REXX=REXXSCAN,PARM=’partid

date’

*/

/*****

Scans

all

messages

written

for

partition

or

class

*/

/*****

’partid’

starting

with

date

*/

/*****

partid

BG,F1...F9,FA,FB,partition

ids

of

dynamic

classes

*/

/*****

date

mm/dd/yy

*/

/*****

*/

/*****

Example:

//

EXEC

REXX=REXXSCAN,PARM=’BG

08/31/95’

*/

/*****

*/

/*****

RETURN

CODES

of

the

REXXSCAN

program:

*/

/*****

*/

/*****

0

All

messages

for

partition

scanned

*/

/*****

999

Invalid

parameters

*/

/*****

1000+x

Problems

with

GETMSG

*/

/*****

*/

/***/

PARSE

ARG

partid

date

.

/*

Pass

as

argument

partition

id

and

date

*/

/***/

/*

check

partid

*/

/***/

.....

.....

/***/

/*

check

date

*/

/***/

.....

.....

ADDRESS

CONSOLE

CALL

SYSVAR(syspid)

/*

Get

the

Partition

the

PROC

is

running

in

*/

retcode

=

0

/*

initialize

return

code

*/

/*

initialize

end

of

redisplay

condition

*/

end_line

=

’------------------------

E

N

D

O

F

F

I

L

E

---’

/***/

/*

Put

heading

line

to

output

stream

*/

/***/

SAY

’PWR_jobn

jobnr

PWRstart

VSE_jobn

startdate

starttim

enddate’

||,

’

endtime

duration

rc’

Figure

13.

Job

Message

Scanner

REXXSCAN

(Part

1

of

3)

REXXSCAN

Chapter

14.

REXX/VSE

Console

Automation

265

SAY

’==’

||,

’=======================’

/***/

/*

Activate

console

session

*/

/***/

ACTIVATE

’name

REXX’SYSPID

’profile

REXNORC’

/***/

/*

Start

REDISPLAY

for

partition

partid

*/

/***/

’RED

F,’

||

date

||

’,’

||

partid

/*

start

redisplay

*/

IF

RC

>

0

THEN

DO

retcode

=

RC

SIGNAL

end_label

END

/***/

/*

Analyze

messages

from

REDISPLAY

*/

/***/

DO

FOREVER

/*

Forever

-

until

end

of

messages

*/

rc=GETMSG(t.,’msg’,,,10)

/*

Retrieve

response

of

redisplay

*/

IF

rc>0

THEN

/*

show

problems

with

MSG

retrieval*/

DO

retcode

=

1000+rc

LEAVE

END

IF

(SUBSTR(t.1,1,LENGTH(end_line))

=

end_line)

THEN

DO

/*

no

more

messages

*/

LEAVE

END

message

=

SUBSTR(t.1,1,48)

/*

Find

the

msg

ID

*/

first

=

WORD(message,3)

/*

first

word

of

message

*/

second

=

WORD(message,4)

/*

second

word

of

message

*/

SELECT

WHEN

(first=’1Q47I’

|,

/*

start

of

POWER

JOB

found

*/

first=’//’

&

second=’JOB’

|,

/*

start

of

VSE

JOB

found

*/

first=’EOJ’)

THEN

/*

end

of

VSE

JOB

found

*/

DO

/*

concatenate

message

parts

*/

total_msg

=

’’

DO

I=1

TO

t.0

total_msg

=

total_msg

||

t.I

END

END

OTHERWISE

/*

do

nothing

*/

END

/*

select

*/

Figure

13.

Job

Message

Scanner

REXXSCAN

(Part

2

of

3)

REXXSCAN

266

REXX/VSE

Reference

Return

and

Reason

Codes

This

section

lists

return

and

reason

codes,

together

with

explanations,

as

issued

by

the

MCSOPER

macro

MCSOPMSG

macro

MCSCRE

macro

SELECT

/*

do

message

analysis

*/

WHEN(first=’1Q47I’)

THEN

/*

start

of

POWER

job

found

*/

DO

/*

save

POWER

jobname

job_number

and

starttime

*/

PARSE

VAR

total_msg,

.

.

.

.

power_jobname

job_number

nil1

’,

TIME=’

power_starttime

nil2

END

WHEN(first=’//’

&

second=’JOB’)

THEN

/*

start

of

VSE

job

found

*/

DO

/*

save

VSE

jobname

startdate

and

starttime

*/

PARSE

VAR

total_msg,

.

.

.

.

VSE_jobname

nil

’

DATE

’

start_date

’,

CLOCK

’

start_time

END

WHEN(first=’EOJ’)

THEN

/*

end

of

VSE

job

found

*/

DO

/*

save

VSE

jobname

returncode

enddate

endtime

and

duration

*/

PARSE

VAR

total_msg,

.

.

.

VSE_jobname2

nil1

’

MAX.RETURN

CODE=’

job_rc

nil2,

’

DATE

’

end_date

’,CLOCK

’

end_time

’,DURATION

’

job_time

nil

/*

put

info

into

the

current

output

stream,

i.e.

LST

output

*/

SAY

SUBSTR(power_jobname,1,8)

job_number,

RIGHT(power_starttime,8),

SUBSTR(VSE_jobname,1,8),

start_date

SUBSTR(start_time,1,8)

end_date

end_time,

RIGHT(STRIP(job_time),9)

job_rc

END

OTHERWISE

/*

accepted

messages

*/

END

/*

select

*/

’RED’

/*

continue

redisplay

*/

IF

RC

>

0

THEN

DO

retcode

=

RC

SIGNAL

stop_label

END

END

/*

do

forever

*/

stop_label:

/***/

/*

Stop

REDISPLAY

for

partition

partid

*/

/***/

’RED

END’

/*

stop

redisplay

mode

*/

IF

RC

>

0

THEN

DO

retcode

=

RC

SIGNAL

end_label

END

end_label:

/***/

/*

Deactivate

console

session

*/

/***/

DEACTIVATE

’REXX’SYSPID

EXIT

retcode

Figure

13.

Job

Message

Scanner

REXXSCAN

(Part

3

of

3)

Return

and

Reason

Codes

Chapter

14.

REXX/VSE

Console

Automation

267

Command

processors.

Note:

Return

and

reason

codes

are

given

in

decimal

format.

MCSOPER

Macro

00

00

Successful

completion.

04

00

Console

with

specified

name

is

already

active

(ACTIVATE)

or

not

active

(DEACTIVATE).

16

00

Invalid

input:

The

address

of

the

parameter

list

or

of

an

input

parameter

is

invalid.

16

02

Invalid

input:

The

specified

console

was

not

activated

by

this

task

(DEACTIVATE).

16

04

Invalid

input:

The

requested

function

is

invalid

(not

ACTIVATE

nor

DEACTIVATE).

16

08

Invalid

input:

The

specified

name

contains

invalid

characters,

or

is

none

of

the

predefined

values

nor

a

valid

VSE/ESA

userid

(ACTIVATE).

16

16

Invalid

input:

The

specified

MSGDLVRY

option

is

invalid

(ACTIVATE).

16

24

Invalid

input:

The

specified

authority

level

(OPERPARM

area)

is

invalid.

16

32

Invalid

input:

The

specified

message

level

(OPERPARM

area)

is

invalid.

16

44

Invalid

input:

The

macro

acronym

or

version

indicator

in

the

parameter

list

is

invalid.

20

00

Service

routine

failure.

24

00

The

caller

is

not

in

supervisor

state

or

not

in

primary

ASC

mode

or

not

in

31-bit

addressing

mode.

MCSOPMSG

Macro

00

00

Successful

completion.

For

REQUEST=GETMSG,

reason

code

00

also

indicates

that

no

more

messages

nor

DOMs

are

currently

queued

for

this

console.

00

01

REQUEST=GETMSG

completed

successfully,

and

at

least

one

more

message

is

queued

for

this

console.

00

02

REQUEST=GETMSG

completed

successfully,

and

at

least

one

DOM

is

queued

for

this

console.

00

03

REQUEST=GETMSG

completed

successfully,

and

at

least

one

message

and

one

DOM

are

queued

for

this

console.

04

00

Console

was

not

suspended

(only

applicable

for

REQUEST=RESUME).

08

00

No

message

available

for

the

specified

REQUEST=GETMSG

search

criteria

(if

any),

and

no

more

messages

nor

DOMs

are

currently

queued

for

this

console.

08

01

No

message

available

for

the

specified

REQUEST=GETMSG

search

criteria,

but

there

are

is

at

least

one

other

message

queued

for

this

console.

08

02

No

message

available

for

the

specified

REQUEST=GETMSG

search

criteria,

but

there

are

is

at

least

one

DOM

queued

for

this

console.

08

03

No

message

available

for

the

specified

REQUEST=GETMSG

search

criteria,

but

there

are

is

at

least

one

message

and

one

DOM

queued

for

this

console.

12

00

Console

is

suspended

(applicable

only

for

REQUEST=GETMSG).

REQUEST=RESUME

must

be

issued

before

messages

can

be

retrieved

again

for

this

console.

16

00

Invalid

input:

The

requested

function

is

invalid

(not

GETMSG

or

RESUME).

16

01

Invalid

console

ID:

The

console

is

not

active.

16

02

Invalid

console

ID:

The

console

was

not

activated

by

this

task.

20

00

The

address

of

the

parameter

list

or

of

an

input

parameter

is

invalid.

Return

and

Reason

Codes

268

REXX/VSE

Reference

20

01

The

parameter

list

contains

an

incorrect

macro

acronym

or

version

indicator.

20

04

The

console

was

activated

with

MSGDLVRY=NONE,

or

with

MSGDLVRY=FIFO

but

CMDRESP=YES

was

specified.

20

05

The

caller

is

not

in

supervisor

state

or

not

in

primary

ASC

mode

or

not

in

31-bit

addressing

mode.

24

00

Service

routine

failure.

MGCRE

Macro

00

00

Processing

completed

successfully,

input

is

accepted.

00

01

Input

is

accepted,

but

was

recognized

as

sensitive,

like

a

Job

Control

//

ID

statement

possibly

containing

a

password.

The

input

text

is

logged

with

an

overlay

’(PARAMETERS

SUPPRESSED)’

and

the

modified

text

is

returned

in

the

CSA,

allowing

consoles

to

echo

it

instead

of

the

original

input

text.

04

00

Console

with

specified

name

is

already

active.

08

01

Command

not

accepted

because

a

previous

command

from

the

same

console

and

for

the

same

command

processor

is

not

yet

completed.

08

02

Invalid

reply

ID.

Either

no

message

is

pending

for

the

specified

reply

ID

or

the

console

is

not

authorized

to

reply

to

the

pending

message.

08

03

The

console

is

not

authorized

for

the

specified

command.

08

04

The

Attention

command

processor

is

not

active.

08

05

The

Redisplay

command

processor

is

not

active.

08

06

Input

from

system

console

is

inhibited

due

to

REMOTE

operating

mode

(there

is

a

relation

to

the

OPERATOR

command).

08

07

Redisplay

mode

is

already

active

for

another

user.

This

condition

is

only

possible

for

consoles

that

operate

on

behalf

of

multiple

users

by

means

of

the

UTOKEN

parameter.

08

08

The

input

was

rejected

by

an

exit

routine.

08

09

REDISPLAY

C

or

E

is

rejected

because

redisplay

mode

is

not

active.

08

10

REDISPLAY

command

rejected

due

to

shortage

of

24-bit

system

GETVIS

storage.

08

11

A

command

was

issued

at

a

user

console

while

this

console

was

still

in

redisplay

mode,

explanation

mode,

or

help

mode.

08

16

Command

not

accepted

because

the

specified

console

is

suspended.

08

17

The

specified

command

(e.g.

REDISPLAY

or

EXPLAIN)

is

not

supported

for

an

inactive

console

(only

possible

when

CONSNAME

was

specified).

08

18

No

dummy

console

is

available

to

process

input

for

an

inactive

console

(only

possible

when

CONSNAME

was

specified).

12

00

The

input

text

is

all

blanks.

12

01

The

input

length

is

0

or

larger

than

126

(not

EXPLAIN),

or

different

from

0

and

12

for

EXPLAIN

requests.

12

02

The

input

starts

with

a

numeric

character,

but

there

is

no

leading

token

of

1

to

4

numeric

characters

that

can

be

interpreted

as

a

reply

ID.

16

01

Invalid

console

ID:

The

console

is

not

active.

16

02

Invalid

console

ID:

The

console

was

not

activated

by

this

task.

16

08

Invalid

console

name:

The

name

is

shorter

than

4

characters

or

contains

invalid

characters.

Return

and

Reason

Codes

Chapter

14.

REXX/VSE

Console

Automation

269

20

00

Service

routine

failure.

Command

Processor

Return

and

Reason

Codes

The

table

below

shows

the

return

codes

(RC)

and

reason

codes

(RS)

of

the

three

command

processors

v

Console

Router

v

Attention

Routine

v

Hardcopy

File

(HCF).

Table

3.

Return

and

Reason

Codes

from

Command

Processors

RC

RS

Console

Router

Attention

Routine

HCF

Processor

0

0

okay

okay

okay

0

1

not

used

not

used

okay,

response

is

caused

by

RED

E,xL

4

0

last

message

of

command

response

not

used

last

message

of

command

response

4

1

not

used

not

used

last

message

of

command

response,

caused

by

RED

E,xL

4

2

not

used

not

used

last

message

of

command

response,

top

of

HCF

4

3

not

used

not

used

last

message

of

command

response,

bottom

of

HCF

8

0

not

used

end

of

command

response,

command

was

processed

by

attention

routine.

not

used

8

1

not

used

end

of

command

response,

command

was

passed

to

a

subsystem.

not

used

8

>8

MDB

contains

an

information

or

error

message

(English

version);

could

indicate

end

of

command

response.

not

used

MDB

contains

an

information

or

error

message

(English

version);

could

indicate

end

of

command

response.

CORCMD

Command

for

Problem

Solving

An

unsupported

debug

command

is

available

which

gives

information

about

the

internal

status

of

the

console

router.

In

case

of

a

problem,

IBM

service

personnel

might

ask

you

to

enter

this

command.

In

some

situations

you

might

even

be

able

to

analyze

the

command

output

yourself

to

solve

a

specific

problem.

Just

enter

CORCMD

plus

one

of

the

following

keywords.

For

example

CORCMD

STATUS=CONS

Please

note

that

command

parsing

is

not

very

fancy.

Therefore,

type

a

keyword

exactly

as

shown.

In

particular,

no

blanks

are

allowed

before

or

after

the

=

sign.

STATUS=CONS

returns

status

information

about

the

consoles

known

to

the

console

router.

Number

of

consoles

shows

the

number

consoles

that

are

active,

suspended,

accept

undeliverable

messages,

or

can

be

alerted.

Then

a

list

of

all

consoles

follows,

showing

the

console

name,

the

console

ID,

and

the

status

of

a

console.

A

console

ID

with

the

high-order

bit

on,

as

shown

with

console

name

HAUS,

indicates

a

user

console.

Otherwise

it

is

a

master

console.

Return

and

Reason

Codes

270

REXX/VSE

Reference

Note:

This

command

can

only

display

10

lines

of

data.

Therefore,

only

the

first

30

consoles

are

displayed.

corcmd

status=cons

Number

of

consoles:

Act=00000003

Sus=00000000

Ud=00000001

Al=00000001

SYS

00000002

A---

VMC

00000003

A---

IC

00000004

A--U

REXX

00000023

A---

HAUS

80000125

A---

End

of

STATUS=CONS

Explanation:

Numer

of

consoles:

ACTive,

SUSpended,

accepts

UD

msgs,

accepts

ALerts

Status:

Active,

Suspended,

Netview(automa.),

Undel.

msgs

CONS=console_name

returns

status

information

about

a

specific

console.

corcmd

cons=sys

Name=SYS

ID=001BD3A4

Date=1995072

Time=09:14:24.63

Stat=Nrm

RtCd=FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

MLvl=FE00

Ud=N

Al=Y

Aut=N

DOM=Def

EC=0000

RCS=08000000

CmdPnd=-----

MsgDlv=Srch

CSAFl=---

QFrst=00000000

QSrch=00000000

QDOM=00000000

MsgCt=00000000

DOMCt=00000000

SusCt=00000000

End

of

STATUS=CONS

Explanation:

Date

&

Time

of

last

activate,

suspend

or

resume

Stat

ACTive,

SUSpended,

RESumed,

INItializing,

NoRMal

RtCd

enabled

routing

codes

MLvl

enabled

message

level

Ud

undeliverable

messages

accepted:

Y

or

N

Al

alert

ECB

specified:

Y

or

N

Aut

automatable

messages

accepted:

Y

or

N

DOM

DOM

option:

ALL,

DEFault,

NONe

EC

unique

error

code

for

specific

return

codes

RCS

last

return

and

reason

code

passed

via

MCSOPMSG

CmdPnd

command

pending:

A:

AR

cmd,

H:

HCF

cmd,

C:

Console

router

cmd

M:

HCF

cancel/end

msg,

X:

explanation

request

MsgDlv

message

delivery

option:

SeaRCH,

FIFO,

NONe

CSAFl

Console

Status

Area

flags

A:

alerted,

U:

suspended,

X:

explain

response

MsgCt

number

of

undelivered

messages

DOMCt

number

of

undelivered

DOms

SusCt

number

of

suspends

since

last

activate

QFrst,

QSrch,

QDOM

debug

information

FORCE

this

command

checks

whether

the

oldest

queue

item

of

the

console

router

main

queue

is

blocked

by

a

console

and,

because

of

this,

the

reusage

of

such

a

queue

item

is

prevented.

When

this

is

the

case,

then

such

a

console

is

suspended,

no

matter

what

console

it

is.

The

system

responds

with:

Number

of

consoles

suspended

due

to

CORCMD

FORCE

:

01

STATUS=QUEUE

returns

status

information

about

the

console

router

queues

and

queue

space

management.

corcmd

status=queue

GETVIS

for

RI:

Lim=0010

Cur=0000

ML:

Lim=0028

Cur=0000

Non-returnable:

RI=0000007F

ML=000001F3

QMGEmpty:

TIK=0021

Code=0001

Returnable

RI:

Lim=0064

Hi=0000

Cur=0000

Returnable

ML:

Lim=0064

Hi=0000

Cur=0000

Alert

:

Pct=0032

RI-Base=00000071

RI-Pct=00000038

CRQ:

Cur=001B

Hi=001B

MRQ:

Cur=0001

Hi=0001

DYQ:

Cur=0000

Hi=0000

LRQ:

Cur=0019

Hi=0019

DHQ:

Cur=0000

Hi=0000

ARQ:

Cur=0000

Hi=0001

HCQ:

Cur=0000

Hi=0000

CORCMD

Command

Chapter

14.

REXX/VSE

Console

Automation

271

FRQ:

Cur=0037

Hi=0044

YRQ:

Cur=000A

Hi=000A

XRQ:

Cur=0022

Hi=0031

DOQ:

Cur=0002

Hi=0002

XTQ:

Cur=0000

Hi=0000

MOQ:

Cur=000B

Hi=0000

MLQ:

Cur=000E

Hi=0048

YMQ:

Cur=000A

Hi=000A

XMQ:

Cur=0168

Hi=01A1

End

of

STATUS=QUEUE

Explanation:

RI

(routing)

queue

item

ML

message

line

Lim

maximum

number

(e.g.

GETVIS)

Cur

current

number

Hi

highest

number

ever

(can

exceed

LIM

for

returnable

RI

and

ML)

QMGEmpty:

TIK

task

ID

of

last

unsuccessful

request

to

get

an

empty

queue

item

Code

Code

of

last

unsuccessful

request:

00

no

free

RI

or

ML

found

01

RI

requ

for

APNormal:

too

many

undeliver.

msgs

for

task

(RI

NOTE:

This

is

the

typical

case

when

a

task

wrote

messages,

but

such

messages

were

not

retrieved

from

all

consoles

02

QMEXMLSP:

no

GETVIS

in

IPL

stage

2

03

QMEXMLSP:

GETVIS

failed

04

QMEXRISP:

no

GETVIS

in

IPL

stage

2

05

QMEXRISP:

max

number

of

expansions

reached

06

QMEXRISP:

GETVIS

failed

07

QMFREE1:

CRQ

is

empty

08

QMFREE1:

cannot

be

reused

since

not

logged

yet

09

QMFREE1:

cannot

be

reused,

blocked

by

a

console

NOTE:

A

console

that

cannot

be

suspended

prevents

reusage

of

a

queue

item.

CORCMD

FORCE

drops

such

a

console.

0A

QMFREE1:

no

more

RIs

in

CRQ

0B

QMGETSRI:

GETVIS

for

single

RI

failed

0C

QMGETSML:

GETVIS

for

single

ML

failed

0D

PROCRIML:

Did

not

get

a

ML

0E

PROCRIML:

Did

not

get

a

ML

0F

PROCRIML:

invalid

condition

10

ML

requ

for

APNormal:

too

many

undeliver.

msgs

for

task

(ML

NOTE:

see

note

of

code=01

11

QMFREE1:

cannot

be

reused,

blocked

by

console,

RCSUSPND

NOTE:

see

note

of

code=09

Note:

The

output

of

the

STATUS=QUEUE

command

can

only

be

interpreted

with

deep

system

knowledge

and

is

therefore

not

very

useful

for

the

general

user.

To

help

you

to

determine

whether

a

console

router

queue

space

problem

exists,

check

the

following:

GETVIS

for

RI

(ML)

During

IPL,

the

console

router

allocates

an

initial

amount

of

queue

space.

This

space

can

be

expanded

when

heavy

message

traffic

occurs.

Expansion

is

done

via

31-bit

system

GETVIS

requests.

Today,

the

size

of

such

a

GETVIS

request

is

about

4

KB.

This

space

will

never

be

returned.

As

long

as

Cur

shows

a

value

below

Lim,

the

console

router

has

no

general

space

problem,

except

if

31-bit

system

GETVIS

is

generally

exhausted.

The

number

of

queue

items

(RI)

and

message

lines

(ML)

that

were

built

from

this

permanent

space

is

displayed

under

Non-returnable

RI

(ML)

Returnable

RI

(ML)

displays

the

number

of

queue

items

and

message

lines

that

are

returnable

to

system

GETVIS

space.

Returnable

queue

space

is

requested

in

31-bit

system

GETVIS

space

in

emergency

situations

and

if

the

permanent

space

is

not

sufficient.

Cur

shows

the

number

of

allocated

queue

items

or

message

lines

that

will

be

returned

as

soon

as

possible.

In

very

rare

cases,

Cur

might

even

exceed

Lim

to

prevent

system

hangups.

Over

the

long

run,

Cur

should

return

to

zero.

However,

this

can

take

some

time.

Alert

shows

numbers

needed

for

debug.

CORCMD

Command

272

REXX/VSE

Reference

CRQ,

etc.

shows

the

number

of

queue

items

in

the

different

queues

managed

by

the

console

router.

CRQ

is

the

console

router

main

queue.

Problems

might

soon

arise

if

the

Cur

number

is

very

low,

for

example,

below

5.

These

actions

might

give

relief

to

the

system:

1.

Reply

as

many

outstanding

replies

as

possible.

2.

Terminate

as

many

jobs

(tasks)

as

possible.

3.

Terminate

as

many

consoles

as

possible.

The

numbers

shown

in

all

the

other

queues

are

for

debug

purpose.

QMGEmpty:

TIK=

Code=

gives

information

about

the

last

failing

request

of

an

application

for

an

empty

queue

item

to

build

a

new

queue

item.

This

state

is

temporary

and

the

information

given

in

this

field

might

no

longer

be

true.

However,

if

the

information

is

true,

the

STATUS

command

shows

WAITING

FOR

ROUTER

BUFFER

SPACE.

Code

gives

a

reason

why

the

request

for

the

task

indicated

by

TIK

failed.

TRACE

returns

the

current

trace

setting

(ON

or

OFF)

TRACE=ON

sets

the

console

router

trace

to

on.

If

no

trace

area

exists,

a

trace

area

with

the

default

size

is

allocated

(8

KB).

Note:

The

DEBUG

command

also

turns

on

and

off

the

console

router

trace.

Only

if

a

console

router

trace

during

IPL

is

needed,

the

CORCMD

TRACE=ON

must

be

used.

TRACE=OFF

sets

the

console

router

trace

to

off.

TRACE=END

returns

the

storage

of

the

trace

area

to

the

system.

TRACE=n

changes

the

size

of

the

trace

area.

n

is

the

value

in

KBytes.

CORCMD

Command

Chapter

14.

REXX/VSE

Console

Automation

273

CORCMD

Command

274

REXX/VSE

Reference

Chapter

15.

REXX

Sockets

Application

Program

Interface

The

REXX

Sockets

application

program

interface

(API)

allows

you

to

write

socket

applications

in

REXX

for

the

TCP/IP

environment.

It

follows

the

standard

TCP/IP

Socket

API

available

on

multiple

platforms

and

therefore

enables

porting

of

socket

programs

from

other

platforms

to

REXX/VSE.

The

REXX

socket

program

external

uses

the

LE/VSE

Support

to

access

the

TCP/IP

Socket

interface.

The

program

maps

the

socket

calls

from

the

C

programming

language

to

the

REXX

programming

language.

This

allows

you

to

use

REXX

to

implement

and

test

TCP/IP

applications.

Examples

of

the

corresponding

C

socket

call

are

included

where

they

apply.

For

general

information

about

sockets

see

the

TCP/IP

for

VSE/ESA

IBM

Program

Setup

and

Supplementary

Information.

Subtopics:

v

Programming

Hints

and

Tips

for

Using

REXX

Sockets

v

“SOCKET

External

Function”

on

page

276

v

“Tasks

You

Can

Perform

Using

REXX

Sockets”

on

page

276

v

“REXX

Socket

Functions”

on

page

278

v

“REXX

Sockets

System

Messages”

on

page

309

v

“REXX

Sockets

Return

Codes”

on

page

309

v

“Sample

Programs”

on

page

311

v

“Installation

of

REXX/VSE

SOCKET

Function”

on

page

321

REXX

Socket

SSL

Support

TCP/IP

for

VSE/ESA

1.4

provides

SSL

(Secure

Sockets

Layer)

support.

SSL

is

a

security

protocol

and

allows

Internet

servers

and

clients

to

authenticate

each

other

and

to

encrypt

the

data

flowing

between

them.

Based

on

this

SSL

support,

the

REXX/VSE

Socket

function

has

been

enhanced

with

VSE/ESA

2.7

to

enable

you

to

write

SSL-enabled

socket

applications

in

REXX.

To

use

SSL

functions

in

general,

the

VSE/ESA

host

must

first

be

configured

for

SSL

support.

This

is

described

in

detail

in

the

VSE/ESA

e-business

Connectors

User’s

Guide

(chapter

″Configuring

Your

VSE/ESA

Host

for

SSL″).

The

following

Socket

subfunctions

have

been

enhanced

for

the

SSL

support:

v

Initialize

v

Accept

v

Connect

v

Takesocket

Programming

Hints

and

Tips

for

Using

REXX

Sockets

This

section

contains

some

information

that

you

might

find

useful

if

you

plan

to

use

REXX

Sockets.

v

To

use

the

socket

functions

contained

in

this

interface,

a

socket

set

must

be

active.

The

Initialize

function

creates

a

socket

set

and

can

be

used

to

create

as

many

socket

sets

as

required.

The

subtaskid

for

a

socket

set

identifies

the

socket

set

and

should

be

set

to

a

string

value

that

resembles

the

application’s

purpose.

v

The

socketname

parameter

on

a

socket

function

contains

values

for

domain,

portid,

and

ipaddress.

If

socketname

is

specified

as

an

input

parameter

on

a

socket

call,

you

can

specify

ipaddress

as

a

name

to

be

resolved

by

a

name

server.

For

example,

you

can

enter

’CUNYVM’

or

’CUNYVM.CUNY.EDU’.

v

A

socket

can

be

in

blocking

or

nonblocking

mode.

In

blocking

mode,

functions

such

as

Send

and

Recv

block

the

caller

until

the

operation

completes

successfully

or

an

error

occurs.

In

nonblocking

mode,

the

©

Copyright

IBM

Corp.

1988,

2004

275

caller

is

not

blocked,

but

the

operation

ends

immediately

with

the

return

code

1102

(EWOULDBLOCK)

or

1103

(EINPROGRESS.

You

can

use

the

Fcntl

or

Ioctl

function

to

switch

between

blocking

and

nonblocking

mode.

v

When

a

socket

is

in

nonblocking

mode,

you

can

use

the

Select

function

to

wait

for

socket

events,

such

as

data

arriving

at

a

socket

for

a

Read

or

Recv

function.

If

the

socket

is

not

ready

to

send

data

because

buffer

space

for

the

transmitted

message

is

not

available

at

the

receiving

socket,

your

REXX

program

can

wait

until

the

socket

is

ready

for

sending

data.

SOCKET

External

Function

��

SOCKET(subfunction

,arg

)

��

The

first

parameter

in

the

SOCKET

function,

subfunction,

identifies

a

REXX

socket

function.

The

REXX

socket

function

may

have

additional

arguments.

REXX

socket

functions

are

provided

for:

v

Processing

socket

sets

v

Creating,

connecting,

changing,

and

closing

sockets

v

Exchanging

data

v

Resolving

names

and

other

identifiers

for

sockets

v

Managing

configurations,

options,

and

modes

for

sockets

See

“Tasks

You

Can

Perform

Using

REXX

Sockets”

and

“REXX

Socket

Functions”

on

page

278.

SOCKET

returns

a

character

string

that

contains

several

values

separated

by

blanks,

so

the

string

can

be

parsed

using

REXX.

The

first

value

in

the

string

is

the

return

code.

If

the

return

code

is

zero,

the

values

following

the

return

code

are

returned

by

the

socket

function

(subfunction).

If

the

return

code

is

not

zero,

the

second

value

is

the

name

of

an

error,

and

the

rest

of

the

string

is

the

corresponding

error

message.

For

example:

Call

Return

Values

Socket(’GetHostId’)

’0

9.4.3.2’

Socket(’Recv’,socket)

’1102

EWOULDBLOCK

Operation

would

block’

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

During

initialization

of

the

REXX

Sockets

module

or

when

doing

certain

REXX

socket

functions,

system

messages

may

also

be

issued.

See

“REXX

Sockets

System

Messages”

on

page

309.

The

description

of

each

REXX

socket

function

in

this

chapter

provides

at

least

one

example

of

the

call

and

return

value

string,

and

also

includes

an

example

of

the

corresponding

C

socket

call,

where

applicable.

Tasks

You

Can

Perform

Using

REXX

Sockets

You

can

use

REXX

Sockets

to

perform

the

following

tasks:

v

Processing

socket

sets

A

socket

set

is

a

number

of

preallocated

sockets

available

to

a

single

application.

You

can

define

multiple

socket

sets

for

one

session,

but

only

one

socket

set

can

be

active.

REXX

Sockets

276

REXX/VSE

Reference

The

functions

included

in

this

task

group

are

shown

in

Table

4.

Table

4.

REXX

socket

functions

for

processing

socket

sets

Function

Purpose

Initialize

Defines

a

socket

set

Terminate

Closes

all

the

sockets

in

a

socket

set

and

releases

the

socket

set

SocketSet

Gets

the

name

of

the

active

socket

set

SocketSetList

Gets

the

names

of

all

the

available

socket

sets

SocketSetStatus

Gets

the

status

of

a

socket

set

v

Creating,

connecting,

changing,

and

closing

sockets

A

socket

is

an

endpoint

for

communication

that

can

be

named

and

addressed

in

a

network.

A

socket

is

represented

by

a

socket

identifier

(socketid).

A

socket

ID

used

in

a

Socket

call

must

be

in

the

active

socket

set.

The

functions

included

in

this

task

group

are

shown

in

Table

5.

Table

5.

REXX

socket

functions

for

creating,

connecting,

changing,

and

closing

sockets

Function

Purpose

Socket

Creates

a

socket

in

the

active

socket

set

Bind

Assigns

a

unique

local

name

(network

address)

to

a

socket

Listen

Converts

an

active

stream

socket

to

a

passive

socket

Connect

Establishes

a

connection

between

two

stream

sockets

Accept

Accepts

a

connection

from

a

client

to

a

server

Shutdown

Shuts

down

a

duplex

connection

Close

Shuts

down

a

socket

GiveSocket

Transfers

a

socket

to

another

application

TakeSocket

Acquires

a

socket

from

another

application

v

Exchanging

data

You

can

send

and

receive

data

on

connected

stream

sockets

and

on

datagram

sockets.

The

functions

included

in

this

task

group

are

shown

in

Table

6.

Table

6.

REXX

socket

functions

for

exchanging

data

Function

Purpose

Read

Reads

data

on

a

connected

socket

Write

Writes

data

on

a

connected

socket

Recv

Receives

data

on

a

connected

socket

Send

Sends

data

on

a

connected

socket

RecvFrom

Receives

data

on

a

socket

and

gets

the

sender’s

address

SendTo

Sends

data

on

a

socket,

and

optionally

specifies

a

destination

address

v

Resolving

names

and

other

identifiers

You

can

get

information

such

as

name,

address,

client

identification,

and

host

name.

You

can

also

resolve

an

Internet

Protocol

address

(IP

address)

to

a

symbolic

name

or

a

symbolic

name

to

an

IP

address.

REXX

Sockets

Chapter

15.

REXX

Sockets

Application

Program

Interface

277

The

functions

included

in

this

task

group

are

shown

in

Table

7.

Table

7.

REXX

socket

functions

for

resolving

names

and

other

identifiers

Function

Purpose

GetClientId

Gets

the

calling

program’s

TCP/IP

identifier

GetHostId

Gets

the

IP

address

for

the

host

processor

GetHostName

Gets

the

name

of

the

host

processor

GetPeerName

Gets

the

name

of

the

peer

connected

to

a

socket

GetSockName

Gets

the

local

name

to

which

a

socket

was

bound

GetHostByAddr

Gets

the

host

name

for

an

IP

address

GetHostByName

Gets

the

IP

address

for

a

host

name

Resolve

Resolves

the

host

name

through

a

name

server

v

Managing

configurations,

options,

and

modes

You

can

obtain

the

version

number

of

the

REXX

Sockets

function

package,

get

socket

options,

set

socket

options,

and

set

the

mode

of

operation.

You

can

also

determine

the

network

configuration.

The

functions

included

in

this

task

group

are

shown

in

Table

8.

Table

8.

REXX

socket

functions

for

managing

configurations,

options,

and

modes

Function

Purpose

Version

Gets

the

version

and

date

of

the

REXX

Sockets

function

package

Select

Monitors

activity

on

selected

sockets

GetSockOpt

Gets

the

status

of

options

for

a

socket

SetSockOpt

Sets

options

for

a

socket

Fcntl

Sets

or

queries

the

mode

of

a

socket

Ioctl

Controls

the

operating

characteristics

of

a

socket

v

Translating

data

and

doing

tracing

You

can

translate

data

from

one

type

of

notation

to

another.

You

can

also

enable

or

disable

tracing

facilities.

The

functions

included

in

this

task

group

are

shown

in

Table

9.

Table

9.

REXX

socket

functions

for

translating

data

and

doing

tracing

Function

Purpose

Translate

Translates

data

from

one

type

of

notation

to

another

REXX

Socket

Functions

This

section

describes

the

REXX

socket

functions,

which

are

listed

alphabetically.

Subtopics:

v

Accept

v

Bind

v

Close

v

Connect

v

Fcntl

v

GetClientId

v

GetHostByAddr

v

GetHostByName

REXX

Sockets

278

REXX/VSE

Reference

v

GetHostId

v

GetHostName

v

GetPeerName

v

GetSockName

v

GetSockOpt

v

GiveSocket

v

Initialize

v

Ioctl

v

Listen

v

Read

v

Recv

v

RecvFrom

v

Resolve

v

Select

v

Send

v

SendTo

v

SetSockOpt

v

ShutDown

v

Socket

v

SocketSet

v

SocketSetList

v

SocketSetStatus

v

TakeSocket

v

Terminate

v

Translate

v

Version

v

Write

Accept

Format

��

SOCKET

(

’ACCEPT’

,

socketid

(1)

,

SECURE

SECURE_WITH_CLIENT_AUTH

,

dname

)

��

Notes:

1 The

third

and

fourth

operand

are

only

allowed

if

the

socketset

has

been

initialized

for

SSL

support.

Use

the

Accept

function

on

a

server

to

accept

a

connection

request

from

a

client.

It

is

used

only

with

stream

sockets.

The

Accept

function

accepts

the

first

connection

on

the

listening

(passive)

socket’s

queue

of

pending

connections.

Accept

creates

a

new

socket

with

the

same

properties

as

the

listening

socket

and

returns

the

new

socket

ID

to

the

caller.

If

the

queue

has

no

pending

connection

requests,

Accept

blocks

the

caller

unless

the

listening

socket

is

in

nonblocking

mode.

If

no

connection

requests

are

queued

and

the

listening

socket

is

in

nonblocking

mode,

Accept

ends

with

return

code

1102

(EWOULDBLOCK).

The

new

socket

is

in

active

mode

and

cannot

be

used

to

accept

new

connections.

The

original

socket

remains

in

passive

mode

and

is

available

to

accept

more

connection

requests.

Operands

REXX

Sockets

Chapter

15.

REXX

Sockets

Application

Program

Interface

279

socketid

is

the

identifier

of

the

passive

socket

on

which

connections

are

to

be

accepted.

This

is

a

socket

that

was

previously

placed

into

passive

mode

(listening

mode)

by

calling

the

Listen

function.

SECURE

|

SECURE_WITH_CLIENT_AUTH

specifies

to

perform

the

SSL

handshake.

With

SECURE

the

SSL

server

handshake

is

performed,

with

SECURE_WITH_CLIENT_AUTH

the

SSL

handshake

is

performed

as

a

server

that

requires

client

authentication.

dname

specifies

a

character

string

that

is

the

member

name

of

the

desired

entry

(certificate)

in

the

keyring

library.

If

nothing

is

specified,

the

first

keyring

entry

is

used.

fc

=

SOCKET(’ACCEPT’,newsocketid,’SECURE_WITH_CLIENT_AUTH’,’SAMPLE’)

If

option

SECURE_WITH_CLIENT_AUTH

has

been

chosen

for

ACCEPT

or

TAKESOCKET,

information

from

the

client’s

certificate

is

stored

into

REXX

variables.

The

following

REXX

variables

are

set:

Table

10.

REXX

Variables

Name

Description

GSK_CERT_BODY

Base64

certificate

body

GSK_SESSIONID

Session

ID

for

the

connection

GSK_NEW_SESSION_ID

Flag

to

indicate

if

new

session

ID.

If

it

is

a

new

session

ID,

GSK_NEW_SESSION_ID

is

set

to

1,

otherwise

it

is

set

to

0.

GSK_SERIAL_NUM

Certificate

Serial

number

GSK_COMMON_NAME

Common

name

of

client

GSK_LOCALITY

Locality

GSK_STATE_OR_PROVINCE

State

or

Province

GSK_COUNTRY

Country

GSK_ORG

Organization

GSK_ORG_UNIT

Organizational

unit

GSK_ISSUER_COMMON_NAME

Issuer’s

common

name

GSK_ISSUER_LOCALITY

Issuer’s

locality

GSK_ISSUER_STATE_OR_PROVINCE

Issuer’s

state

or

province

GSK_ISSUER_COUNTRY

Issuer’s

country

GSK_ISSUER_ORG

Issuer’s

organization

GSK_ISSUER_ORG_UNIT

Issuer’s

organizational

unit

Responses

If

successful,

this

function

returns

a

string

containing

return

code

0,

the

new

socket

ID,

and

the

socket

name.

(The

socket

name

is

the

socket’s

network

address,

which

consists

of

the

domain,

port

ID,

and

the

IP

address.)

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

Call

Return

Values

Socket(’Accept’,5)

’0

6

AF_INET

5678

9.4.3.2’

Socket(’Accept’,5

,’SECURE_WITH_CLIENT_AUTH’,’SAMPLE’)

’0

6

AF_INET

5678

9.4.3.2’

Examples

Call

Return

Values

REXX

Sockets

-

Accept

280

REXX/VSE

Reference

Socket(’Accept’,5)

’0

6

AF_INET

5678

9.4.3.2’

The

C

socket

call

is:

accept(s,

name,

namelen)

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages”

on

page

309.

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

Bind

Format

��

SOCKET

(

’BIND’

,

socketid

,

socketname

)

��

Use

the

Bind

function

to

assign

a

unique

local

name

(network

address)

to

a

socket.

When

you

create

a

socket

with

the

Socket

function,

the

socket

does

not

have

a

name

associated

with

it,

but

it

does

belong

to

an

addressing

family.

The

form

of

the

name

you

assign

to

the

socket

with

the

Bind

function

depends

on

the

addressing

family.

The

Bind

function

also

allows

servers

to

specify

the

network

interfaces

from

which

they

want

to

receive

UDP

packets

and

TCP

connection

requests.

Operands

socketid

is

the

identifier

of

the

socket.

socketname

is

the

local

name

(network

address)

to

be

assigned

to

the

socket.

The

name

consists

of

three

parts:

domain

The

addressing

family

of

the

socket.

This

must

be

AF_INET

(or

the

equivalent

decimal

value

2).

portid

The

port

number

to

which

the

socket

must

bind.

ipaddress

The

IP

address

of

the

socket.

This

must

be

one

of

the

following:

v

Dotted

decimal

address

of

the

local

network

interface

v

INADDR_BROADCAST

v

INADDR_ANY

Responses

If

successful,

this

function

returns

a

string

containing

only

return

code

0.

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

Examples

Call

Return

Values

Socket(’Bind’,5,’AF_INET

1234

128.228.1.2’)

’0’

The

C

socket

call

is:

bind(s,

name,

namelen)

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages”

on

page

309.

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

REXX

Sockets

-

Accept

Chapter

15.

REXX

Sockets

Application

Program

Interface

281

Close

Format

��

SOCKET

(

’CLOSE’

,

socketid

)

��

Use

the

Close

function

to

shut

down

a

socket

and

free

the

resources

allocated

to

it.

If

the

socket

ID

refers

to

an

open

TCP

connection,

the

connection

is

closed.

If

a

stream

socket

is

closed

when

there

is

input

data

queued,

the

TCP

connection

is

reset

rather

than

closed.

Operands

socketid

is

the

identifier

of

the

socket

to

be

closed.

Usage

Notes

The

SO_LINGER

socket

option,

which

is

set

by

the

SetSockOpt

function,

can

be

used

to

control

how

unsent

output

data

is

handled

when

a

stream

socket

is

closed.

See

“SetSockOpt”

on

page

300.

Responses

If

successful,

this

function

returns

a

string

containing

only

return

code

0.

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

Examples

Call

Return

Values

Socket(’Close’,6)

’0’

The

C

socket

call

is:

close(s)

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages”

on

page

309.

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

Connect

Format

��

SOCKET

(

’CONNECT’

,

socketid

,

socketname

(1)

,

SECURE

,

dname

)

��

Notes:

1 The

fourth

and

fifth

operand

are

only

allowed

if

the

socketset

has

been

initialized

for

SSL

support.

Use

the

Connect

function

to

establish

a

connection

between

two

stream

sockets

or

to

specify

the

default

peer

for

a

datagram

socket.

When

called

for

a

stream

socket,

Connect

performs

two

tasks:

1.

If

the

Bind

function

has

not

been

called

for

the

socket

used

to

originate

the

request,

Connect

completes

the

bind.

REXX

Sockets

-

Close

282

REXX/VSE

Reference

2.

Connect

then

attempts

to

establish

a

connection

to

the

other

socket.

If

the

originating

stream

socket

is

in

blocking

mode,

Connect

blocks

the

caller

until

the

connection

is

established

or

an

error

is

received.

If

the

originating

socket

is

in

nonblocking

mode,

Connect

ends

with

return

code

1102

(EINPROGRESS)

or

another

return

code

indicating

an

error

Operands

socketid

is

the

identifier

of

the

socket

originating

the

connection

request.

socketname

is

the

name

(network

address)

of

the

socket

to

which

a

connection

will

be

attempted.

The

name

consists

of

three

parts:

domain

The

addressing

family

of

the

socket.

This

must

be

AF_INET

(or

the

equivalent

decimal

value

2).

portid

The

port

number

of

the

socket.

ipaddress

The

IP

address

of

the

socket.

SECURE

specifies

to

perform

the

SSL

handshake.

It

is

performed

as

a

client

with

or

without

client

authentication.

dname

specifies

a

character

string

that

is

the

member

name

of

the

desired

entry

(certificate)

in

the

keyring

library.

If

nothing

is

specified,

the

first

key

ring

entry

is

used.

fc

=

SOCKET(’CONNECT’,newsocketid,’AF_INET

5678

9.164.111.11’,

,

’SECURE’,’SAMPLE’)

Responses

If

successful,

this

function

returns

a

string

containing

only

return

code

0.

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

Examples

Call

Return

Values

Socket(’Connect’,5,’AF_INET

1234

128.228.1.2’)

’0’

Socket(’Connect’,5,’AF_INET

1234

CUNYVM’)

’0’

Socket(’Connect’,5,’AF_INET

1234

CUNYVM.CUNY.EDU’)

’0’

Socket(’Connect’,5,’AF_INET

1234

128.228.1.2’,’SECURE’,’SAMPLE’)

’0’

The

C

socket

call

is:

connect(s,

name,

namelen)

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages”

on

page

309.

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

REXX

Sockets

-

Connect

Chapter

15.

REXX

Sockets

Application

Program

Interface

283

Fcntl

Format

��

SOCKET

(

’FCNTL’

,

socketid

,

’F_SETFL’

,

fvalue

’F_GETFL’

)

��

Use

the

Fcntl

function

to

set

blocking

or

nonblocking

mode

for

a

socket,

or

to

get

the

setting

for

the

socket.

Operands

socketid

is

the

identifier

of

the

socket.

F_SETFL

sets

the

status

flags

for

the

socket.

One

flag,

FNDELAY,

can

be

set.

F_GETFL

gets

the

flag

status

for

the

socket.

One

flag,

FNDELAY,

can

be

retrieved.

fvalue

is

the

operating

characteristic.

The

following

values

are

valid:

NON-BLOCKING

or

FNDELAY

Turns

the

FNDELAY

flag

on,

which

marks

the

socket

as

being

in

nonblocking

mode.

If

data

is

not

present

on

calls

that

can

block,

such

as

Read

and

Recv,

Fcntl

returns

error

code

1102

(EWOULDBLOCK).

Responses

If

successful,

this

function

returns

a

string

containing

return

code

0.

If

F_GETFL

is

specified,

the

operating

characteristic

status

is

also

returned.

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

Examples

Call

Return

Values

Socket(’Fcntl’,5,’F_SETFL’,’NON-BLOCKING’)

’0’

Socket(’Fcntl’,5,’F_GETFL’)

’0

NON-BLOCKING’

The

C

socket

call

is:

fcntl(s,

cmd,

data)

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages”

on

page

309.

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

REXX

Sockets

-

Fcntl

284

REXX/VSE

Reference

GetClientId

Format

��

SOCKET

(

’GETCLIENTID’

,

domain

)

��

Use

the

GetClientId

function

to

get

the

identifier

by

which

the

calling

program

is

known

to

the

TCP/IP

virtual

machine.

Operands

domain

is

the

addressing

family.

This

must

be

one

of

the

following:

v

AF_INET

(or

the

equivalent

decimal

value

2);

AF_INET

is

the

default.

Responses

If

successful,

this

function

returns

a

string

containing

return

code

0

and

the

TCP/IP

identifier.

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

Examples

Call

Return

Values

Socket(’GetClientId’)

’0

AF_INET

USERID1

myId’

The

C

socket

call

is:

getclientid(domain,

clientid)

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages”

on

page

309.

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

GetHostByAddr

��

SOCKET

(

’GETHOSTBYADDR’

,

ipaddress

)

��

Use

the

GetHostByAddr

function

to

get

the

host

name

for

a

specified

IP

address.

The

name

is

resolved

through

a

name

server,

if

one

is

present.

Operands

ipaddress

is

the

IP

address

of

the

host,

in

dotted-decimal

notation.

Responses

If

successful,

this

function

returns

a

string

containing

return

code

0

and

the

full

host

name.

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

Examples

Call

Return

Values

Socket(’GetHostByAddr’,’128.228.1.2’)

’0

CUNYVM.CUNY.EDU’

REXX

Sockets

-

GetClientId

Chapter

15.

REXX

Sockets

Application

Program

Interface

285

The

C

socket

call

is:

gethostbyaddr(addr,

addrlen,

domain)

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages”

on

page

309.

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

GetHostByName

��

SOCKET

(

’GETHOSTBYNAME’

,

hostname

fullhostname

)

��

Use

the

GetHostByName

function

to

get

the

IP

address

for

a

specified

host

name.

The

name

is

resolved

through

a

name

server,

if

one

is

present.

GetHostByName

returns

all

the

IP

addresses

for

a

multihome

host.

Operands

hostname

is

the

host

processor

name

as

a

character

string.

fullhostname

is

the

fully

qualified

host

name

in

the

form

hostname.domainname.

Responses

If

successful,

this

function

returns

a

string

containing

return

code

0

and

an

IP

address

list.

The

addresses

in

the

list

are

separated

by

blanks.

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

Examples

Call

Return

Values

Socket(’GetHostByName’,’CUNYVM’)

’0

128.228.1.2’

Socket(’GetHostByName’,’CUNYVM.CUNY.EDU’)

’0

128.228.1.2’

The

C

socket

call

is:

gethostbyname(name)

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages”

on

page

309.

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

GetHostId

��

SOCKET

(

’GETHOSTID’

)

��

Use

the

GetHostId

function

to

get

the

IP

address

for

the

current

host.

This

address

is

the

default

home

IP

address.

REXX

Sockets

-

GetHostByAddr

286

REXX/VSE

Reference

Responses

If

successful,

this

function

returns

a

string

containing

return

code

0

and

the

IP

address

for

the

host.

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

Examples

Call

Return

Values

Socket(’GetHostId’)

’0

9.4.3.2’

The

C

socket

call

is:

gethostid()

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages”

on

page

309.

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

GetHostName

��

SOCKET

(

’GETHOSTNAME’

)

��

Use

the

GetHostName

function

to

get

the

name

of

the

host

processor

on

which

the

program

is

running.

Responses

If

successful,

this

function

returns

a

string

containing

return

code

0

and

the

name

of

the

host

processor.

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

Examples

Call

Return

Values

Socket(’GetHostName’)

’0

ZURLVM1’

The

C

socket

call

is:

gethostname(name,

namelen)

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages”

on

page

309.

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

GetPeerName

��

SOCKET

(

’GETPEERNAME’

,

socketid

)

��

Use

the

GetPeerName

function

to

get

the

name

of

the

peer

connected

to

a

socket.

Operands

socketid

is

the

identifier

of

the

socket.

REXX

Sockets

-

GetHostId

Chapter

15.

REXX

Sockets

Application

Program

Interface

287

Responses

If

successful,

this

function

returns

a

string

containing

return

code

0

and

the

name

of

the

peer.

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

Examples

Call

Return

Values

Socket(’GetPeerName’,6)

’0

AF_INET

1234

128.228.1.2’

The

C

socket

call

is:

getpeername(s,

name,

namelen)

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages”

on

page

309.

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

GetSockName

��

SOCKET

(

’GETSOCKNAME’

,

socketid

)

��

Use

the

GetSockName

function

to

get

the

name

to

which

a

socket

was

bound.

Stream

sockets

are

not

assigned

a

name

until

after

a

successful

call

to

the

Bind,

Connect,

or

Accept

function.

Operands

socketid

is

the

identifier

of

the

socket.

Responses

If

successful,

this

function

returns

a

string

containing

return

code

0

and

the

socket

name

(network

address,

consisting

of

domain,

port

ID,

and

IP

address).

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

Examples

Call

Return

Values

Socket(’GetSockName’,7)

’0

AF_INET

5678

9.4.3.2’

The

C

socket

call

is:

getsockname(s,

name,

namelen)

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages”

on

page

309.

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

GetSockOpt

��

SOCKET

(

’GETSOCKOPT’

,

socketid

,

level

,

optname

)

��

Use

the

GetSockOpt

function

to

get

the

status

of

options

and

other

data

associated

with

an

AF_INET

socket.

Most

socket

options

are

set

with

the

SetSockOpt

function.

Multiple

options

can

be

associated

with

each

socket.

You

must

specify

each

option

or

other

item

you

want

to

query

on

a

separate

call.

REXX

Sockets

-

GetPeerName

288

REXX/VSE

Reference

Operands

socketid

is

the

identifier

of

the

socket.

level

is

the

protocol

level

for

which

the

socket

option

or

other

data

is

being

queried.

SOL_SOCKET

is

supported.

optname

is

a

value

that

indicates

the

type

of

information

requested:

Value

Description

SO_LINGER

Gets

the

status

of

the

SO_LINGER

option,

which

controls

whether

the

Close

function

will

linger

if

data

is

present.

The

setting

can

be

On

or

Off.

v

If

SO_LINGER

is

On

and

there

is

unsent

data

present

when

Close

is

called,

the

calling

application

is

blocked

until

the

data

transmission

is

complete

or

the

connection

has

timed

out.

v

If

SO_LINGER

is

Off,

a

call

to

Close

returns

without

blocking

the

caller.

TCP/IP

still

tries

to

send

the

data.

Although

the

data

transfer

is

usually

successful,

it

cannot

be

guaranteed,

because

TCP/IP

repeats

the

Send

request

for

only

a

specified

period

of

time.

In

the

return

string,

an

On

setting

is

followed

by

the

number

of

seconds

that

TCP/IP

continues

trying

to

send

the

data

after

Close

is

called.

Responses

If

successful,

this

function

returns

a

string

containing

return

code

0

and

the

option

status

or

other

requested

value.

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

Examples

Call

Return

Values

Socket(’GetSockOpt’,5,’Sol_Socket’,’So_Linger’)

’0

On

60’

The

C

socket

call

is:

getsockopt(s,

level,

optname,

optval,

optlen)

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages”

on

page

309.

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

GiveSocket

��

SOCKET

(

’GIVESOCKET’

,

socketid

,

clientid

)

��

Use

the

GiveSocket

function

to

transfer

a

socket

to

another

application.

GiveSocket

makes

the

socket

available

to

a

TakeSocket

call

issued

by

another

application

using

the

same

TCP/IP

server.

Any

connected

stream

socket

can

be

given.

GiveSocket

is

typically

used

by

a

concurrent

server

program

that

obtains

sockets

using

the

Accept

function

and

then

gives

them

to

child

server

programs

that

handle

one

socket

at

a

time.

Operands

REXX

Sockets

-

GetSockOpt

Chapter

15.

REXX

Sockets

Application

Program

Interface

289

socketid

is

the

identifier

of

the

socket

to

be

given.

clientid

is

the

identifier

for

the

application

that

will

be

taking

the

socket.

This

consists

of

three

parts:

domain

The

addressing

family.

This

must

be

AF_INET

(or

the

equivalent

decimal

value

2).

userid

The

VM/ESA

user

ID

of

the

virtual

machine

in

which

the

taking

application

is

running.

subtaskid

The

subtask

ID

used

on

the

taking

application.

This

is

optional.

The

method

for

obtaining

the

taking

application’s

client

ID

is

not

defined

by

TCP/IP.

Responses

If

successful,

this

function

returns

a

string

containing

only

return

code

0.

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

Examples

Call

Return

Values

Socket(’GiveSocket’,6,’AF_INET

USERID2

hisId’)

’0’

The

C

socket

call

is:

givesocket(s,

clientid)

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages”

on

page

309.

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

Initialize

��

SOCKET

(

’INITIALIZE’

,

socketsetname

�

�

40

,

maxdesc

TCP/IP

,

TCP/IP_userid

Secure_Operands

)

��

Secure_Operands:

,

SSLV3

SSL

,

86400

,

lib.sublib

,

timeout

Use

the

Initialize

function

to

define

a

socket

set.

If

the

function

is

successful,

this

socket

set

becomes

the

active

socket

set.

Operands

REXX

Sockets

-

GiveSocket

290

REXX/VSE

Reference

socketsetname

is

the

name

of

the

socket

set.

The

name

can

be

up

to

eight

printable

characters;

it

cannot

contain

blanks.

maxdesc

is

the

maximum

number

of

preallocated

sockets

in

the

socket

set.

The

number

can

be

between

1

and

the

maximum

number

supported

by

TCP/IP

for

VM.

The

default

is

40.

TCP/IP_userid

is

the

user

ID

of

the

TCP/IP

server

machine.

If

not

specified,

a

value

of

’TCPIP’

is

used.

SSLV3

|

SSL

enables

usage

of

the

SSL

support

and

identifies

the

security

protocols

that

are

to

be

used.

A

secure

socket

communication

is

only

possible,

if

the

VSE/ESA

host

has

been

configured

for

SSL

support

(see

chapter

″Configuring

Your

VSE/ESA

Host

for

SSL″

in

the

VSE/ESA

e-business

Connectors

User’s

Guide).

lib.sublib

identifies

the

sublibrary

used

for

keys

and

certificates

(the

VSE

Keyring

Library,

see

skeleton

SKSSLKEY

in

ICCF

library

59).

If

nothing

is

specified,

the

private

key

and

certificates

are

read

from

the

default

sequential

disk

files.

timeout

specifies

the

number

of

seconds

for

the

SSLV3

session

identifier

to

expire.

The

range

is

0-86400

seconds

(1

day).

Default

is

86400

seconds.

fc

=

SOCKET(’INITIALIZE’,’SERVMIRR’,,,’SSLV3’,’CRYPTO.KEYRING’,86400)

Responses

If

successful,

this

function

returns

a

string

containing

return

code

0,

the

name

(subtask

ID)

of

the

initialized

socket

set,

the

maximum

number

of

preallocated

sockets

in

the

socket

set,

and

the

user

ID

of

the

TCP/IP

server

machine.

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

Examples

Call

Return

Values

Socket(’Initialize’,’myId’)

’0

myId

40

TCPIP’

Socket(’Initialize’,’myId’),,,’SSLV3’,’CRYPTO,KEYRING’,86400)

’0

myId

40

TCPIP’

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages”

on

page

309.

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

Ioctl

��

SOCKET

(

’IOCTL’

,

socketid

,

icmd

,

ivalue

)

��

Use

the

Ioctl

function

to

control

the

operating

characteristics

of

a

socket.

Operands

socketid

is

the

identifier

of

the

socket.

REXX

Sockets

-

Initialize

Chapter

15.

REXX

Sockets

Application

Program

Interface

291

icmd

is

the

operating

characteristics

command

to

be

issued:

Command

Description

FIONBIO

Sets

or

clears

nonblocking

for

socket

I/O.

You

specify

On

or

Off

in

ivalue.

ivalue

is

the

operating

characteristics

value.

This

value

depends

on

the

value

specified

for

icmd.

The

ivalue

parameter

can

be

used

as

input

or

output

or

both

on

the

same

call.

Responses

If

successful,

this

function

returns

a

string

containing

return

code

0

and

operating

characteristics

information.

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

Examples

Call

Return

Values

Socket(’Ioctl’,5,’FionBio’,’On’)

’0’

The

C

socket

call

is:

ioctl(s,

cmd,

data)

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages”

on

page

309.

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

Listen

��

SOCKET

(

’LISTEN’

,

socketid

,

10

,

backlog

)

��

Use

the

Listen

function

to

transform

an

active

stream

socket

into

a

passive

socket.

Listen

performs

two

tasks:

1.

If

the

Bind

function

has

not

been

called

for

the

socket,

Listen

completes

the

bind.

(The

domain,

port

ID,

and

IP

address

are

set

to

AF_INET,

INPORT_ANY,

and

INADDR_ANY.)

2.

Listen

creates

a

connection

request

queue

for

incoming

connection

requests.

After

the

queue

is

full,

additional

connection

requests

are

ignored.

Calling

the

Listen

function

indicates

a

readiness

to

accept

client

connection

requests.

After

Listen

is

called,

the

socket

can

never

be

used

as

an

active

socket

to

initiate

connection

requests.

Calling

Listen

is

the

third

of

four

steps

that

a

server

performs

to

accept

a

connection.

It

is

called

after

allocating

a

stream

socket

with

the

Socket

function,

and

after

binding

a

name

to

the

socket

with

the

Bind

function,

but

before

calling

the

Accept

function.

Operands

socketid

is

the

identifier

of

the

socket.

backlog

is

the

number

of

pending

connection

requests.

This

number

is

an

integer

between

0

and

10.

The

default

is

10.

REXX

Sockets

-

Ioctl

292

REXX/VSE

Reference

Responses

If

successful,

this

function

returns

a

string

containing

only

return

code

0.

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

Examples

Call

Return

Values

Socket(’Listen’,5,10)

’0’

The

C

socket

call

is:

listen(s,

backlog)

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages”

on

page

309.

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

Read

��

SOCKET

(

’READ’

,

socketid

,

10000

,

maxlength

)

��

Use

the

Read

function

to

read

data

on

a

connected

socket,

up

to

a

specified

maximum

number

of

bytes.

This

is

the

conventional

TCP/IP

read

data

operation.

If

less

than

the

requested

number

of

bytes

is

available,

Read

returns

the

number

currently

available.

If

data

is

not

available

at

the

socket,

Read

waits

for

data

to

arrive

and

blocks

the

caller,

unless

the

socket

is

in

nonblocking

mode.

For

datagram

sockets,

Read

returns

the

entire

datagram

that

was

sent,

providing

that

the

datagram

fits

into

the

specified

buffer.

For

stream

sockets,

data

is

processed

as

streams

of

information

with

no

boundaries

separating

the

data.

For

example,

if

programs

A

and

B

are

connected

with

a

stream

socket,

and

program

A

sends

1000

bytes,

each

call

to

this

function

can

return

any

number

of

bytes,

up

to

the

entire

1000

bytes.

The

number

of

bytes

returned

is

contained

in

the

return

values

string.

Therefore,

programs

using

stream

sockets

should

place

this

call

in

a

loop

that

repeats

until

all

the

data

has

been

received.

If

the

length

in

the

return

values

string

is

zero,

the

other

side

of

the

call

has

closed

the

stream

socket.

Operands

socketid

is

the

identifier

of

the

socket.

maxlength

is

the

maximum

length

of

data

to

be

read.

This

is

a

number

of

bytes

between

1

and

100000.

The

default

is

10000.

Responses

If

successful,

this

function

returns

a

string

containing

return

code

0,

the

length

of

the

data

read,

and

the

data

read.

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

Examples

Call

Return

Values

Socket(’Read’,6)

’0

21

This

is

the

data

line’

The

C

socket

call

is:

read(s,

buf,

len)

REXX

Sockets

-

Listen

Chapter

15.

REXX

Sockets

Application

Program

Interface

293

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages”

on

page

309.

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

Recv

��

SOCKET

(

’RECV’

,

socketid

,

10000

,

’’

10000

,

’’

,

maxlength

,

recvflags

)

��

Use

the

Recv

function

to

receive

data

on

a

connected

socket,

up

to

a

specified

maximum

number

of

bytes.

By

specifying

option

flags,

you

can

also:

On

a

datagram

socket,

if

more

than

the

number

of

bytes

requested

is

available,

Recv

discards

the

excess

bytes.

If

less

than

the

number

of

bytes

requested

is

available,

Recv

returns

the

number

of

bytes

currently

available.

If

data

is

not

available

at

the

socket,

Recv

waits

for

data

to

arrive

and

blocks

the

caller,

unless

the

socket

is

in

nonblocking

mode.

On

a

stream

socket,

if

the

data

length

in

the

return

string

is

zero,

the

other

side

has

closed

the

socket.

Operands

socketid

is

the

identifier

of

the

socket.

maxlength

is

the

maximum

length

of

data

to

be

received.

This

is

a

number

of

bytes

between

1

and

100000.

The

default

is

10000.

recvflags

are

flags

that

control

the

Recv

operation:

’’

Receive

the

data.

No

flag

is

set.

This

is

the

default.

Responses

If

successful,

this

function

returns

a

string

containing

return

code

0,

the

length

of

the

data

received,

and

the

data

received.

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

Examples

Call

Return

Values

Socket(’Recv’,6)

’0

21

This

is

the

data

line’

Socket(’Recv’,6,,’PEEK

OOB’)

’0

24

This

is

out-of-band

data’

The

C

socket

call

is:

recv(s,

buf,

len,

flags)

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages”

on

page

309.

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

REXX

Sockets

-

Read

294

REXX/VSE

Reference

RecvFrom

��

SOCKET

(

’RECVFROM’

,

socketid

,

10000

,

’’

10000

,

’’

,

maxlength

,

recvflags

)

��

Use

the

RecvFrom

function

to

receive

data

on

a

socket,

up

to

a

specified

maximum

number

of

bytes,

and

get

the

sender’s

address.

On

a

datagram

socket,

if

more

than

the

number

of

bytes

requested

is

available,

RecvFrom

discards

the

excess

bytes.

If

less

than

the

number

of

bytes

requested

is

available,

RecvFrom

returns

the

number

of

bytes

available.

For

stream

sockets,

data

is

processed

as

streams

of

information

with

no

boundaries

separating

the

data.

For

example,

if

programs

A

and

B

are

connected

with

a

stream

socket,

and

program

A

sends

1000

bytes,

each

call

to

RecvFrom

can

return

any

number

of

bytes,

up

to

the

entire

1000

bytes.

The

number

of

bytes

returned

is

specified

in

the

return

values

string.

Therefore,

programs

using

stream

sockets

should

place

RecvFrom

in

a

loop

that

repeats

until

all

the

data

has

been

received.

If

a

data

length

of

zero

is

returned

in

the

return

values

string,

the

socket

has

been

closed

by

the

other

side.

If

data

is

not

available

at

the

socket,

RecvFrom

waits

for

data

to

arrive

and

blocks

the

caller,

unless

the

socket

is

in

nonblocking

mode.

Operands

socketid

is

the

identifier

of

the

socket.

maxlength

is

the

maximum

length

of

data

to

be

received.

This

is

a

number

of

bytes

between

1

and

100000.

The

default

is

10000.

recvflags

are

flags

that

control

the

RecvFrom

operation:

’’

Receive

the

data.

No

flag

is

set.

This

is

the

default.

Responses

If

successful,

this

function

returns

a

string

containing

return

code

0,

the

network

address

(domain,

remote

port,

and

remote

IP

address)

of

the

sender,

the

length

of

the

data

received,

and

the

data

received.

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

Examples

Call

Return

Values

Socket(’RecvFrom’,6)

’0

AF_INET

5678

9.4.3.2

9

Data

line’

The

C

socket

call

is:

recvfrom(s,

buf,

len,

flags,

name,

namelen)

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages”

on

page

309.

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

REXX

Sockets

-

RecvFrom

Chapter

15.

REXX

Sockets

Application

Program

Interface

295

Resolve

��

SOCKET

(

’RESOLVE’

,

ipaddress

hostname

fullhostname

)

��

Use

the

Resolve

function

to

resolve

the

host

name

through

a

name

server,

if

one

is

present.

Operands

ipaddress

is

the

IP

address

of

the

host,

in

dotted-decimal

notation.

hostname

is

the

host

processor

name

as

a

character

string.

fullhostname

is

the

fully

qualified

host

name

in

the

form

hostname.domainname.

Responses

If

successful,

this

function

returns

a

string

containing

return

code

0,

the

IP

address

of

the

host,

and

the

full

host

name.

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

Examples

Call

Return

Values

Socket(’Resolve’,’128.228.1.2’)

’0

128.228.1.2

CUNYVM.CUNY.EDU’

Socket(’Resolve’,’CUNYVM’)

’0

128.228.1.2

CUNYVM.CUNY.EDU’

Socket(’Resolve’,’CUNYVM.CUNY.EDU’)

’0

128.228.1.2

CUNYVM.CUNY.EDU’

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages”

on

page

309.

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

REXX

Sockets

-

Resolve

296

REXX/VSE

Reference

Select

��

SOCKET

(

’SELECT’

,

,

Mask

timeout

)

(1)

Mask:

�

�

’READ’

read_socketlist

’WRITE’

write_socketlist

�

�

’EXCEPTION’

exception_socketlist

��

Notes:

1 You

can

specify

the

lists

of

socket

descriptors

in

any

order.

Use

the

Select

function

to

monitor

activity

on

specified

socket

IDs

to

see

if

any

of

them

are

ready

for

reading

or

writing

or

have

an

exception

condition

pending.

Select

does

not

check

for

the

order

of

event

completion.

A

Close

on

the

other

side

of

a

socket

connection

is

not

reported

as

an

exception,

but

as

a

Read

event

that

returns

zero

bytes

of

data.

When

Connect

is

called

with

a

socket

in

nonblocking

mode,

the

Connect

call

ends

and

returns

code

1102

(EWOULDBLOCK).

The

completion

of

the

connection

setup

is

then

reported

as

a

Write

event

on

the

socket.

When

Accept

is

called

with

a

socket

in

nonblocking

mode,

the

Accept

call

ends

and

returns

code

1102

(EWOULDBLOCK).

The

availability

of

the

connection

request

is

reported

as

a

Read

event

on

the

original

socket,

and

Accept

should

be

called

only

after

the

Read

has

been

reported.

Operands

READ

read_socketidlist

specifies

a

list

of

socket

descriptors

to

be

checked

to

see

if

they

are

ready

for

reading.

A

socket

is

ready

for

reading

when

incoming

data

is

buffered

for

it

or,

for

a

listening

socket,

when

a

connection

request

is

pending.

Select

returns

the

socket

ID

in

the

return

value

string

if

a

call

to

read

from

that

socket

will

not

block.

If

you

do

not

need

to

test

any

sockets

for

reading,

you

can

pass

a

null

for

the

list.

WRITE

write_socketidlist

specifies

a

list

of

socket

descriptors

to

be

checked

to

see

if

they

are

ready

for

writing.

A

socket

is

ready

for

writing

when

there

is

buffer

space

for

outgoing

data.

Select

returns

the

socket

ID

in

the

return

value

string

if

a

call

to

write

to

that

socket

will

not

block.

If

you

do

not

need

to

test

any

sockets

for

writing,

you

can

pass

a

null

for

the

list.

EXCEPTION

exception_socketidlist

specifies

a

list

of

socket

descriptors

to

be

checked

to

see

if

they

have

an

exception

condition

pending.

A

socket

has

an

exception

condition

pending

if

it

has

received

out-of-band

data

or

if

another

program

has

successfully

taken

the

socket

using

the

TakeSocket

function.

If

you

do

not

need

to

test

any

sockets

for

exceptions

pending,

you

can

pass

a

null

for

the

list.

REXX

Sockets

-

Select

Chapter

15.

REXX

Sockets

Application

Program

Interface

297

timeout

is

a

positive

integer

indicating

the

maximum

wait

time

in

seconds.

The

default

is

FOREVER.

Responses

If

successful,

this

function

returns

a

string

containing

return

code

0,

the

number

of

sockets

that

have

completed

events,

the

list

of

socket

IDs

that

are

ready

for

reading,

the

list

of

socket

IDs

that

are

ready

for

writing,

and

the

list

of

socket

IDs

that

have

an

exception

pending.

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

Examples

Call

Return

Values

Socket(’Select’,’Read

5

Write

Exception’,10)

’0

1

READ

5

WRITE

EXCEPTION’

The

C

socket

call

is:

select(nfds,

readfds,

writefds,

exceptfds,

timeout)

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages”

on

page

309.

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

Send

��

SOCKET

(

’SEND’

,

socketid

,

data

,

’’

,

sendflags

)

��

Use

the

Send

function

to

send

data

on

a

connected

socket.

If

Send

cannot

send

the

number

of

bytes

of

data

that

is

requested,

it

waits

until

sending

is

possible.

This

blocks

the

caller,

unless

the

socket

is

in

nonblocking

mode.

For

datagram

sockets,

the

socket

should

not

be

in

blocking

mode.

Operands

socketid

is

the

identifier

of

the

socket.

data

is

the

message

string

to

be

sent.

sendflags

are

flags

that

control

the

Send

operation:

’’

Send

the

data.

No

flag

is

set.

This

is

the

default.

Responses

If

successful,

this

function

returns

a

string

containing

return

code

0

and

the

length

of

the

data

sent.

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

Examples

Call

Return

Values

Socket(’Send’,6,’Some

text’)

’0

9’

REXX

Sockets

-

Select

298

REXX/VSE

Reference

The

C

socket

call

is:

send(s,

buf,

len,

flags)

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages”

on

page

309.

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

SendTo

��

SOCKET

(

’SENDTO’

,

socketid

,

data

,

’’

’’

,

sendflags

,

destination_name

)

��

Use

the

SendTo

function

to

send

data

on

a

socket.

This

function

is

similar

to

the

Send

function,

except

that

you

can

specify

a

destination

address

to

send

datagrams

on

a

UDP

socket,

whether

the

socket

is

connected

or

unconnected.

For

datagram

sockets,

the

socket

should

not

be

in

blocking

mode.

For

stream

sockets,

data

is

processed

as

streams

of

information

with

no

boundaries

separating

the

data.

For

example,

if

a

program

is

required

to

send

1000

bytes,

each

call

to

the

SendTo

function

can

send

any

number

of

bytes,

up

to

the

entire

1000

bytes,

with

the

number

of

bytes

sent

returned

in

the

return

values

string.

Therefore,

programs

using

stream

sockets

should

place

SendTo

in

a

loop

that

repeats

the

call

until

all

the

data

has

been

sent.

Operands

socketid

is

the

identifier

of

the

socket.

data

is

the

message

string

to

be

sent.

sendflags

are

flags

that

control

the

SendTo

operation:

’’

Send

the

data.

No

flag

is

set.

This

is

the

default.

destination_name

is

the

destination

network

address,

which

consists

of

three

parts:

domain

The

addressing

family.

This

must

be

AF_INET

(or

the

equivalent

decimal

value

2).

portid

The

port

number.

ipaddress

The

IP

address.

Responses

If

successful,

this

function

returns

a

string

containing

return

code

0

and

the

length

of

the

data

sent.

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

REXX

Sockets

-

Send

Chapter

15.

REXX

Sockets

Application

Program

Interface

299

Examples

Call

Return

Values

Socket(’SendTo’,6,’some

text’,,’AF_INET

5678

9.4.3.2’)

’0

9’

The

C

socket

call

is:

sendto(s,

buf,

len,

flags,

name,

namelen)

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages”

on

page

309.

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

SetSockOpt

��

SOCKET

(

’SETSOCKOPT’

,

socketid

,

level

,

optname

,

optvalue

)

��

Use

the

SetSockOpt

function

to

set

the

options

associated

with

an

AF_INET

socket.

The

optvalue

parameter

is

used

to

pass

data

used

by

the

particular

set

command.

The

optvalue

parameter

points

to

a

buffer

containing

the

data

needed

by

the

set

command.

The

optvalue

parameter

is

optional

and

can

be

set

to

0,

if

data

is

not

needed

by

the

command.

Operands

socketid

is

the

identifier

of

the

socket.

level

is

the

protocol

level

for

which

the

socket

option

is

being

set.

SOL_SOCKET

and

IPPROTO_TCP

are

supported.

All

optname

values

beginning

with

“SO_”

are

for

protocol

level

SOL_SOCKET

and

are

interpreted

by

the

general

socket

code.

All

optname

values

beginning

with

“TCP_”

are

for

protocol

level

IPPROTO_TCP

and

are

interpreted

by

the

TCP/IP

internal

code.

optname

is

the

socket

option

to

be

set:

Option

Description

SO_LINGER

Controls

whether

the

Close

function

will

linger

if

data

is

present:

v

If

SO_LINGER

is

On

and

there

is

unsent

data

present

when

Close

is

called,

the

calling

application

is

blocked

until

the

data

transmission

completes

or

the

connection

times

out.

v

If

SO_LINGER

is

Off,

a

call

to

Close

returns

without

blocking

the

caller.

TCP/IP

still

tries

to

send

the

data.

Although

this

transfer

is

usually

successful,

it

cannot

be

guaranteed,

because

TCP/IP

repeats

the

Send

request

for

only

a

specified

period

of

time.

optvalue

is

the

option

setting.

For

the

SO_LINGER

option,

you

can

specify

On

n,

n,

or

Off.

If

you

specify

only

n,

On

is

implied.

The

value

n

is

the

number

of

seconds

that

TCP/IP

should

continue

trying

to

send

the

data

after

the

Close

function

is

called.

If

On

is

selected,

the

default

number

is

120.

Responses

If

successful,

this

function

returns

a

string

containing

only

return

code

0.

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

REXX

Sockets

-

SendTo

300

REXX/VSE

Reference

Examples

Call

Return

Values

Socket(’SetSockOpt’,5,’Sol_Socket’,’So_Linger’,60)

’0’

The

C

socket

call

is:

setsockopt(s,

level,

optname,

optval,

optlen)

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages”

on

page

309.

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

ShutDown

��

SOCKET

(

’SHUTDOWN’

,

socketid

,

’BOTH’

,

how

)

��

Use

the

ShutDown

function

to

shut

down

all

or

part

of

a

duplex

connection.

Operands

socketid

is

the

identifier

of

the

socket.

how

sets

the

communication

direction

to

be

shut

down:

BOTH

Disables

further

receive-type

and

send-type

operations

on

the

socket,

ending

communication

from

and

to

the

socket.

This

is

the

default.

Responses

If

successful,

this

function

returns

a

string

containing

only

return

code

0.

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

Examples

Call

Return

Values

Socket(’ShutDown’,6,’BOTH’)

’0’

The

C

socket

call

is:

shutdown(s,

how)

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages”

on

page

309.

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

REXX

Sockets

-

SetSockOpt

Chapter

15.

REXX

Sockets

Application

Program

Interface

301

Socket

��

SOCKET

(

’SOCKET’

,

’AF_INET’

,

’SOCK_STREAM’

,

’IPPROTO_TCP’

’AF_INET’

,

Type

and

Protocol

domain

)

�

�

,

’SOCK_STREAM’

,

’IPPROTO_TCP’

Type

and

Protocol:

(1)

’SOCK_STREAM’

,

,

type

(1)

,

protocol

��

Notes:

1 The

default

protocol

depends

on

the

domain

and

socket

type.

Use

the

Socket

function

to

create

a

socket

in

the

active

socket

set.

Different

types

of

sockets

provide

different

communication

services.

Operands

domain

is

the

communications

domain

in

which

communication

is

to

take

place.

This

parameter

specifies

the

addressing

family

(format

of

addresses

within

a

domain)

being

used.

This

value

must

be

AF_INET

(or

the

equivalent

integer

value

2),

which

indicates

the

internet

domain.

This

is

also

the

default.

type

is

type

of

socket

to

be

created.

The

supported

types

are:

Type

Description

SOCK_STREAM

The

abbreviated

form

STREAM

is

also

permitted

(or

the

equivalent

integer

value

1).

This

type

of

socket

provides

sequenced,

two-way

byte

streams

that

are

reliable

and

connection-oriented.

Bytes

are

guaranteed

to

arrive,

arrive

only

once,

and

arrive

in

the

order

sent.

AF_INET

stream

sockets

also

support

a

mechanism

for

sending

and

receiving

out-of-band

data.

SOCK_DGRAM

The

abbreviated

form

DATAGRAM

is

also

permitted

(or

the

equivalent

integer

value

2).

This

type

of

socket

provides

datagrams,

which

are

connectionless

messages

of

a

fixed

maximum

length

whose

reliability

is

not

guaranteed.

Datagrams

can

be

corrupted,

received

out

of

order,

lost,

or

delivered

multiple

times.

The

default

type

is

SOCK_STREAM.

protocol

is

the

protocol

to

be

used

with

the

socket.

For

stream

and

datagram

sockets,

you

should

set

this

field

to

0

to

allow

TCP/IP

to

assign

the

default

protocol

for

the

domain

and

socket

type

selected.

For

the

AF_INET

domain,

the

default

protocols

are:

v

IPPROTO_TCP

for

stream

sockets

v

IPPROTO_UDP

for

datagram

sockets

REXX

Sockets

-

Socket

302

REXX/VSE

Reference

Responses

If

successful,

this

function

returns

a

string

containing

return

code

0

and

the

identifier

(socket

ID)

of

the

new

socket.

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

Examples

Call

Return

Values

Socket(’Socket’)

’0

5’

The

C

socket

call

is:

socket(domain,

type,

protocol)

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages”

on

page

309.

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

SocketSet

��

SOCKET

(

’SOCKETSET’

,

subtaskid

)

��

Use

the

SocketSet

function

to

get

the

name

(subtask

ID)

of

the

active

socket

set.

If

you

specify

a

subtask

ID

on

the

call,

that

socket

set

becomes

the

active

socket

set.

Operands

subtaskid

is

the

name

of

a

socket

set.

The

name

can

be

up

to

eight

printable

characters;

it

cannot

contain

blanks.

Responses

If

successful,

this

function

returns

a

string

containing

return

code

0

and

the

subtask

ID

of

the

active

socket

set.

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

Examples

Call

Return

Values

Socket(’SocketSet’,’firstId’)

’0

firstId’

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages”

on

page

309.

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

SocketSetList

��

SOCKET

(

’SOCKETSETLIST’

)

��

Use

the

SocketSetList

function

to

get

a

list

of

the

names

(subtask

IDs)

of

all

the

available

socket

sets

in

the

current

order

of

the

stack.

REXX

Sockets

-

Socket

Chapter

15.

REXX

Sockets

Application

Program

Interface

303

Responses

If

successful,

this

function

returns

a

string

containing

return

code

0,

the

subtask

ID

of

the

active

socket

set,

and

the

subtask

IDs

of

all

the

other

available

socket

sets

(if

any)

in

the

current

order

of

the

stack.

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

Examples

Call

Return

Values

Socket(’SocketSetList’)

’0

myId

firstId’

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages”

on

page

309.

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

SocketSetStatus

��

SOCKET

(

’SOCKETSETSTATUS’

,

subtaskid

)

��

Use

the

SocketSetStatus

function

to

get

the

status

of

a

socket

set.

If

you

do

not

specify

the

name

(subtask

ID)

of

the

socket

set,

the

active

socket

set

is

used.

If

the

socket

set

is

connected,

this

function

returns

the

number

of

free

sockets

and

the

number

of

allocated

sockets

in

the

socket

set.

If

the

socket

set

is

severed,

the

reason

for

the

TCP/IP

sever

is

also

returned.

Initialized

socket

sets

should

be

in

connected

status,

and

uninitialized

socket

sets

should

be

in

free

status.

A

socket

set

that

is

initialized

but

is

not

in

connected

status

must

be

terminated

before

the

subtask

ID

can

be

reused.

Operands

socketsetname

is

the

name

of

a

socket

set.

The

name

can

be

up

to

eight

printable

characters;

it

cannot

contain

blanks.

Responses

If

successful,

this

function

returns

a

string

containing

return

code

0,

the

subtask

ID

of

the

socket

set,

and

the

status

of

the

socket

set.

Connect

and

sever

information

may

also

be

returned.

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

Examples

Call

Return

Values

Socket(’SocketSetStatus’)

’0

myId

Connected

Free

17

Used

23’

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages”

on

page

309.

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

REXX

Sockets

-

SocketSetList

304

REXX/VSE

Reference

TakeSocket

��

SOCKET

(

’TAKESOCKET’

,

clientid

�

�

,

socketid

(1)

,

SECURE

SECURE_WITH_CLIENT_AUTH

,

dname

)

��

Notes:

1 The

fourth

and

fifth

operand

are

only

allowed

if

the

socketset

has

been

initialized

for

SSL

support.

Use

the

TakeSocket

function

to

acquire

a

socket

from

another

application.

The

giving

application

must

have

already

issued

a

GiveSocket

call.

After

Takesocket

completes

successfully,

the

giving

application

must

close

the

socket.

Operands

clientid

is

the

identifier

for

the

application

that

is

giving

the

socket.

This

consists

of

three

parts:

domain

The

addressing

family.

This

must

be

AF_INET

(or

the

equivalent

integer

value

2).

userid

The

VM/ESA

user

ID

of

the

virtual

machine

in

which

the

giving

application

is

running.

subtaskid

The

subtask

ID

used

on

the

giving

application.

The

method

for

obtaining

the

giving

application’s

client

ID

is

not

defined

by

TCP/IP.

socketid

is

the

identifier

of

the

socket

on

the

giving

application.

The

method

for

obtaining

this

value

is

not

defined

by

TCP/IP.

SECURE

|

SECURE_WITH_CLIENT_AUTH

specifies

to

perform

the

SSL

handshake.

With

SECURE

the

SSL

server

handshake

is

performed,

with

SECURE_WITH_CLIENT_AUTH

the

SSL

handshake

is

performed

as

a

server

that

requires

client

authentication.

dname

specifies

a

character

string

that

is

the

member

name

of

the

desired

entry

(certificate)

in

the

keyring

library.

If

nothing

is

specified,

the

first

keyring

entry

is

used.

fc

=

Socket(’Takesocket’,ClientId,SocketNr,’SECURE_WITH_CLIENT_AUTH’,’SAMPLE’)

See

Table

10

on

page

280.

Responses

If

successful,

this

function

returns

a

string

containing

return

code

0

and

a

new

socket

ID

(the

identifier

assigned

to

the

socket

on

the

taking

application).

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

Examples

Call

Return

Values

Socket(’TakeSocket’,’AF_INET

USERID1

myId’,6)

’0

7’

REXX

Sockets

-

TakeSocket

Chapter

15.

REXX

Sockets

Application

Program

Interface

305

Call

Return

Values

Socket(’TakeSocket’,’AF_INET

USERID1

myId’,6,

,

’SECURE_WITH_CLIENT_AUTH’,’SAMPLE’)

’0

7’

The

C

socket

call

is:

takesocket(clientid,

hisdesc)

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages”

on

page

309.

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

Terminate

��

SOCKET

(

’TERMINATE’

,

subtaskid

)

��

Use

the

Terminate

function

to

close

all

the

sockets

in

a

socket

set

and

release

the

socket

set.

If

you

do

not

specify

a

socket

set,

the

active

socket

set

is

terminated.

If

the

active

socket

set

is

terminated,

the

next

socket

set

in

the

stack

(if

available)

becomes

the

active

socket

set.

Operands

subtaskid

is

the

name

of

the

socket

set.

The

name

can

be

up

to

eight

printable

characters;

it

cannot

contain

blanks.

Responses

If

successful,

this

function

returns

a

string

containing

return

code

0

and

the

name

(subtask

ID)

of

the

terminated

socket

set.

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

Examples

Call

Return

Values

Socket(’Terminate’,’myId’)

’0

myId’

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages”

on

page

309.

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

Translate

��

SOCKET

(

’TRANSLATE’

,

string

,

how

)

��

Use

the

Translate

function

to

translate

data

from

one

type

of

notation

to

another.

Operands

string

is

a

character

string

that

contains

the

data

to

be

translated.

REXX

Sockets

-

TakeSocket

306

REXX/VSE

Reference

how

indicates

the

type

of

translation

to

be

done.

The

supported

types

are

(case

is

not

significant

in

these

values):

Type

Description

To_Ascii

or

Ascii

Translates

the

specified

REXX

character

string

to

ASCII

To_Ebcdic

or

Ebcdic

Translates

the

specified

REXX

hexadecimal

string

to

EBCDIC

To_IP_Address

or

To_IPaddress

or

IPaddress

Translates

the

specified

dotted-decimal

IP

address

into

a

4-byte

hexadecimal

notation,

or

the

specified

4-byte

hexadecimal

IP

address

into

dotted-decimal

notation

To_SockAddr_In

or

SockAddr_In

Translates

the

specified

sockaddr_in

structure

from

human-readable

notation

(a

three-part

character

string

containing

AF_INET,

the

decimal

port

value,

and

either

an

IP

address

or

a

partially-

or

fully-qualified

host

name)

into

a

16-byte

hexadecimal

notation,

or

from

16-byte

hexadecimal

notation

into

a

human-readable

notation

Responses

If

successful,

this

function

returns

a

string

containing

return

code

0,

the

length

of

the

translated

string,

and

the

translated

string.

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

Usage

Notes

1.

In

addition

to

the

blanks

between

the

three

parts

of

the

return

string,

the

translated

string

may

contain

leading

or

trailing

blanks.

You

must

use

caution

when

parsing

the

return

string

with

the

REXX

Parse

statement

in

order

to

preserve

the

possible

leading

or

trailing

blanks.

2.

The

length

value

returned

should

be

used

as

an

indication

of

the

actual

length

of

the

translated

string.

The

length

value

includes

any

leading

or

trailing

blanks.

3.

ASCII/EBCDIC

translation

tables

INWPETOA

and

INWPATOE

are

used

for

ASCII/EBCDIC

translation.

See

VSE/ESA

Programming

and

Workstation

Guide

for

modifying

a

table.

Examples

Call:

Socket(’Translate’,’Hello

’,’To_Ascii’)

Return

Values:

’0

6

xxxxx’

(xxxxx

is

X'48656C6C6F20')

Call:

Socket(’Translate’,’48656C6C6F20’X,’To_Ebcdic’)

Return

Values:

’0

6

Hello

’

(Note

the

trailing

blank.)

Call:

Socket(’Translate’,’128.228.1.2’,’To_IP_Address’)

Return

Values:

’0

4

xxxx’

(xxxx

is

X'80E40102')

Call:

Socket(’Translate’,’80E40102’X,’To_IP_Address’)

Return

Values:

’0

11

128.228.1.2’

Call:

Socket(’Translate’,’64.64.64.64’,’To_IP_Address’)

Return

Values:

’0

4

xxxx’

(xxxx

is

X'40404040',

four

EBCDIC

blanks)

Call:

Socket(’Translate’,’

’,’To_IP_Address’)

Return

Values:

’0

11

64.64.64.64’

Call:

Socket(’Translate’,’AF_INET

123

CUNYVM.CUNY.EDU’,’To_SockAddr_In’)

Return

Values:

’0

16

xxxxxxxxxxxxxxxx’

(xxxxxxxxxxxxxxxx

is

X'0002

007B

80E40102

0000000000000000')

REXX

Sockets

-

Translate

Chapter

15.

REXX

Sockets

Application

Program

Interface

307

Call:

Socket(’Translate’,’0002007B80E401020000000000000000’X,’To_SockAddr_In’)

Return

Values:

’0

23

AF_INET

123

128.228.1.2’

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages”

on

page

309.

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

Version

��

SOCKET

(

’VERSION’

)

��

Use

the

Version

function

to

get

the

version

number

and

date

for

the

REXX

Sockets

function

package.

Responses

If

successful,

this

function

returns

a

string

containing

return

code

0

and

the

REXX

Sockets

version

and

date.

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

Examples

Call

Return

Values

Socket(’Version’)

’0

REXX/SOCKETS

1.00

30

November

1999’

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages”

on

page

309.

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes”

on

page

309.

Write

��

SOCKET

(

’WRITE’

,

socketid

,

data

)

��

Use

the

Write

function

to

write

data

on

a

connected

socket.

This

function

is

similar

to

the

Send

function,

except

that

it

lacks

the

control

flags

available

with

Send.

If

it

is

not

possible

to

write

the

data,

Write

waits

until

conditions

are

suitable

for

writing

data.

This

blocks

the

caller,

unless

the

socket

is

in

nonblocking

mode.

For

datagram

sockets,

the

socket

should

not

be

in

blocking

mode.

Operands

socketid

is

the

identifier

of

the

socket.

data

is

the

data

to

be

written.

Responses

If

successful,

this

function

returns

a

string

containing

return

code

0

and

the

length

of

the

data

written.

If

unsuccessful,

this

function

returns

a

string

containing

a

nonzero

return

code,

an

error

name,

and

an

error

message.

REXX

Sockets

-

Translate

308

REXX/VSE

Reference

Examples

Call

Return

Values

Socket(’Write’,6,’some

text’)

’0

9’

The

C

socket

call

is:

write(s,

buf,

len)

Messages

and

Return

Codes

For

a

list

of

REXX

Sockets

system

messages,

see

“REXX

Sockets

System

Messages.”

For

a

list

of

REXX

Sockets

return

codes,

see

“REXX

Sockets

Return

Codes.”

REXX

Sockets

System

Messages

The

following

message

indicates

an

error

ARX0960E

ERROR

Running

Function

SOCKET,

RC=nnnnn

Code

Error

Name

00008

CEEPIPI.PHASE

not

found

(usually

in

PRD2.SCEEBASE,

check

your

LIBDEF

chain)

00009

CEEPIPI

called

from

active

LE-Environment
(internal

error,

contact

IBM)

00016

Storage

problem

(use

a

partition

with

more

GETVIS

space)

00020

Invocation

of

CEEPIPI-routine

failed

(internal

error,

contact

IBM)

00024

Locking

Problem

(retry

later

on)

00028

REXX

not

initialized

(invoke

//EXEC

ARXLINK)

00032

SECURE

error
Security

operands

are

specified

with

ACCEPT,

CONNECT,

or

TAKESOCKET,

but

the

preceding

INITIALIZE

has

been

invoked

without

security

protocol.

00096

Internal

Error

(contact

IBM)

REXX

Sockets

Return

Codes

A

REXX

Sockets

call

returns

a

return

code

as

the

first

token

of

the

result

string.

If

the

return

code

is

not

zero,

the

second

and

third

tokens

in

the

result

string

are

the

error

name

and

the

corresponding

error

message.

The

following

table

lists

the

return

code

values

defined

for

all

REXX

socket

functions.

Code

Error

Name

Error

Message

2

ERANGE

Range

error

111

EACCES

Permission

denied

112

EAGAIN

Resource

temporarily

unavailable

113

EBADF

Bad

file

descriptor

114

EBUSY

Resource

busy

118

EFAULT

Bad

address

119

EFBIG

File

too

large

120

EINTR

Interrupted

function

call

REXX

Sockets

-

Write

Chapter

15.

REXX

Sockets

Application

Program

Interface

309

Code

Error

Name

Error

Message

121

EINVAL

Invalid

argument

122

EIO

Input/output

error

124

EMFILE

Too

many

open

files

127

ENFILE

Too

many

open

files

in

system

129

ENOENT

No

such

file

or

directory

134

ENOSYS

Function

not

implemented

138

ENXIO

No

such

device

or

address

139

EPERM

Operation

not

permitted

140

EPIPE

Broken

pipe

158

EMVSPARM

Bad

parameters

were

passed

to

the

service

1102

EWOULDBLOCK

Problem

on

non-blocking

socket

1103

EINPROGRESS

Connection

in

progress

1104

EALREADY

Connection

already

in

progress

1105

ENOTSTOCK

Descriptor

does

not

refer

to

a

socket

1106

EDESTADDRREQ

Destination

address

required

1107

EMSGSIZE

Message

too

long

1108

EPROTOTYPE

The

socket

type

is

not

supported

by

the

protocol

1109

ENOPROTOOPT

Protocol

not

available

1110

EPROTONOSUPPORT

Protocol

not

supported

1112

EOPNOTSUPPORT

Address

family

not

supported

1115

EADDRINUSE

Address

in

use

1116

EADDRENOTAVAIL

Address

not

available

1118

ENETUNREACH

Network

unreachable

1121

ECONNRESET

Connection

reset

1122

ENOBUFS

No

buffer

space

available

1123

EISCONN

Socket

is

already

connected

1124

ENOTCONN

Socket

not

connected

35

ETIMEDOUT

Connection

timed

out

1128

ECONNREFUSED

Connection

refused

2001

EINVALIDRXSOCKETCALL

Syntax

error

in

RXSOCKET

parameter

list

2003

ESUBTASKINVALID

Subtask

ID

invalid

2004

ESUBTASKALREADYACTIVE

Subtsk

already

active

2005

ESUBTASKNOTACTIVE

Subtask

not

active

2007

EMAXSOCKETSREACHED

Maximum

number

of

sockets

reached

2009

ESOCKETNOTDEFINED

Socket

not

defined

2016

EHOSTNOTFOUND

Host

not

found

2017

EIPADDRNOTFOUND

IP

address

not

found

2018

ETRYAGAIN

Try

again

2019

ENORECOVERY

No

recovery

REXX

Sockets

-

Return

Codes

310

REXX/VSE

Reference

Code

Error

Name

Error

Message

2020

ENODATA

No

data

2021

ESOCKETNOTGIVEN

No

Socket

available

to

acquire

Sample

Programs

This

section

describes

two

sample

pairs

of

REXX

socket

programs:

1.

Using

a

non-secured

connection

v

REXX-EXEC

RSCLIENT

—

a

client

sample

program

v

REXX-EXEC

RSSERVER

—

a

server

sample

program
2.

Using

a

secured

connection

via

TCP/IP

SSL

support

Before

you

start

the

client

program,

you

must

start

the

server

program

in

another

address

space.

The

two

programs

can

run

on

different

hosts,

but

the

internet

address

of

the

host

running

the

server

program

must

be

entered

with

the

command

starting

the

client

program,

and

the

hosts

must

be

connected

on

the

same

network

using

TCP/IP.

REXX-EXEC

RSCLIENT

Sample

Program

The

client

sample

program

(RSCLIENT

EXEC)

is

a

REXX

socket

program

that

shows

you

how

to

use

the

calls

provided

by

REXX

Sockets.

The

program

connects

to

the

server

sample

program

and

receives

data,

which

is

displayed

on

the

screen.

It

uses

sockets

in

blocking

mode.

After

parsing

and

testing

the

input

parameters,

RSCLIENT

obtains

a

socket

set

using

the

Initialize

function

and

a

socket

using

the

Socket

function.

The

program

then

connects

to

the

server

and

writes

the

user

ID,

the

node

ID,

and

the

number

of

lines

requested

on

the

connection

to

the

server.

It

reads

data

in

a

loop

and

displays

it

on

the

screen

until

the

data

length

is

zero,

indicating

that

the

server

has

closed

the

connection.

If

an

error

occurs,

the

client

program

displays

the

return

code,

determines

the

status

of

the

socket

set,

and

ends

the

socket

set.

The

server

adds

the

EBCDIC

new

line

character

to

the

end

of

each

record,

and

the

client

uses

this

character

to

determine

the

start

of

a

new

record.

If

the

connection

is

abnormally

closed,

the

client

does

not

display

partially

received

records.

trace

o

signal

on

syntax

/*

Set

error

code

values

*/

ecpref

=

’RXS’

ecname

=

’CLI’

initialized

=

0

parse

arg

argstring

argstring

=

strip(argstring)

if

substr(argstring,1,1)

=

’?’

then

do

say

’RSSERVER

and

RSCLIENT

are

a

pair

of

programs

which

provide

an’

say

’example

of

how

to

use

REXX/SOCKETS

to

implement

a

service.

The’

say

’server

must

be

started

before

the

clients

get

started.

’

say

’

’

say

’The

RSSERVER

program

runs

in

its

own

dedicated

partition

’

say

’and

returns

a

number

of

data

lines

as

requested

to

the

client.’

say

’It

is

started

with

the

JCL

command:

’

say

’

//

EXEC

REXX=RSSERVER

’

say

’and

terminated

with

the

console

command:

’

say

’

MSG

<pid>,

DATA=H1

’

say

’

’

say

’The

RSCLIENT

program

is

used

to

request

a

number

of

arbitrary’

REXX

Sockets

-

Return

Codes

Chapter

15.

REXX

Sockets

Application

Program

Interface

311

say

’data

lines

from

the

server

and

can

be

run

concurrently

any’

say

’number

of

times

by

different

clients

until

the

server

is’

say

’terminated.

It

is

started

with

the

command:

’

say

’

//

EXEC

REXX=RSCLIENT,PARM="number

<server>"

’

say

’where

"number"

is

the

number

of

data

lines

to

be

requested

and’

say

’"server"

is

the

ipaddress

of

the

service

virtual

machine.

(The’

say

’default

ipaddress

is

the

one

of

the

host

on

which

RSCLIENT

is’

say

’running,

assuming

that

RSSERVER

runs

on

the

same

host.)

’

exit

100

end

/*

Split

arguments

into

parameters

and

options

*/

parse

upper

var

argstring

parameters

’(’

options

’)’

rest

/*

Parse

the

parameters

*/

parse

var

parameters

lines

server

rest

if

^datatype(lines,’W’)

then

call

error

’E’,

24,

’Invalid

number’

lines

=

lines

+

0

if

rest^=’’

then

call

error

’E’,

24,

’Invalid

parameters’

/*

Parse

the

options

*/

do

forever

parse

var

options

token

options

select

when

token=’’

then

leave

otherwise

call

error

’E’,

20,

’Invalid

option

"’token’"’

end

end

/*

Initialize

control

information

*/

port

=

’1952’

/*

The

port

used

by

the

server

*/

userid

=

USERID()

call

Sysvar(’SYSPID’)

locnode

=

SYSPID

/*

Initialize

*/

call

Socket

’Initialize’,

’RSCLIENT’

if

src=0

then

initialized

=

1

else

call

error

’E’,

200,

’Unable

to

initialize

RXSOCKET

MODULE’

if

server=’’

then

do

server

=

Socket(’GetHostId’)

if

src^=0

then

call

error

’E’,

200,

’Cannot

get

the

local

ipaddress’

end

ipaddress

=

server

/*

Initialize

for

receiving

lines

sent

by

the

server

*/

s

=

Socket(’Socket’)

if

src^=0

then

call

error

’E’,

32,

’SOCKET(SOCKET)

rc=’src

call

Socket

’Connect’,

s,

’AF_INET’

port

ipaddress

if

src^=0

then

call

error

’E’,

32,

’SOCKET(CONNECT)

rc=’src

call

Socket

’Write’,

s,

locnode

userid

lines

if

src^=0

then

call

error

’E’,

32,

’SOCKET(WRITE)

rc=’src

/*

Wait

for

lines

sent

by

the

server

*/

dataline

=

’’

num

=

0

do

forever

/*

Receive

a

line

and

display

it

*/

parse

value

Socket(’Read’,

s)

with

len

newline

if

src^=0

|

len<=0’’

then

leave

REXX

Sockets

-

Sample

Programs

312

REXX/VSE

Reference

dataline

=

dataline

||

newline

do

forever

if

pos(’15’x,dataline)=0

then

leave

parse

var

dataline

nextline

’15’x

dataline

num

=

num

+

1

say

right(num,5)’:’

nextline

end

end

/*

Terminate

and

exit

*/

call

Socket

’Terminate’

exit

0

/*

Calling

the

real

SOCKET

function

*/

socket:

procedure

expose

initialized

src

a0

=

arg(1)

a1

=

arg(2)

a2

=

arg(3)

a3

=

arg(4)

a4

=

arg(5)

a5

=

arg(6)

a6

=

arg(7)

a7

=

arg(8)

a8

=

arg(9)

a9

=

arg(10)

parse

value

’SOCKET’(a0,a1,a2,a3,a4,a5,a6,a7,a8,a9)

with

src

res

return

res

/*

Syntax

error

routine

*/

syntax:

call

error

’E’,

rc,

’==>

REXX

Error

No.’

20000+rc

return

/*

Error

message

and

exit

routine

*/

error:

procedure

expose

ecpref

ecname

initialized

type

=

arg(1)

retc

=

arg(2)

text

=

arg(3)

ecretc

=

right(retc,3,’0’)

ectype

=

translate(type)

ecfull

=

ecpref

||

ecname

||

ecretc

||

ectype

say

’ecfull

text’

if

type^=’E’

then

return

if

initialized

then

do

parse

value

Socket(’SocketSetStatus’)

with

.

status

severreason

if

status^=’Connected’

then

do

say

’The

status

of

the

socket

set

is’

status

severreason

end

call

Socket

’Terminate’

end

exit

retc

REXX-EXEC

RSSERVER

Sample

Program

The

server

sample

program

(RSSERVER

EXEC)

shows

an

example

of

how

to

use

sockets

in

nonblocking

mode.

The

program

waits

for

connect

requests

from

client

programs,

accepts

the

requests,

and

then

sends

data.

The

sample

can

handle

multiple

client

requests

in

parallel

processing.

The

server

program

sets

up

a

socket

to

accept

connection

requests

from

clients

and

waits

in

a

loop

for

events

reported

by

the

select

call.

If

a

socket

event

occurs,

it

is

processed.

A

read

event

can

occur

on

the

REXX

Sockets

-

Sample

Programs

Chapter

15.

REXX

Sockets

Application

Program

Interface

313

original

socket

for

accepting

connection

requests

and

on

sockets

for

accepted

socket

requests.

A

write

event

can

occur

only

on

sockets

for

accepted

socket

requests.

A

read

event

on

the

original

socket

for

connection

requests

means

that

a

connection

request

from

a

client

occurred.

Read

events

on

other

sockets

indicate

either

that

there

is

data

to

receive

or

that

the

client

has

closed

the

socket.

Write

events

indicate

that

the

server

can

send

more

data.

The

server

program

sends

only

one

line

of

data

in

response

to

a

write

event.

The

server

program

keeps

a

list

of

sockets

to

which

it

wants

to

write.

It

keeps

this

list

to

avoid

unwanted

socket

events.

The

TCP/IP

protocol

is

not

designed

for

one

single-threaded

program

communicating

on

many

different

sockets,

but

for

multithread

applications

where

one

thread

processes

only

events

from

a

single

socket.

trace

o

signal

on

syntax

signal

on

halt

/*

Set

error

code

values

*/

initialized

=

0

parse

arg

argstring

argstring

=

strip(argstring)

if

substr(argstring,1,1)

=

’?’

then

do

say

’RSSERVER

and

RSCLIENT

are

a

pair

of

programs

which

provide

an’

say

’example

of

how

to

use

REXX/SOCKETS

to

implement

a

service.

The’

say

’server

must

be

started

before

the

clients

get

started.

’

say

’

’

say

’The

RSSERVER

program

runs

in

its

own

partition.

’

say

’It

returns

a

number

of

data

lines

as

requested

to

the

client.

’

say

’It

is

started

with

the

command:

//

EXEC

REXX=RSSERVER

’

say

’and

terminated

by

issuing

"MSG

<pid>,DATA=HI"

at

the

console.

’

say

’

’

say

’The

RSCLIENT

program

is

used

to

request

a

number

of

arbitrary’

say

’data

lines

from

the

server.

One

or

more

clients

can

access

’

say

’the

server

until

it

is

terminated.

’

say

’It

is

started

with

the

command:

’

say

’

//

EXEC

REXX=RSCLIENT,PARM="number

<server>"

’

say

’where

"number"

is

the

number

of

data

lines

to

be

requested

and’

say

’"server"

is

the

ipaddress

of

the

service

virtual

machine.

(The’

say

’default

ipaddress

is

the

one

of

the

host

on

which

RSCLIENT

is’

say

’running,

assuming

that

RSSERVER

runs

on

the

same

host.)

’

say

’

’

exit

100

end

/*

Split

arguments

into

parameters

and

options

*/

parse

upper

var

argstring

parameters

’(’

options

’)’

rest

/*

Parse

the

parameters

*/

parse

var

parameters

rest

if

rest^=’’

then

call

error

’E’,

24,

’Invalid

parameters

specified’

/*

Parse

the

options

*/

do

forever

parse

var

options

token

options

select

when

token=’’

then

leave

otherwise

call

error

’E’,

20,

’Invalid

option

"’token’"’

end

end

REXX

Sockets

-

Sample

Programs

314

REXX/VSE

Reference

/*

Initialize

control

information

*/

port

=

’1952’

/*

The

port

used

for

the

service

*/

/*

Initialize

*/

say

’RSSERVER:

Initializing’

call

Socket

’Initialize’,

’RSSERVER’

if

src=0

then

initialized

=

1

else

call

error

’E’,

200,

’Unable

to

initialize

SOCKET’

ipaddress

=

Socket(’GetHostId’)

if

src^=0

then

call

error

’E’,

200,

’Unable

to

get

the

local

ipaddress’

say

’RSSERVER:

Initialized:

ipaddress=’ipaddress

’port=’port

/*

Initialize

for

accepting

connection

requests

*/

s

=

Socket(’Socket’)

if

src^=0

then

call

error

’E’,

32,

’SOCKET(SOCKET)

rc=’src

call

Socket

’Bind’,

s,

’AF_INET’

port

ipaddress

if

src^=0

then

call

error

’E’,

32,

’SOCKET(BIND)

rc=’src

call

Socket

’Listen’,

s,

10

if

src^=0

then

call

error

’E’,

32,

’SOCKET(LISTEN)

rc=’src

call

Socket

’Ioctl’,

s,

’FIONBIO’,

’ON’

if

src^=0

then

call

error

’E’,

36,

’Cannot

set

mode

of

socket’

s

/*

Server

can

be

stopped

via

"MSG

<pid>,DATA=HI"

*/

/*

call

opermsg(’ON’)

*/

/*

Wait

for

new

connections

and

send

lines

*/

timeout

=

60

linecount.

=

0

wlist

=

’’

do

forever

/*

Wait

for

an

event

*/

if

wlist^=’’

then

sockevtlist

=

’Write’wlist

’Read

*

Exception’

else

sockevtlist

=

’Write

Read

*

Exception’

sellist

=

Socket(’Select’,sockevtlist,timeout)

if

src^=0

then

call

error

’E’,

36,

’SOCKET(SELECT)

rc=’src

parse

upper

var

sellist

.

’READ’

orlist

’WRITE’

owlist

’EXCEPTION’

.

if

orlist^=’’

|

owlist^=’’

then

do

event

=

’SOCKET’

if

orlist^=’’

then

do

parse

var

orlist

orsocket

.

rest

=

’READ’

orsocket

end

else

do

parse

var

owlist

owsocket

.

rest

=

’WRITE’

owsocket

end

end

else

event

=

’TIME’

select

/*

Accept

connections

from

clients,

receive

and

send

messages

*/

when

event=’SOCKET’

then

do

parse

var

rest

keyword

ts

.

/*

Accept

new

connections

from

clients

*/

if

keyword=’READ’

.

ts=s

then

do

nsn

=

Socket(’Accept’,s)

if

src=0

then

do

parse

var

nsn

ns

.

np

nia

.

say

’RSSERVER:

Connected

by’

nia

’on

port’

np

’and

socket’

ns

end

REXX

Sockets

-

Sample

Programs

Chapter

15.

REXX

Sockets

Application

Program

Interface

315

end

/*

Get

nodeid,

userid

and

number

of

lines

to

be

sent

*/

if

keyword=’READ’

.

ts^=s

then

do

parse

value

Socket(’Recv’,ts)

with

len

nid

uid

count

.

if

src=0

.

len>0

.

datatype(count,’W’)

then

do

if

count<0

then

count

=

0

if

count>5000

then

count

=

5000

ra

=

’by’

uid

’at’

nid

say

’RSSERVER:

Request

for’

count

’lines

on

socket’

ts

ra

linecount.ts

=

linecount.ts

+

count

call

addsock(ts)

end

else

do

call

Socket

’Close’,ts

linecount.ts

=

0

call

delsock(ts)

say

’RSSERVER:

Disconnected

socket’

ts

end

end

/*

Get

nodeid,

userid

and

number

of

lines

to

be

sent

*/

if

keyword=’WRITE’

then

do

if

linecount.ts>0

then

do

num

=

random(1,sourceline())

/*

Return

random-selected

*/

msg

=

sourceline(num)

||

’15’x

/*

line

of

this

program

*/

call

Socket

’Send’,ts,msg

if

src=0

then

linecount.ts

=

linecount.ts

-

1

else

linecount.ts

=

0

end

else

do

call

Socket

’Close’,ts

linecount.ts

=

0

call

delsock(ts)

say

’RSSERVER:

Disconnected

socket’

ts

end

end

end

/*

Unknown

event

(should

not

occur)

*/

otherwise

nop

end

end

/*

Terminate

and

exit

*/

call

Socket

’Terminate’

say

’RSSERVER:

Terminated’

exit

0

/*

Procedure

to

add

a

socket

to

the

write

socket

list

*/

addsock:

procedure

expose

wlist

s

=

arg(1)

p

=

wordpos(s,wlist)

if

p=0

then

wlist

=

wlist

s

return

/*

Procedure

to

del

a

socket

from

the

write

socket

list

*/

delsock:

procedure

expose

wlist

s

=

arg(1)

p

=

wordpos(s,wlist)

REXX

Sockets

-

Sample

Programs

316

REXX/VSE

Reference

if

p>0

then

do

templist

=

’’

do

i=1

to

words(wlist)

if

i^=p

then

templist

=

templist

word(wlist,i)

end

wlist

=

templist

end

return

/*

Calling

the

real

SOCKET

function

*/

socket:

procedure

expose

initialized

src

a0

=

arg(1)

a1

=

arg(2)

a2

=

arg(3)

a3

=

arg(4)

a4

=

arg(5)

a5

=

arg(6)

a6

=

arg(7)

a7

=

arg(8)

a8

=

arg(9)

a9

=

arg(10)

parse

value

’SOCKET’(a0,a1,a2,a3,a4,a5,a6,a7,a8,a9)

with

src

res

return

res

/*

Syntax

error

routine

*/

syntax:

call

error

’E’,

rc,

’==>

REXX

Error

No.’

20000+rc

return

/*

Halt

exit

routine

*/

halt:

call

error

’E’,

4,

’==>

REXX

Interrupted’

return

/*

Error

message

and

exit

routine

*/

error:

type

=

arg(1)

retc

=

arg(2)

text

=

arg(3)

ecretc

=

right(retc,3,’0’)

ectype

=

translate(type)

ecfull

=

’RXSSRV’

||

ecretc

||

ectype

say

’===>

Error:’

ecfull

text

if

type^=’E’

then

return

if

initialized

then

do

parse

value

Socket(’SocketSetStatus’)

with

.

status

severreason

if

status^=’Connected’

then

say

’The

status

of

the

socket

set

is’

status

severreason

end

call

Socket

’Terminate’

exit

retc

Sample

Programs

Using

the

TCP/IP

SSL

Support

with

the

REXX/VSE

Socket

Function

Server

Program:

This

procedure

waits

for

a

client

to

connect,

receives

a

portion

of

data,

reverses

the

data

string

and

sends

the

reverse

string

back.

REXX

Sockets

-

Sample

Programs

Chapter

15.

REXX

Sockets

Application

Program

Interface

317

/*

rexx

procedure:

socket

server

procedure

*/

rc

=

0

/*

initialize

socketset

*/

fc

=

SOCKET(’INITIALIZE’,’SERVMIRR’,,,’SSLV3’,’CRYPTO.KEYRING’,86400)

parse

var

fc

socket_rc

.

if

socket_rc

¬=

0

then

do

say

’INITIALIZE

failed

with

return

info

’

fc

exit

99

end

/*

create

a

TCP

socket

for

client

connection

requests

*/

fc

=

SOCKET(’SOCKET’,’AF_INET’,’SOCK_STREAM’,’IPPROTO_TCP’)

parse

var

fc

socket_rc

newsocketid

if

socket_rc

¬=

0

then

do

say

’SOCKET

failed

with

return

info

’

fc

fc

=

SOCKET(’TERMINATE’)

exit

99

end

/*

bind

socket

to

well

known

port

5678

*/

parse

value

Socket(’GetHostId’)

with

rc

IpAddr

Host

=

"AF_INET

5678"

IpAddr

fc

=

SOCKET(’BIND’,newsocketid,Host)

parse

var

fc

bind_rc

rest

if

bind_rc

¬=

0

then

do

say

’BIND

failed

with

return

info

’

fc

fc

=

SOCKET(’CLOSE’,newsocketid)

fc

=

SOCKET(’TERMINATE’)

exit

99

end

/*

create

a

connection

queue

for

1

client

*/

fc

=

SOCKET(’LISTEN’,newsocketid,’10’)

parse

var

fc

listen_rc

rest

if

listen_rc

¬=

0

then

do

say

’LISTEN

failed

with

return

info

’

fc

fc

=

SOCKET(’CLOSE’,newsocketid)

fc

=

SOCKET(’TERMINATE’)

exit

99

end

/*

wait

for

a

client

to

connect

*/

fc

=

SOCKET(’ACCEPT’,newsocketid,’SECURE’,’SAMPLE’)

parse

var

fc

accept_rc

rest

if

accept_rc

¬=

0

then

do

say

’ACCEPT

failed

with

return

info

’

fc

fc

=

SOCKET(’CLOSE’,newsocketid)

fc

=

SOCKET(’TERMINATE’)

exit

99

end

parse

var

rest

accept_socket

accept_socket_address

say

"Client

has

established

connection."

/*

we

don’t

want

any

more

clients,

close

request

socket

*/

fc

=

SOCKET(’CLOSE’,newsocketid)

parse

var

fc

close_rc

rest

if

close_rc

¬=

0

then

do

say

’CLOSE

failed

with

return

info

’

fc

exit

99

end

REXX

Sockets

-

Sample

Programs

318

REXX/VSE

Reference

/*

read

string

from

client,

reverse

it

and

send

it

back

*/

fc

=

SOCKET(’READ’,accept_socket,’10000’)

parse

var

fc

read_rc

num_read_bytes

read_string

if

read_rc

¬=

0

then

do

say

’READ

failed

with

return

info

’

fc

rc

=

99

signal

SHUTDOWN_LABEL

end

say

"String

read

from

client:

’"

read_string

"’"

send_string

=

Reverse(read_string)

fc

=

SOCKET(’SEND’,accept_socket,send_string,’’)

parse

var

fc

send_rc

num_sent_bytes

if

send_rc

¬=

0

then

do

say

’SEND

failed

with

return

info

’

fc

rc

=

99

signal

SHUTDOWN_LABEL

end

if

num_read_bytes

¬=

num_sent_bytes

then

do

say

’number

of

sent

bytes

does

not

match

number

of

read

bytes’

rc

=

99

signal

SHUTDOWN_LABEL

end

/*

close

client

socket

*/

SHUTDOWN_LABEL:

fc

=

SOCKET(’CLOSE’,accept_socket)

parse

var

fc

close_rc

rest

if

close_rc

¬=

0

then

do

say

’CLOSE

failed

with

return

info

’

fc

fc

=

SOCKET(’TERMINATE’)

exit

99

end

fc

=

SOCKET(’TERMINATE’)

exit

rc

REXX

Sockets

-

Sample

Programs

Chapter

15.

REXX

Sockets

Application

Program

Interface

319

Client

Program:

This

procedure

connects

to

a

″mirror

server″,

sends

a

string

to

this

mirror

server

and

receives

the

manipulated

string

again

from

the

mirror

server.

/*

rexx

procedure:

socket

client

procedure

*/

rc

=

0

/*

ask

user

for

string

to

send

to

the

mirror

server

*/

arg

read_string

/*

create

a

TCP

socket

*/

fc

=

SOCKET(’INITIALIZE’,’CLIEMIRR’,,,’SSLV3’,’CRYPTO.KEYRING’)

parse

var

fc

socket_rc

.

if

socket_rc

¬=

0

then

do

say

’INITIALIZE

failed

with

return

info

’

fc

exit

99

end

/*

create

a

TCP

socket

*/

fc

=

SOCKET(’SOCKET’,’AF_INET’,’STREAM’,’TCP’)

parse

var

fc

socket_rc

newsocketid

if

socket_rc

¬=

0

then

do

say

’SOCKET

failed

with

return

info

’

fc

fc

=

SOCKET(’TERMINATE’)

exit

99

end

/*

connect

new

socket

to

the

specified

server

*/

fc

=

SOCKET(’CONNECT’,newsocketid,’AF_INET

5678

9.164.155.71’,

,

’SECURE’,’SAMPLE’)

parse

var

fc

connect_rc

rest

if

connect_rc

¬=

0

then

do

say

’CONNECT

failed

with

return

info

’

fc

rc

=

99

signal

SHUTDOWN_LABEL

end

/*

send

string

to

the

mirror

server

*/

fc

=

SOCKET(’SEND’,newsocketid,read_string,’’)

parse

var

fc

send_rc

num_sent_bytes

if

send_rc

¬=

0

then

do

say

’SEND

failed

with

return

info

’

fc

rc

=

99

signal

SHUTDOWN_LABEL

end

if

length(read_string)

¬=

num_sent_bytes

then

do

say

’number

of

sent

bytes

does

not

match

number

of

read

bytes’

rc

=

99

signal

SHUTDOWN_LABEL

end

/*

receive

answer

from

mirror

server

*/

fc

=

SOCKET(’READ’,newsocketid,’10000’)

parse

var

fc

read_rc

num_read_bytes

received_string

if

read_rc

¬=

0

then

do

say

’READ

failed

with

return

info

’

fc

rc

=

99

signal

SHUTDOWN_LABEL

end

say

"String

’"

read_string

"’

was

mirrored

to:

’"

received_string

"’"

REXX

Sockets

-

Sample

Programs

320

REXX/VSE

Reference

SHUTDOWN_LABEL:

fc

=

SOCKET(’CLOSE’,newsocketid)

parse

var

fc

close_rc

rest

if

close_rc

¬=

0

then

do

say

’CLOSE

failed

with

return

info

’

fc

fc

=

SOCKET(’TERMINATE’)

exit

99

end

fc

=

SOCKET(’TERMINATE’)

exit

rc

Installation

of

REXX/VSE

SOCKET

Function

If

you

want

to

make

use

of

the

REXX/VSE

Socket

Function

provided

with

REXX/VSE,

you

have

to

activate

the

REXX/VSE

SOCKET

Function

Package

ARXEFSO.

This

package

is

not

contained

in

the

default

REXX

environment

initialization

member

ARXPARMS,

but

it

can

be

easily

made

active

using

the

customization

job

ARXPARMS.Z

of

library

PRD1.BASE.

Here

are

the

steps

to

be

done:

1.

Copy

ARXPARMS.Z

from

PRD1.BASE

into

your

primary

ICCF

library

with

LIBRP

PRD1.BASE

ARXPARMS.Z

ARXPARMS

[(REPLACE]

You

may

also

use

DTRIINIT

to

move

the

member

into

the

RDR

queue

and

then

move

the

RDR

queue

entry

into

your

primary

library.

In

this

case

the

masked

strings

of

POWER

JECL

and

VSE

JCL

are

automatically

replaced

and

the

next

step

can

be

omitted.

2.

Edit

member

ARXPARMS

in

your

primary

library:

Remove

first

line

and

the

two

lines

at

the

end.

Replace

$$$$

by

*

$$,$$/*

by

/*,

and

$$/&

by

/&.

3.

Choose

the

sublibrary

for

this

new

ARXPARMS.PHASE

and

insert

it

into

the

job.

Default

is

PRD2.CONFIG,

but

you

can

use

another

sublibrary

4.

Increase

variable

PACKTB_SYSTEM_USED

by

1

as

described

in

a

comment

of

this

member.

5.

Run

job

ARXPARMS

(option

7

within

your

primary

library

dialog).

6.

To

run

a

REXX

SOCKET

program

make

sure

that

the

chosen

sublibrary

for

ARXPARMS.PHASE

precedes

PRD1.BASE

in

the

active

PHASE

chain.

In

this

case

system

function

package

ARXEFSO,

i.e.

REXX/VSE

function

SOCKET,

is

available

to

your

REXX

programs.

For

more

information,

see

“Changing

the

Default

Values

for

Initializing

an

Environment”

on

page

416.

Notes:

1.

If

more

than

one

implementation

of

the

REXX

SOCKET

function

is

installed

on

your

system,

the

following

search

order

applies:

v

search

in

function

packages

before

search

in

sublibraries

v

search

in

user

packages

before

search

in

local

packages

v

search

in

local

packages

before

search

in

system

packages

v

If

the

same

function

is

defined

in

more

than

one

function

package

of

the

same

level,

the

latest

mentioned

version

in

ARXPARMS

is

taken.

Make

sure

that

ARXPARMS

and

your

LIBDEF

phase

chain

are

setup

appropriately.

Otherwise

your

desired

SOCKET

implementation

is

not

executed.

2.

To

support

coexistence

and

simultaneous

usage

of

this

SOCKET

API

with

a

different

SOCKET

function

that

might

be

established

in

your

system,

an

extra

function

package

ARXEFSN

is

provided.

The

only

difference

to

ARXEFSO

is

the

name

of

the

function.

SOCKEN

is

used

instead

of

SOCKET.

Thus,

you

can

invoke

within

one

REXX

program

the

SOCKET

functions

described

here

via

string

SOCKEN,

for

example:

ipaddress

=

Socken

(’GETHOSTID’)

REXX

Sockets

-

Sample

Programs

Chapter

15.

REXX

Sockets

Application

Program

Interface

321

and

another

implementation

of

a

SOCKET

function

available

as

an

extra

function

package

or

an

extra

member

SOCKET.PHASE

via

string

SOCKET.

The

TCP/IP

PTF

UQ38659

for

instance

provides

an

extra

SOCKET.PHASE

providing

a

proprietary

Socket

Applicaton

Programming

Interface

for

the

VSE/ESA

platform.

If

you

want

to

make

use

of

name

SOCKEN,

change

ARXEFSO

into

ARXEFSN

within

ARXPARMS.

REXX

Sockets

-

Sample

Programs

322

REXX/VSE

Reference

Chapter

16.

Debug

Aids

In

addition

to

the

TRACE

instruction,

described

on

page

56,

there

are

the

following

debug

aids:

v

The

interactive

debug

facility

v

The

immediate

commands

TS

(Trace

Start)

and

TE

(Trace

End).

A

REXX

program

must

be

running

to

use

the

immediate

commands.

HI

halts

interpretation

of

a

REXX

program.

You

specify

it

in

a

call

to

ARXIC

from

a

non-REXX

program.

ARXIC

is

the

trace

and

execution

control

routine.

You

can

use

TE

and

TS

in

a

REXX

program

or

call

them

through

the

ARXIC

programming

interface.

(See

“Immediate

Commands”

on

page

143

for

more

information

about

the

immediate

commands.)

v

The

trace

and

execution

control

routine

ARXIC.

You

can

call

ARXIC

from

a

non-REXX

program

to

use

the

following

immediate

commands:

HI

—

Halt

Interpretation

TS

—

Trace

Start

TE

—

Trace

End

TQ

—

Trace

Query

HT

—

Halt

Typing

RT

—

Resume

Typing.

See

“Trace

and

Execution

Control

Routine

–

ARXIC”

on

page

365

for

more

information.

Interactive

Debugging

of

Programs

The

debug

facility

permits

interactively

controlled

execution

of

a

REXX

program.

The

operator’s

console

can

be

used

for

input

and

output

during

interactive

debug.

Otherwise,

the

current

input

and

output

streams

are

used.

ASSGN(STDIN)

returns

the

name

of

the

current

input

and

ASSGN(STDOUT)

returns

the

name

of

the

current

output.

When

interactive

debug

is

first

entered,

a

message

indicating

this

is

written.

Changing

the

TRACE

action

to

one

with

a

prefix

?

(for

example,

TRACE

?A

or

the

TRACE

built-in

function)

turns

on

interactive

debug

and

writes

a

message

indicating

it

is

on.

The

language

processor

ignores

further

TRACE

instructions

in

the

program.

If

running

from

the

operator’s

console,

interactive

debug

pauses

after

nearly

all

instructions

that

are

traced

at

the

terminal—see

the

following

for

exceptions.

If

using

the

currently

defined

input

and

output

streams,

interactive

debug

reads

the

next

line

from

the

input

stream

at

each

pause

point.

Either

way,

the

user

can

provide

one

of

the

following

three

inputs:

1.

A

null

line

(with

no

characters,

including

no

blanks).

This

causes

the

language

processor

to

continue

execution

until

the

next

pause

for

debug

input.

Repeated

input

of

a

null

line,

therefore,

steps

from

pause

point

to

pause

point.

For

TRACE

?A,

for

example,

this

is

equivalent

to

single-stepping

through

the

program.

2.

An

equal

sign

(=),

with

no

blanks.

This

causes

the

language

processor

to

re-execute

the

clause

last

traced.

Once

the

clause

has

been

re-executed,

the

language

processor

pauses

again.

3.

Anything

else

entered

is

treated

as

a

line

of

one

or

more

clauses,

and

processed

immediately

(that

is,

as

though

DO;

line

;

END;

had

been

inserted

in

the

program).

The

same

rules

apply

as

in

the

INTERPRET

instruction—for

example,

DO-END

constructs

must

be

complete.

(The

instruction

you

provide

could

be

an

assignment.

For

example,

if

an

IF

clause

is

about

to

take

the

wrong

branch,

you

could

change

the

value

of

the

variable(s)

on

which

it

depends,

and

then

re-execute

it.)

If

an

instruction

has

a

syntax

error

in

it,

a

standard

message

is

produced.

From

the

operator’s

console,

you

are

prompted

for

input

again;

otherwise,

the

language

processor

reads

the

next

line

from

the

current

input.

Similarly,

all

the

other

SIGNAL

conditions

are

disabled

while

the

string

is

processed

to

prevent

unintentional

transfer

of

control.

©

Copyright

IBM

Corp.

1988,

2004

323

During

execution

of

the

string,

no

tracing

takes

place,

except

that

nonzero

return

codes

from

host

commands

are

sent

to

the

output

stream.

Host

Commands

are

always

executed

(that

is,

they

are

not

affected

by

the

prefix

!

on

TRACE

instructions),

but

the

variable

RC

is

not

set.

Once

the

string

has

been

processed,

the

language

processor

pauses

again

for

further

debug

input,

unless

the

last

input

was

a

TRACE

instruction.

In

this

latter

case,

the

language

processor

immediately

alters

the

tracing

action

(if

necessary)

and

then

continues

executing

until

the

next

pause

point

(if

any).

Therefore,

to

alter

the

tracing

action

(from

All

to

Results,

for

example)

and

then

re-execute

the

instruction,

you

must

use

the

built-in

function

TRACE

(see

page

88).

For

example,

CALL

TRACE

I

changes

the

trace

action

to

“I”

and

allows

re-execution

of

the

statement

after

which

the

pause

was

made.

Interactive

debug

is

turned

off,

when

it

is

in

effect,

if

a

TRACE

instruction

includes

a

prefix,

or

if

the

input

is

TRACE

O

or

TRACE

with

no

options.

With

the

numeric

form

of

the

TRACE

instruction

(TRACE

n)

sections

of

the

program

run

without

pauses

for

debug

input.

If

n

is

a

positive

number,

interactive

debug

skips

the

next

n

pauses.

If

n

is

a

negative

number,

this

inhibits

tracing

for

n

clauses

that

would

otherwise

be

traced.

The

trace

action

specified

on

a

TRACE

instruction

is

saved

and

restored

across

subroutine

calls.

This

means

you

can

selectively

trace

the

main

routine

or

a

subroutine.

Suppose

TRACE

?R

(traces

Results)

is

in

effect

and

you

enter

a

subroutine

in

which

you

have

no

interest.

The

input

TRACE

O

would

turn

tracing

off.

No

more

instructions

in

the

subroutine

would

be

traced,

but,

on

return

to

the

main

program,

tracing

would

be

restored.

If

you

are

interested

only

in

a

subroutine,

you

can

put

TRACE

?R

at

its

start.

After

tracing

the

subroutine,

the

language

processor

restores

the

original

status

of

tracing.

Therefore

(if

tracing

was

off

on

entry

to

the

subroutine),

tracing

(and

interactive

debug)

are

off

until

the

next

entry

to

the

subroutine.

You

can

switch

tracing

on

or

off

asynchronously,

(that

is,

while

a

program

is

running)

using

the

TS

and

TE

immediate

commands.

See

page

325

for

the

description

of

these

facilities.

The

ability

to

execute

any

instructions

in

interactive

debug

gives

you

considerable

control

over

execution.

Here

are

some

examples

of

instructions

you

can

enter

in

interactive

debug.

Say

expr

/*

Produces

the

result

of

evaluating

the

*/

/*

expression.

*/

name=expr

/*

Changes

the

value

of

a

variable.

*/

Trace

O

/*

(Or

Trace

with

no

options)

turns

off

*/

/*

interactive

debug

and

all

tracing.

*/

Trace

?A

/*

Turns

off

interactive

debug

but

continues

*/

/*

tracing

all

clauses.

*/

Trace

L

/*

Makes

the

language

processor

pause

at

labels

*/

/*

only.

This

is

similar

to

the

traditional

*/

/*

"breakpoint"

function,

except

that

you

*/

/*

do

not

have

to

know

the

exact

name

and

*/

/*

spelling

of

the

labels

in

the

program.

*/

exit

/*

Ends

execution

of

the

program.

*/

Do

i=1

to

10;

say

stem.i;

end

/*

Produces

10

elements

of

*/

/*

array

stem.

*/

Exceptions:

Some

clauses

cannot

safely

be

re-executed,

and,

therefore,

the

language

processor

does

not

pause

after

them,

even

if

they

are

traced.

These

are:

v

Any

repetitive

DO

clause,

on

the

second

or

subsequent

time

around

the

loop

v

All

END

clauses

(not

a

useful

place

to

pause

in

any

case)

v

All

THEN,

ELSE,

OTHERWISE,

or

null

clauses

v

All

RETURN

and

EXIT

clauses

Debug

Aids

324

REXX/VSE

Reference

v

All

SIGNAL

and

CALL

clauses

(the

language

processor

pauses

after

tracing

the

target

label)

v

Any

clause

that

raises

a

condition

that

CALL

ON

or

SIGNAL

ON

traps

(the

pause

takes

place

after

the

target

label

for

the

CALL

or

SIGNAL

has

been

traced)

v

Any

clause

that

causes

a

syntax

error.

(SIGNAL

ON

SYNTAX

can

trap

these,

but

they

cannot

be

re-executed.)

Interrupting

Program

Processing

HI

(Halt

Interpretation)

interrupts

the

language

processor

during

processing.

To

use

HI,

you

include

HI

in

a

call

to

ARXIC

from

a

non-REXX

program.

HI

halts

the

interpretation

of

all

REXX

programs

that

are

currently

running

as

though

a

halt

condition

had

been

raised.

This

is

especially

useful

when

a

program

gets

into

a

loop

and

you

want

to

end

processing.

When

an

HI

interrupt

halts

the

interpretation

of

a

program,

the

data

stack

is

cleared.

You

can

trap

an

HI

interrupt

by

enabling

the

halt

condition

using

either

the

CALL

ON

or

the

SIGNAL

ON

instruction

(see

Chapter

7,

“Conditions

and

Condition

Traps”).

The

HI

immediate

command

is

processed

as

soon

as

control

returns

to

the

program,

but

before

the

next

statement

in

the

program

is

processed.

If

the

program

is

processing

an

external

function

or

subroutine

written

in

a

programming

language

other

than

REXX

or

the

program

is

processing

a

host

command,

when

you

halt

program

interpretation

using

HI,

the

halt

is

not

processed

until

the

function,

subroutine,

or

command

returns

to

the

calling

program.

That

is,

the

function,

subroutine,

or

command

completes

processing

before

program

processing

is

interrupted.

HI

cannot

halt

the

program

in

all

cases,

such

as

the

following:

v

A

program

calls

an

external

function

or

subroutine

not

written

in

REXX

and

the

function

or

subroutine

cannot

return

to

the

calling

program

(for

example,

it

goes

into

a

loop).

v

Processing

does

not

return

to

the

program

from

a

host

command.

In

these

cases,

HI

cannot

halt

the

program

because

it

is

not

processed

until

the

function,

subroutine,

or

command

returns

to

the

program.

Starting

and

Stopping

Tracing

The

following

describes

how

to

start

and

stop

tracing

a

program.

You

can

start

tracing

REXX

programs

in

several

ways:

v

You

can

use

the

TRACE

instruction

to

start

tracing.

For

more

information,

see

“TRACE”

on

page

56.

v

You

can

use

the

TS

(Trace

Start)

immediate

command

in

a

REXX

program

to

start

tracing.

TS

puts

the

REXX

program

into

interactive

debug.

You

can

then

execute

REXX

instructions,

for

example,

to

SAY

variables

or

to

EXIT.

Interactive

debug

is

helpful

if

a

program

is

looping.

You

can

inspect

the

program

and

step

through

the

execution

before

deciding

whether

or

not

to

continue

execution.

The

trace

output

is

written

to

the

current

output

stream.

ASSGN(STDOUT)

returns

the

name

of

the

current

output

stream.

You

can

use

TS

in

a

REXX

program

or

include

it

in

a

call

to

ARXIC

from

a

non-REXX

program.

You

can

end

tracing

in

several

ways:

v

You

can

use

the

TRACE

OFF

instruction

to

end

tracing.

For

more

information,

see

“TRACE”

on

page

56.

v

You

can

use

TE

to

end

tracing.

Use

TE

in

a

REXX

program

or

include

it

in

a

call

to

ARXIC

from

a

non-REXX

program.

See

Chapter

10,

“REXX/VSE

Commands”

for

more

information

about

the

HI,

TS,

and

TE

immediate

commands.

Debug

Aids

Chapter

16.

Debug

Aids

325

For

more

information

about

the

trace

and

execution

control

routine

ARXIC,

see

“Trace

and

Execution

Control

Routine

–

ARXIC”

on

page

365.

Debug

Aids

326

REXX/VSE

Reference

Chapter

17.

Programming

Services

Programming

services

for

REXX

processing

let

you

interface

with

REXX

and

the

language

processor.

Whenever

you

call

a

REXX/VSE

routine,

there

are

general

conventions

relating

to

registers

that

are

passed

on

the

call,

parameter

lists,

and

return

codes

the

routines

return.

See

“General

Considerations

for

Calling

REXX/VSE

Routines”

on

page

328

for

more

information.

This

chapter

summarizes

the

REXX

programming

services

and

then

describes

individual

topics

in

detail.

Note:

No

applications

or

VSE

services

that

call

REXX

should

do

so

in

an

authorized

state.

Calling

REXX:

You

can

call

REXX

directly

through

the

JCL

EXEC

command.

You

specify

REXX=program_name

on

the

JCL

EXEC

statement.

(See

“Calling

REXX

Directly

with

the

JCL

EXEC

Command”

on

page

333.)

ARXEXEC

and

ARXJCL

are

routines

you

can

use

to

run

a

REXX

program.

They

are

programming

interfaces

to

the

language

processor.

(You

can

use

ARXJCL

to

run

a

REXX

program

by

specifying

ARXJCL

on

the

JCL

EXEC

statement;

see

page

336

for

details.)

You

can

call

ARXEXEC

or

ARXJCL

to

run

a

REXX

program

from

a

non-REXX

program.

(See

“The

ARXEXEC

Routine”

on

page

338

or

“The

ARXJCL

Routine”

on

page

335.)

External

Functions

and

Subroutines

and

Function

Packages:

You

can

extend

the

capabilities

of

the

REXX

programming

language

by

writing

your

own

external

functions

and

subroutines

that

you

can

then

use

in

REXX

programs.

You

can

write

an

external

function

or

subroutine

in

assembler

or

in

REXX

or

another

high-level

programming

language

and

store

them

in

a

sublibrary.

You

can

also

group

frequently

used

external

functions

and

subroutines

into

a

function

package.

This

provides

quick

access

to

the

packaged

functions

and

subroutines.

When

a

REXX

program

calls

an

external

function

or

subroutine,

the

function

packages

are

searched

before

the

active

PROC

or

PHASE

chain.

(See

page

63

for

a

description

of

the

search

order.)

If

you

write

external

functions

and

subroutines,

the

language

you

use

must

support

the

system-dependent

interfaces

that

the

language

processor

uses

to

call

the

function

or

subroutine.

To

include

an

external

function

or

subroutine

in

a

function

package,

you

must

link-edit

the

function

or

subroutine

into

a

phase.

See

“External

Functions

and

Subroutines

and

Function

Packages”

on

page

348

for

a

description

of

the

system-dependent

interfaces

for

writing

external

functions

and

subroutines

and

how

to

create

function

packages.

Variable

Pool

Access:

The

ARXEXCOM

variable

pool

access

interface

lets

commands

and

programs

access

and

manipulate

REXX

variables.

You

can

use

ARXEXCOM

to

inspect,

set,

or

drop

variables.

See

“Variable

Pool

–

ARXEXCOM”

on

page

356

for

details

about

ARXEXCOM.

Maintain

Host

Command

Environments:

When

a

REXX

program

runs,

there

is

at

least

one

host

command

environment

available

for

processing

host

commands.

When

a

program

begins

running,

there

is

an

initial

environment.

You

can

change

the

host

command

environment

with

the

ADDRESS

instruction

(see

page

28).

When

the

language

processor

processes

an

instruction

that

is

a

host

command,

it

first

evaluates

the

expression

and

then

passes

the

command

to

the

active

host

command

environment

for

processing.

A

specific

routine

defined

for

the

host

command

environment

handles

command

processing.

See

“Commands

to

External

Environments”

on

page

22

for

information

about

host

command

environments.

A

host

command

environment

table

defines:

v

the

valid

host

command

environments

v

the

routines

that

are

called

to

handle

command

processing

within

each

environment

©

Copyright

IBM

Corp.

1988,

2004

327

v

the

initial

environment

that

is

available

to

a

REXX

program

when

the

program

begins

running.

You

can

customize

REXX

processing

to

define

your

own

host

command

environment

and

provide

a

routine

that

handles

command

processing

for

that

environment

(see

page

385).

The

ARXSUBCM

routine

lets

you

access

the

entries

in

the

host

command

environment

table.

You

can

use

ARXSUBCM

to

add,

change,

or

delete

entries

in

the

table

and

query

the

values

for

a

particular

host

command

environment

entry.

See

362

for

details

about

ARXSUBCM.

Trace

and

Execution

Control:

ARXIC

is

the

trace

and

execution

control

routine.

This

lets

you

use

the

HI,

HT,

RT,

TQ,

TS,

and

TE

commands

to

control

the

processing

of

REXX

programs.

For

example,

you

can

call

ARXIC

from

a

program

written

in

assembler

or

a

high-level

language

to

control

the

tracing

and

execution

of

programs.

See

page

365

for

details

about

ARXIC.

Get

Result

Routine:

ARXRLT

is

the

get

result

routine.

This

lets

you

obtain

the

result

from

a

REXX

program

that

was

called

using

ARXEXEC.

You

can

also

use

ARXRLT

if

you

write

external

functions

and

subroutines

in

a

programming

language

other

than

REXX.

ARXRLT

lets

your

function

or

subroutine

code

get

a

large

enough

area

of

storage

(EVALBLOK)

to

return

the

result

to

the

calling

program.

ARXRLT

also

lets

a

compiler

runtime

processor

obtain

an

evaluation

block

to

handle

the

result

from

a

compiled

REXX

program.

See

page

368

for

details

about

ARXRLT.

OUTTRAP

Interface

Routine:

ARXOUT

is

the

OUTTRAP

interface

routine.

This

lets

programs

write

a

character

string

to

the

REXX

stem

specified

by

the

OUTTRAP

external

function.

Only

programs

which

have

been

invoked

by

the

LINK

or

LINKPGM

host

command

environment

can

use

this

interface.

See

page

382

for

details

about

ARXOUT.

SAY

Instruction

Routine:

ARXSAY

is

the

SAY

instruction

routine.

ARXSAY

lets

you

write

a

character

string

to

the

same

output

stream

as

the

REXX

SAY

keyword

instruction.

See

page

372

for

details

about

ARXSAY.

Halt

Condition

Routine:

ARXHLT

is

the

halt

condition

routine.

ARXHLT

lets

you

query

or

reset

the

halt

condition.

See

page

374

for

details

about

ARXHLT.

Text

Retrieval

Routine:

ARXTXT

is

the

text

retrieval

routine.

ARXTXT

lets

you

retrieve

the

same

text

that

the

language

processor

uses

for

the

ERRORTEXT

built-in

function

and

for

certain

options

of

the

DATE

built-in

function.

For

example,

you

can

use

ARXTXT

in

a

program

to

retrieve

the

name

of

a

month

or

the

text

of

a

syntax

error

message.

See

page

376

for

details

about

ARXTXT.

LINESIZE

Function

Routine:

ARXLIN

is

the

LINESIZE

function

routine.

ARXLIN

lets

you

retrieve

the

same

value

that

the

LINESIZE

built-in

function

returns.

See

page

380

for

details

about

ARXLIN.

General

Considerations

for

Calling

REXX/VSE

Routines

Each

description

of

a

REXX/VSE

routine

explains

how

to

use

the

routine,

including

entry

and

return

specifications

and

parameter

lists.

The

following

topics

provide

general

information

about

calling

REXX/VSE

routines.

All

REXX/VSE

routines,

except

for

ARXINIT,

the

initialization

routine,

need

a

language

processor

environment.

A

language

processor

environment

is

the

environment

in

which

REXX

operates,

that

is,

in

which

the

language

processor

processes

a

REXX

program.

REXX

programs

and

routines

run

in

a

language

processor

environment.

REXX/VSE

automatically

initializes

a

language

processor

environment

when

one

is

needed.

When

you

use

the

JCL

EXEC

command

or

call

ARXEXEC

or

ARXJCL

to

run

a

program,

REXX/VSE

automatically

initializes

an

environment

if

an

environment

does

not

already

exist.

The

program

then

runs

in

that

environment.

The

program

can

then

call

a

REXX/VSE

routine,

such

as

ARXIC,

and

the

routine

runs

in

the

Programming

Services

328

REXX/VSE

Reference

same

environment

in

which

the

program

is

running.

See

Chapter

19,

“Language

Processor

Environments,”

on

page

391

for

details

about

environments,

when

they

are

initialized,

and

the

different

characteristics

that

make

up

an

environment.

You

can

explicitly

call

the

initialization

routine,

ARXINIT,

to

initialize

language

processor

environments.

Calling

ARXINIT

lets

you

customize

the

environment

and

how

programs

and

services

are

processed

and

used.

Using

ARXINIT,

you

can

create

several

different

environments

in

a

partition.

See

Chapter

18,

“Customizing

Services,”

on

page

385

for

details

about

customization.

If

you

explicitly

call

ARXINIT

to

initialize

environments,

whenever

you

call

a

REXX/VSE

routine,

you

can

specify

the

language

processor

environment

in

which

you

want

the

routine

to

run.

During

initialization,

ARXINIT

creates

several

control

blocks

that

contain

information

about

the

environment.

The

main

control

block

is

the

environment

block,

which

represents

the

language

processor

environment.

If

you

use

ARXINIT

and

initialize

several

environments

and

then

want

to

call

a

REXX/VSE

routine

to

run

in

a

specific

environment,

you

can

pass

the

address

of

the

environment

block

for

the

environment

on

the

call.

When

you

call

the

REXX/VSE

routine,

you

can

pass

the

address

of

the

environment

block

either

in

register

0

or

in

the

environment

block

address

parameter

in

the

parameter

list

if

the

routine

supports

the

parameter.

By

using

customizing

services

and

the

environment

block,

you

can

customize

REXX

processing

and

also

control

the

environment

in

which

you

want

REXX/VSE

routines

to

run.

For

more

information,

see

“Specifying

the

Address

of

the

Environment

Block”

on

page

331.

The

following

describes

some

general

conventions

for

calling

REXX/VSE

routines:

v

The

REXX

vector

of

external

entry

points

is

a

control

block

that

contains

the

addresses

of

the

REXX/VSE

routines

and

the

REXX/VSE-supplied

and

user-supplied

replaceable

routines.

The

vector

lets

you

easily

access

the

address

of

a

specific

routine

for

calling

the

routine.

See

“Control

Blocks

Created

for

a

Language

Processor

Environment”

on

page

417

for

more

information

about

the

vector.

v

All

calls

must

be

in

31

bit

addressing

mode.

v

All

data

areas

may

be

above

16

megabytes

in

virtual

storage.

v

On

entry

to

an

external

function

or

subroutine,

register

0

contains

the

address

of

the

environment

block.

This

address

should

be

passed

to

any

REXX/VSE

programming

service

called

from

the

external

function

or

subroutine.

Passing

the

address

of

the

environment

block

is

particularly

important

if

the

environment

is

reentrant

because

programming

services

cannot

automatically

locate

a

reentrant

environment.

For

more

information

on

reentrant

environments,

see

“Using

the

Environment

Block

for

Reentrant

Environments”

on

page

332.

v

For

most

REXX/VSE

routines,

you

pass

a

parameter

list

on

the

call.

Register

1

contains

the

address

of

the

parameter

list,

which

consists

of

a

list

of

addresses.

Each

address

in

the

parameter

list

points

to

a

parameter.

The

high-order

bit

of

the

last

parameter

address

must

be

a

binary

1.

If

you

do

not

use

a

parameter,

you

must

pass

either

binary

zeros

(for

numeric

data

or

addresses)

or

blanks

(for

character

data).

For

more

information,

see

“Parameter

Lists

for

REXX/VSE

Routines.”

v

On

calls

to

the

REXX/VSE

routines,

you

can

pass

the

address

of

an

environment

block

to

specify

the

particular

language

processor

environment

in

which

you

want

the

routine

to

run.

For

more

information,

see

“Specifying

the

Address

of

the

Environment

Block”

on

page

331.

v

Specific

return

codes

are

defined

for

each

REXX/VSE

routine.

Some

common

return

codes

include

0,

20,

28,

and

32.

For

more

information,

see

“Return

Codes

for

REXX/VSE

Routines”

on

page

332.

Parameter

Lists

for

REXX/VSE

Routines

Most

of

the

REXX/VSE

routines

have

parameter

lists.

The

parameters

provide

information

to

the

routine

about

what

type

of

processing

you

want

to

perform.

They

also

provide

a

way

for

the

routine

to

return

information

to

the

program

that

called

it.

All

the

parameter

lists

are

passed

to

the

routines

in

the

same

manner.

Figure

14

on

page

330

shows

the

format

of

the

parameter

lists

for

the

REXX/VSE

routines.

A

description

of

the

parameter

list

follows

the

figure.

Programming

Services

Chapter

17.

Programming

Services

329

Register

1

contains

an

address

that

points

to

a

parameter

list.

The

parameter

list

consists

of

a

list

of

addresses.

Each

address

in

the

parameter

list

points

to

a

parameter.

This

is

illustrated

on

the

left

side

of

the

diagram

in

Figure

14.

The

end

of

the

parameter

list

(the

list

of

addresses)

is

indicated

by

the

high-order

bit

of

the

last

address

being

set

to

a

binary

1.

The

parameters

themselves

are

shown

on

the

right

side

of

the

diagram

in

Figure

14.

The

parameter

value

can

be

the

data

itself

or

it

can

be

an

address

that

points

to

the

data.

All

of

the

parameters

for

a

specific

routine

may

not

be

required.

That

is,

some

parameters

may

be

optional.

Because

of

this,

the

parameter

lists

are

of

variable

length.

Indicate

the

end

of

the

parameter

list

by

setting

on

the

high-order

bit

in

the

last

address.

If

there

is

an

optional

parameter

you

do

not

want

to

use

and

there

are

parameters

after

it

you

want

to

use,

you

can

specify

the

address

of

the

optional

parameter

in

the

parameter

list,

but

set

the

optional

parameter

itself

to

either

binary

zeros

(for

numeric

data

or

addresses)

or

to

blanks

(for

character

data).

Otherwise,

you

can

simply

end

the

parameter

list

at

the

parameter

before

the

optional

parameter

by

setting

the

high-order

bit

on

in

the

preceding

parameter’s

address.

For

example,

suppose

a

routine

has

7

parameters

and

parameters

6

and

7

are

optional.

You

do

not

want

to

use

parameter

6,

but

you

want

to

use

parameter

7.

In

the

parameter

list,

specify

the

address

of

parameter

6

and

set

the

high-order

bit

on

in

the

address

of

parameter

7.

For

parameter

6,

specify

0

or

blanks,

depending

on

whether

the

data

is

numeric

or

character

data.

Suppose

the

routine

has

7

parameters,

parameters

6

and

7

are

optional,

and

you

do

not

want

to

use

these

optional

parameters.

You

can

end

the

parameter

list

at

parameter

5

by

setting

on

the

high-order

bit

of

the

address

for

parameter

5.

The

individual

descriptions

of

each

routine

in

this

book

describe

the

parameters,

the

values

you

can

specify

for

each

parameter,

and

whether

a

parameter

is

optional.

Figure

14.

Overview

of

Parameter

Lists

for

REXX/VSE

Routines

Programming

Services

330

REXX/VSE

Reference

Specifying

the

Address

of

the

Environment

Block

You

can

explicitly

call

the

initialization

routine,

ARXINIT,

to

initialize

a

language

processor

environment

in

a

partition.

If

you

explicitly

call

ARXINIT

to

initialize

an

environment,

you

can

optionally

specify

this

environment

when

you

call

any

of

the

REXX/VSE

routines.

The

environment

block

represents

the

environment

in

which

you

want

the

routine

to

run.

Generally,

you

can

specify

the

address

of

the

environment

block:

v

Using

the

environment

block

address

parameter

in

the

routine’s

parameter

list

v

In

register

0.

For

information

about

specifying

the

environment

block

address

in

the

parameter

list,

see

“Using

the

Environment

Block

Address

Parameter.”

If

you

do

not

specify

an

address

in

the

environment

block

address

parameter,

REXX/VSE

checks

register

0

for

the

address

of

an

environment

block.

If

register

0

contains

the

address

of

a

valid

environment

block,

the

routine

runs

in

that

environment

block.

If

the

address

is

not

valid,

the

routine

locates

the

current

non-reentrant

environment

and

runs

in

that

environment.

If

register

0

contains

0,

the

routine

searches

for

the

last

non-reentrant

environment

created,

without

checking

whether

register

0

contains

a

valid

environment

block

address.

If

you

use

ARXINIT

to

initialize

reentrant

environments,

see

“Using

the

Environment

Block

for

Reentrant

Environments”

on

page

332

for

information

about

running

in

reentrant

environments.

Using

the

Environment

Block

Address

Parameter

The

parameter

lists

of

most

of

the

REXX/VSE

routines

contain

the

environment

block

address

parameter.

This

parameter

lets

you

specify

the

address

of

the

environment

block

that

represents

the

environment

in

which

you

want

the

routine

to

run.

If

you

use

the

environment

block

address

parameter,

the

routine

uses

the

address

you

specify

and

ignores

the

contents

of

register

0.

Also,

the

routine

does

not

check

the

address

you

specify.

Therefore,

you

must

ensure

that

you

pass

a

correct

environment

block

address

or

unpredictable

results

may

occur.

For

example,

if

you

specify

an

incorrect

address,

the

routine

may

return

with

a

return

code

of

28,

which

indicates

a

language

processor

environment

could

not

be

located.

In

other

cases,

processing

could

abend.

You

might

specify

the

address

of

an

existing

environment

that

is

not

the

one

you

want

to

use.

In

this

case,

the

routine

may

run

successfully,

but

the

results

will

not

be

what

you

expected.

For

example,

suppose

you

have

four

environments

initialized

in

a

partition;

environments

1,

2,

3,

and

4.

You

want

to

call

the

trace

and

execution

control

routine,

ARXIC,

to

halt

the

processing

of

programs

in

environment

2.

However,

when

you

call

ARXIC,

you

specify

the

address

of

the

environment

block

for

environment

4,

instead

of

environment

2.

ARXIC

completes

successfully,

but

the

processing

of

programs

is

halted

in

environment

4,

rather

than

in

environment

2.

This

is

a

subtle

problem

that

may

be

difficult

to

identify.

Therefore,

if

you

use

the

environment

block

address

parameter,

ensure

the

address

you

specify

is

correct.

If

you

do

not

want

to

pass

an

address

in

the

environment

block

address

parameter,

specify

a

value

of

0.

The

parameter

lists

for

the

REXX/VSE

routines

are

of

variable

length.

That

is,

register

1

points

to

a

list

of

addresses,

and

each

address

in

the

list

points

to

a

parameter.

The

end

of

the

parameter

list

is

indicated

by

setting

on

the

high-order

bit

in

the

last

address

in

the

parameter

list.

If

you

do

not

want

to

use

the

environment

block

address

parameter

or

any

parameters

after

it,

you

can

end

the

parameter

list

at

a

preceding

parameter.

For

more

information

about

parameter

lists,

see

“Parameter

Lists

for

REXX/VSE

Routines”

on

page

329.

If

you

are

using

the

environment

block

address

parameter

and

you

are

having

problems

debugging

an

application,

you

may

want

to

set

the

parameter

to

0

for

debugging

purposes.

This

lets

you

determine

whether

any

problems

are

a

result

of

specifying

this

parameter

incorrectly.

Programming

Services

Chapter

17.

Programming

Services

331

Using

the

Environment

Block

for

Reentrant

Environments

If

you

want

to

use

a

reentrant

environment,

you

must

explicitly

call

the

initialization

routine,

ARXINIT,

to

initialize

the

environment.

REXX/VSE

automatically

initializes

non-reentrant

environments

only.

When

you

call

ARXINIT

to

initialize

a

reentrant

environment,

you

must

set

the

RENTRANT

flag

on

(see

page

400).

An

application

program

would

use

a

reentrant

environment

when

it

wants

to

isolate

itself

and

its

characteristics

from

other

application

programs.

For

example,

an

application

program

may

provide

a

storage

management

routine

that

it

does

not

want

any

other

program

to

use.

To

ensure

this,

you

would

use

ARXINIT

to

initialize

the

environment

and

set

the

RENTRANT

flag

on.

When

the

RENTRANT

flag

is

on,

the

environment

is

not

added

to

the

existing

chain

of

environments.

Instead,

the

environment

is

an

independent

entry

isolated

from

all

other

environments.

REXX/VSE

routines

do

not

locate

reentrant

environments.

Additionally,

if

you

use

ARXINIT

to

find

an

environment,

ARXINIT

finds

non-reentrant

environments

only,

not

reentrant

environments.

You

can

use

a

reentrant

environment

that

you

have

initialized

only

by

explicitly

passing

the

address

of

the

environment

block

for

the

reentrant

environment

when

you

call

a

REXX/VSE

programming

routine.

If

you

want

to

call

a

REXX/VSE

routine

to

run

in

a

reentrant

environment,

you

must

pass

the

address

of

the

environment

block

for

the

reentrant

environment

on

the

call

to

the

routine.

You

can

pass

the

address

either

in

the

parameter

list

(in

the

environment

block

address

parameter)

or

in

register

0.

If

you

do

not

explicitly

pass

an

environment

block

address,

the

routine

locates

the

current

non-reentrant

environment

and

runs

in

that

environment.

Each

task

that

is

using

REXX

must

have

its

own

language

processor

environment.

Two

tasks

cannot

simultaneously

use

the

same

language

processor

environment

for

REXX

processing.

Return

Codes

for

REXX/VSE

Routines

REXX

routines

return

a

return

code

in

register

15

that

indicates

whether

processing

was

successful.

The

parameter

lists

for

most

of

the

routines

also

have

a

return

code

parameter

that

lets

you

specify

a

fullword

field

in

which

to

receive

the

return

code.

The

return

code

parameter

lets

high-level

languages

obtain

return

code

information

more

easily.

If

you

provide

this

parameter,

the

routine

returns

the

return

code

in

both

the

return

code

parameter

and

in

register

15.

If

the

parameter

list

you

pass

to

the

routine

is

incorrect,

the

return

code

is

returned

in

register

15

only.

Each

REXX/VSE

routine

has

specific

return

codes.

The

individual

topics

in

this

book

describe

the

return

codes

for

each

routine.

The

common

return

codes

that

most

of

the

REXX/VSE

routines

use

are

in

Table

11.

Table

11.

Common

Return

Codes

for

REXX/VSE

Routines

Return

Code

Description

0

Successful

processing.

20

Error

occurred.

Processing

was

unsuccessful.

The

requested

service

was

either

partially

completed

or

was

terminated.

An

error

message

may

be

written

to

the

error

message

field

in

the

environment

block.

If

the

NOPMSGS

flag

is

off

for

the

environment,

the

message

is

also

written

to

the

current

output

that

is

defined

for

the

environment.

For

some

errors,

an

alternate

message

may

also

be

issued.

Alternate

messages

are

printed

only

if

the

ALTMSGS

flag

is

on

for

the

environment.

The

NOPMSGS

and

ALTMSGS

flags

are

described

in

“Flags

and

Corresponding

Masks”

on

page

397.

If

multiple

errors

occurred

and

multiple

error

messages

were

issued,

all

error

messages

are

written

to

the

current

output.

Additionally,

the

first

error

message

is

stored

in

the

environment

block.

28

A

service

was

requested,

but

a

valid

language

processor

environment

could

not

be

located.

The

requested

service

is

not

performed.

Programming

Services

332

REXX/VSE

Reference

Table

11.

Common

Return

Codes

for

REXX/VSE

Routines

(continued)

Return

Code

Description

32

Processing

was

not

successful.

The

parameter

list

is

not

valid.

The

parameter

list

contains

either

too

few

or

too

many

parameters,

or

the

high-order

bit

of

the

last

address

in

the

parameter

list

is

not

set

to

1

to

indicate

the

end

of

the

parameter

list.

Calling

REXX

You

can

call

REXX

by

using

the

JCL

EXEC

command

or

by

calling

ARXEXEC

or

ARXJCL.

Calling

REXX

by

using

the

JCL

EXEC

command

lets

you

leave

JCL

statements

on

the

stack.

VSE/ESA

can

then

process

the

JCL

statements

left

on

the

stack.

Thus,

you

can

insert

JCL

statements

or

data

into

the

current

job

stream.

JCL

statements

must

be

80

characters.

If

a

stack

entry

has

fewer

than

80

characters,

it

is

padded

with

trailing

blanks.

If

it

has

more

than

80

characters,

only

the

first

80

are

used;

the

rest

are

ignored.

After

program

processing

is

done,

these

80-character

entries

are

passed

to

VSE/ESA

if

the

exit

return

code

is

zero.

VSE/ESA

treats

the

statements

that

remain

on

the

stack

as

a

JCL

procedure.

See

VSE/ESA

System

Control

Statements

for

rules

about

the

contents

of

a

JCL

procedure.

See

“Using

the

Data

Stack”

on

page

425

for

more

information

about

the

data

stack.

ARXEXEC

has

more

flexibility

than

ARXJCL.

ARXEXEC

permits

you

to

pass

more

than

one

argument

on

the

call

and

to

preload

a

program

in

storage.

Note:

To

permit

FORTRAN

programs

to

call

ARXEXEC,

REXX/VSE

provides

an

alternate

entry

point

for

the

ARXEXEC

routine.

The

alternate

entry

point

name

is

ARXEX.

Calling

REXX

Directly

with

the

JCL

EXEC

Command

You

can

use

the

JCL

EXEC

command

to

run

a

REXX

program

in

batch.

On

the

JCL

EXEC

statement,

specify

REXX=program_name;

for

example:

//

EXEC

REXX=MYPROG,SIZE=size

The

program_name

can

be

up

to

8

characters.

This

is

a

member

of

a

sublibrary

in

the

active

PROC

chain.

The

SIZE

parameter

enables

you

to

specify

the

size

of

the

program

area

that

may

be

used

by

REXX

to

load

the

user

programs.

As

VSE

JCL

is

already

loaded

at

the

beginning

of

the

program

area,

80

KB

are

added

to

the

size

specified

in

the

SIZE

parameter.

See

VSE/ESA

System

Control

Statements

for

a

full

description

of

the

SIZE

parameter.

To

include

optional

parameters,

specify

PARM=parameters

in

the

format:

//

EXEC

REXX=program_name,PARM=parameters

You

can

specify

a

list

of

parameters

in

the

PARM

field

of

the

EXEC

statement.

Figure

15

shows

an

example

of

JCL

to

run

the

program

MYPROG.

If

you

omit

the

program_name,

specify

blanks,

or

specify

a

name

of

more

than

8

characters,

JCL

reports

an

error

and

stops

processing.

REXX

assumes

the

program_name

is

the

name

of

a

member

of

type

PROC.

REXX

calls

the

Librarian

services

to

search

the

active

PROC

chain

for

the

PROC

myprog.

REXX

*

//

LIBDEF

*,SEARCH=(PRD1.BASE,REXXLIB.SAMPLES)

//

EXEC

REXX=MYPROG,PARM=’a

b

c

d’

Figure

15.

Example

of

Calling

a

REXX

Program

from

a

JCL

EXEC

Statement

Programming

Services

Chapter

17.

Programming

Services

333

accesses

this

program

through

the

Librarian

services.

You

can

pass

only

one

argument

to

the

program

being

called,

but

the

argument

can

consist

of

more

than

one

token.

In

the

example,

the

argument

passed

to

the

program

is:

a

b

c

d.

The

program

being

called

needs

to

include

a

PARSE

ARG

keyword

instruction

such

as

PARSE

ARG

exvars.

This

instruction

assigns

a

b

c

d

(from

the

JCL

EXEC

statement)

into

the

variable

exvars.

The

following

example

includes

additional

lines

of

SYSIPT

data

after

the

JCL

EXEC

statement.

//

LIBDEF

*,SEARCH=(PRD1.BASE,REXXLIB.SAMPLES)

//

EXEC

REXX=NEWPROG,PARM=’a

b

c

d’

input

line

1

input

line

2

/*

PULL

(see

page

51),

PARSE

EXTERNAL

(see

page

48),

or

EXECIO

(see

page

146)

can

read

the

lines

of

input

until

encountering

an

end-of-file

indicator,

such

as

/*.

When

REXX/VSE

does

not

read

all

input

lines

from

SYSIPT,

VSE

JCL

treats

remaining

SYSIPT

data

as

JCL

statements.

Note

that

reading

inline

SYSIPT

data

from

nested

JCL

procedures

is

not

possible.

If

the

REXX

program

runs

successfully,

the

result

that

RETURN

or

EXIT

returns

is

converted

to

binary

and

placed

in

the

conditional

JCL

variable

$RC.

This

permits

conditional

JCL

to

determine

if

the

job

should

continue

processing.

If

the

result

is

greater

than

4096,

then

the

language

processor

applies

modulo

4096

arithmetic

to

convert

the

result

to

a

number

in

the

range

0–4095.

If

a

REXX

syntax

error

occurs,

$RC

contains

4095.

In

this

case,

the

current

output

stream

contains

the

REXX

error

code.

See

VSE/ESA

Messages

and

Codes

for

details

about

REXX

error

messages.

Return

Codes

REXX

sets

return

codes

when

it

detects

an

error

in

creating

a

language

processor

environment.

When

this

occurs,

JCL

issues

the

message:

R002I

REXX/VSE

INITIALIZATION

FAILED,

RETURN

CODE

rr

REASON

CODE

nn

The

rr

is

the

return

code

from

the

internal

call

to

ARXINIT.

If

the

return

code

is

20,

the

reason

code

nn

is

the

ARXINIT

reason

code

associated

with

the

failure.

If

the

return

code

is

not

20,

then

the

reason

code

is

0.

See

Table

67

on

page

438

for

a

complete

list

of

reason

codes

and

their

meanings.

REXX

sets

return

codes

when

it

detects

an

error

in

the

internal

call

to

ARXEXEC.

When

this

occurs,

JCL

issues

the

message:

R003I

REXX/VSE

EXEC

PROCESSING

FAILED,

RETURN

CODE

rr

The

rr

is

the

return

code

from

the

internal

call

to

ARXEXEC.

If

the

return

code

is

40,

an

error

occurred

while

processing

the

stack.

An

attempt

to

obtain

SVA

storage

may

have

failed

or

the

REXX/VSE

stack

service

may

have

failed.

See

page

347

for

information

about

ARXEXEC

return

codes.

The

ARXREXX

Program

Job

control

calls

the

ARXREXX

program

when

it

detects

the

REXX=

operand

on

the

EXEC

statement/command

to

invoke

REXX/VSE.

The

list

below

describes

the

status

of

the

registers

for

the

ARXREXX

program

on

entry.

Register

Contents

0

Address

of

an

8-byte

field

containing

the

name

of

the

REXX

program.

1

Address

of

the

parameter

field

containing

the

arguments

to

be

passed

to

the

REXX

Calling

REXX

334

REXX/VSE

Reference

program.

The

parameter

field

is

a

half-word

field

containing

the

length

of

the

parameter

data.

The

parameter

data

immediately

follows

the

length.

If

there

are

no

arguments

to

be

passed

to

the

program,

register

1

is

zero.

2-12

Reserved.

13

Address

of

an

18-word

register

save

area.

14

Return

address.

15

ARXREXX

entry

point

address.

The

list

below

describes

the

status

of

the

registers

at

the

time

the

ARXREXX

program

returns

control.

Register

Contents

0

Reason

code.

1

If

the

stack

is

empty,

register

1

is

zero.

Otherwise,

register

1

contains

an

8-byte

field

specifying

the

address

and

length

of

the

stack

storage

(these

are

the

same

8

bytes

to

which

register

0

points

on

entry).

The

first

word

is

the

address

of

the

stack

storage.

The

second

word

specifies

the

length

of

storage.

Each

stack

entry

is

80

bytes

long.

A

stack

entry

of

less

than

80

bytes

is

padded

with

trailing

blanks.

If

a

stack

entry

is

longer

than

80

bytes,

only

the

first

80

bytes

are

used.

The

stack

storage

is

located

in

the

SVA.

Job

control

frees

the

stack

storage

after

it

completes

processing

of

the

stack

entries.

2-14

Same

as

on

entry.

15

Return

code.

v

User

return

codes

are

in

the

range

of

0

to

4095.

The

use

of

the

value

of

4095

is

not

recommended

since

it

is

used

by

REXX

(see

below).

If

the

user

does

not

supply

a

value,

zero

is

used.

ARXREXX

changes

(modulo

4096)

any

user

return

code

to

bring

it

into

the

range

of

0-4095.

v

In

case

of

a

REXX

syntax

error,

register

15

contains

4095.

v

In

case

of

an

ARXINIT

failure,

register

15

contains

5000

plus

the

return

code

of

ARXINIT.

This

indicates

an

initialization

failure.

Register

0

contains

the

reason

code

of

the

call

to

ARXINIT

if

the

return

code

is

5020.

Otherwise,

it

is

zero.

If

the

contents

of

register

15

is

between

5000

and

5999,

job

control

sets

the

return

code

of

the

last

job

step

to

4095

and

issues

message

R002

in

addition.

v

In

case

of

an

ARXEXEC

failure,

register

15

contains

6000

plus

the

return

code

of

ARXEXEC.

This

indicates

a

failure

when

processing

a

REXX

program.

Register

0

has

no

meaning.

If

an

error

occurs

during

stack

processing,

register

15

contains

6040.

If

the

contents

of

register

15

is

between

6000

and

6999,

job

control

sets

the

return

code

of

the

last

job

step

to

4095

and

issues

message

R003

in

addition.

Note:

Failures

that

occur

during

termination

processing

(ARXTERM)

will

not

terminate

the

job

stream

and

no

error

information

is

returned.

Calling

REXX

with

ARXEXEC

or

ARXJCL

You

can

use

ARXEXEC

or

ARXJCL

to

call

REXX

from

a

non-REXX

program.

The

ARXJCL

Routine

ARXJCL

is

the

simplest

routine

for

calling

REXX.

You

can

use

ARXJCL

to

run

a

REXX

program

in

two

ways:

Calling

REXX

Chapter

17.

Programming

Services

335

v

Call

ARXJCL

from

a

non-REXX

program

v

Specify

ARXJCL

on

the

JCL

EXEC

statement.

To

specify

ARXJCL

on

the

JCL

EXEC

statement,

specify

the

name

of

the

program

and

any

arguments

in

the

PARM

field.

For

example,

to

run

a

REXX

program

named

MYPROG

and

pass

two

arguments,

you

could

use

the

following:

//

LIBDEF

*,SEARCH=(PRD1.BASE,REXXLIB.SAMPLES)

//

EXEC

ARXJCL,PARM=’MYPROG

arg1

arg2’

The

remainder

of

this

discussion

about

ARXJCL

concerns

calling

ARXJCL

from

a

non-REXX

program.

On

the

call

to

ARXJCL,

you

pass

the

address

of

a

parameter

list

in

register

1.

Environment

Customization

Considerations

If

you

use

the

ARXINIT

initialization

routine

to

initialize

language

processor

environments,

you

can

specify

the

environment

in

which

you

want

ARXJCL

to

run.

On

the

call

to

ARXJCL,

you

can

optionally

specify

the

address

of

the

environment

block

for

the

environment

in

register

0.

If

you

do

not

pass

an

environment

block

address

or

if

ARXJCL

determines

the

address

is

not

valid,

ARXJCL

locates

the

current

environment

and

runs

in

that

environment.

“Chains

of

Environments

and

How

Environments

Are

Located”

on

page

412

describes

how

environments

are

located.

If

a

current

environment

does

not

exist,

or

the

current

environment

was

initialized

on

a

different

task,

a

new

language

processor

environment

is

initialized.

The

program

runs

in

the

new

environment.

Before

ARXJCL

returns,

the

language

processor

environment

that

was

created

is

terminated.

Otherwise,

it

runs

in

the

located

current

environment.

For

more

information

about

specifying

environments

and

how

routines

determine

the

environment

in

which

to

run,

see

“Specifying

the

Address

of

the

Environment

Block”

on

page

331.

Entry

Specifications:

For

the

ARXJCL

routine,

the

contents

of

the

registers

on

entry

are:

Register

0

Address

of

an

environment

block

(optional)

Register

1

Address

of

the

parameter

list

the

caller

passes

Registers

2-12

Unpredictable

Register

13

Address

of

a

register

save

area

Register

14

Return

address

Register

15

Entry

point

address

Parameters:

In

register

1,

you

pass

the

address

of

a

parameter

list,

which

consists

of

one

address.

To

indicate

the

end

of

the

parameter

list,

set

the

high-order

bit

of

the

last

address

in

the

parameter

list

to

1.

Table

12

on

page

337

describes

the

parameter

for

ARXJCL.

Calling

REXX

336

REXX/VSE

Reference

Table

12.

Parameter

for

Calling

the

ARXJCL

Routine

Parameter

Number

of

Bytes

Description

Parameter

1

variable

A

buffer,

which

consists

of

a

halfword

length

field

followed

by

a

data

field.

The

length

field

contains

the

length

of

the

data

field

that

follows.

(This

length

does

not

include

the

2

bytes

that

specify

the

length

itself.)

The

data

field

contains

the

name

of

the

program,

followed

by

one

or

more

blanks,

followed

by

the

argument

(if

any)

to

be

passed

to

the

program.

You

can

pass

only

one

argument

on

the

call,

but

the

argument

can

consist

of

more

than

one

token.

The

following

example

shows

an

assembler

program

that

calls

ARXJCL

to

run

a

REXX

program.

APISAMP

AMODE

31

APISAMP

RMODE

ANY

APISAMP

CSECT

STM

14,12,12(13)

BALR

12,0

USING

*,12

ST

13,SAVE+4

LA

13,SAVE

CDLOAD

ARXJCL

Load

ARXJCL

into

storage

LR

15,1

OI

PARM@,X’80’

Indicate

the

end

of

the

Plist

LA

1,PARM@

Load

R1

with

address

of

Plist

BALR

14,15

C

15,EXPECTED

Verify

the

program

return

code

BNE

FAILURE

Handle

failure

WTO

’Exec

called

successfully’,ROUTCDE=(2),DESC=(7)

B

EXIT

FAILURE

WTO

’Exec

return

code

incorrect’,ROUTCDE=(2),DESC=(7)

*

EXIT

EQU

*

L

13,SAVE+4

LM

14,12,12(13)

BR

14

*

EXPECTED

DC

F’1’

SAVE

DS

18F

DS

0F

PARM@

DC

A(*+4)

PARMLEN

DC

H’15’

PARMCMD

DC

CL15’APIEXEC

123

456’

Program

called

with

2

arguments

LTORG

END

Return

Specifications:

For

the

ARXJCL

routine,

the

contents

of

the

registers

on

return

are:

Registers

0-14

Same

as

on

entry

Register

15

Return

code

Return

Codes:

If

ARXJCL

encounters

an

error,

it

returns

a

return

code.

If

you

call

ARXJCL

from

a

program,

ARXJCL

returns

the

return

code

in

register

15.

Table

13

describes

the

return

codes.

Table

13.

Return

Codes

for

ARXJCL

Routine

Return

Code

Description

0

Processing

was

successful.

Program

processing

completed.

Calling

REXX

Chapter

17.

Programming

Services

337

Table

13.

Return

Codes

for

ARXJCL

Routine

(continued)

Return

Code

Description

20

Processing

was

not

successful.

The

program

was

not

processed.

One

possible

reason

is

a

missing

or

failing

REXX/VSE

initialization.

The

execution

of

//

EXEC

ARXLINK

has

either

been

missing

or

failed.

20021

The

JCL

EXEC

statement

contained

an

incorrect

parameter

or

the

parameter

list

passed

on

the

call

to

ARXJCL

was

incorrect.

A

parameter

may

have

been

blank

or

null

or

the

name

of

the

program

may

have

been

incorrect

(longer

than

8

characters).

Other

Any

other

return

code

is

the

return

code

from

the

REXX

program

on

the

RETURN

or

EXIT

keyword

instruction.

Notes:

1.

No

distinction

is

made

between

the

REXX

program

returning

a

value

of

0,

20,

or

20021

on

the

RETURN

or

EXIT

instruction

and

ARXJCL

returning

one

of

these

return

codes.

2.

ARXJCL

returns

a

return

code

as

the

step

completion

code.

However,

the

step

completion

code

is

limited

to

a

maximum

of

4095,

in

decimal.

If

the

return

code

is

greater

than

4095

(decimal),

VSE/ESA

uses

the

rightmost

three

digits

of

the

hexadecimal

representation

of

the

return

code

and

converts

it

to

decimal

for

use

as

the

step

completion

code.

For

example,

suppose

the

program

returns

a

return

code

of

8002,

in

decimal,

on

the

RETURN

or

EXIT

instruction.

The

value

8002

(decimal)

is

X'1F42'

in

hexadecimal.

VSE/ESA

takes

the

rightmost

three

digits

of

the

hexadecimal

value

(X'F42')

and

converts

it

to

decimal

(3906)

to

use

as

the

step

completion

code.

The

step

completion

code

that

is

returned

is

3906,

in

decimal.

The

ARXEXEC

Routine

You

can

use

the

ARXEXEC

routine

to

call

REXX

from

a

non-REXX

a

program

in

any

partition.

ARXEXEC

offers

more

flexibility:

v

You

can

preload

the

REXX

program

in

storage

and

pass

the

address

of

the

preloaded

program

to

ARXEXEC.

This

is

useful

if

you

want

to

run

a

program

multiple

times;

the

program

is

not

loaded

and

freed

each

time

you

call

it.

v

With

ARXEXEC,

you

can

use

your

own

load

routine

to

load

and

free

the

program.

v

The

EXEC

command

and

ARXJCL

permit

you

to

pass

only

one

argument

to

the

program

(the

argument

can

consist

of

several

tokens).

ARXEXEC

lets

you

pass

multiple

arguments

to

the

program,

and

each

argument

can

consist

of

multiple

tokens.

(If

you

pass

multiple

arguments,

you

must

not

set

bit

0

(the

command

bit)

in

parameter

3.)

v

With

ARXEXEC,

one

parameter

on

the

call

is

the

user

field.

You

can

use

this

field

for

your

own

processing.

Note:

To

permit

FORTRAN

programs

to

call

ARXEXEC,

REXX/VSE

provides

an

alternate

entry

point

for

the

ARXEXEC

routine.

The

alternate

entry

point

name

is

ARXEX.

If

you

use

the

EXEC

command

(page

145),

you

can

pass

only

one

argument

to

the

program.

The

argument

can

consist

of

several

tokens.

Similarly,

if

you

call

ARXJCL,

you

can

only

pass

one

argument.

Using

ARXEXEC

allows

you

to

pass

multiple

arguments

to

the

program,

and

each

argument

can

consist

of

multiple

tokens.

If

you

pass

multiple

arguments,

you

must

not

set

bit

0

(the

command

bit)

in

parameter

3.

Calling

REXX

338

REXX/VSE

Reference

Environment

Customization

Considerations

If

you

use

the

ARXINIT

initialization

routine

to

initialize

language

processor

environments,

you

can

specify

the

environment

in

which

you

want

ARXEXEC

to

run.

On

the

call

to

ARXEXEC,

you

can

optionally

specify

the

address

of

the

environment

block

for

the

environment

in

either

the

parameter

list

or

in

register

0.

If

you

do

not

pass

an

environment

block

address

or

ARXEXEC

determines

the

address

is

not

valid,

ARXEXEC

locates

the

current

environment

and

runs

in

that

environment.

“Chains

of

Environments

and

How

Environments

Are

Located”

on

page

412

describes

how

environments

are

located.

If

a

current

environment

does

not

exist,

or

the

current

environment

was

initialized

on

a

different

task,

a

new

language

processor

environment

is

initialized.

The

program

runs

in

the

new

environment.

Before

ARXEXEC

returns,

the

language

processor

environment

that

was

created

is

terminated.

Otherwise,

it

runs

in

the

located

current

environment.

For

more

information

about

specifying

environments

and

how

routines

determine

the

environment

in

which

to

run,

see

“Specifying

the

Address

of

the

Environment

Block”

on

page

331.

Entry

Specifications:

For

the

ARXEXEC

routine,

the

contents

of

the

registers

on

entry

are:

Register

0

Address

of

an

environment

block

(optional)

Register

1

Address

of

the

parameter

list

the

caller

passes

Registers

2-12

Unpredictable

Register

13

Address

of

a

register

save

area

Register

14

Return

address

Register

15

Entry

point

address

Parameters:

In

register

1,

you

pass

the

address

of

a

parameter

list,

which

consists

of

a

list

of

addresses.

Each

address

in

the

parameter

list

points

to

a

parameter.

To

indicate

the

end

of

the

parameter

list,

set

the

high-order

bit

of

the

last

address

in

the

parameter

list

to

1.

For

general

information

about

passing

parameters,

see

“Parameter

Lists

for

REXX/VSE

Routines”

on

page

329.

Table

14

describes

the

parameters

for

ARXEXEC.

Table

14.

Parameters

for

ARXEXEC

Routine

Parameter

Number

of

Bytes

Description

Parameter

1

4

Specifies

the

address

of

the

exec

block

(EXECBLK).

This

is

a

control

block

that

describes

the

program

to

load.

It

contains

information

needed

to

process

the

program,

such

as

the

member

from

which

the

program

is

to

be

loaded

and

the

name

of

the

initial

host

command

environment

when

the

program

starts

running.

“The

Exec

Block

(EXECBLK)”

on

page

341

describes

the

format

of

the

exec

block.

If

the

program

is

preloaded

and

you

pass

the

address

of

the

preloaded

program

in

parameter

4,

specify

an

address

of

0

for

this

parameter.

If

you

specify

both

parameter

1

and

parameter

4,

ARXEXEC

uses

the

value

in

parameter

4

and

ignores

parameter

1.

Calling

REXX

Chapter

17.

Programming

Services

339

Table

14.

Parameters

for

ARXEXEC

Routine

(continued)

Parameter

Number

of

Bytes

Description

Parameter

2

4

Specifies

the

address

of

the

first

entry

in

a

table

that

contains

the

arguments

for

the

program.

The

arguments

are

arranged

as

a

vector

of

address/length

pairs

followed

by

X'FFFFFFFFFFFFFFFF'.

“Format

of

Argument

List”

on

page

342

describes

the

format

of

the

arguments.

Parameter

3

4

Flags

describing

the

REXX

program.

ARXEXEC

uses

only

bits

0,

1,

2,

and

3.

The

remaining

bits

are

reserved.

Bits

0,

1,

and

2

are

mutually

exclusive.

PARSE

SOURCE

returns

a

token

indicating

how

a

program

was

called.

The

bit

you

set

on

in

bit

positions

0,

1,

or

2

indicates

the

token

(COMMAND,

FUNCTION,

or

SUBROUTINE,

respectively)

that

PARSE

SOURCE

uses.

For

example,

if

you

set

bit

2

on,

PARSE

SOURCE

returns

the

token

SUBROUTINE.

The

description

of

each

bit

follows:

v

Bit

0

-

Set

this

bit

on

if

the

program

is

being

called

as

a

“command”

(not

from

another

program

as

an

external

function

or

subroutine).

The

program

can

optionally

return

a

result.

Do

not

set

bit

0

on

if

you

pass

more

than

one

argument

to

the

program.

v

Bit

1

-

Set

this

bit

on

if

the

program

is

being

called

as

an

external

function

(a

function

call).

The

program

must

return

a

result.

v

Bit

2

-

Set

this

bit

on

if

the

program

is

being

called

as

a

subroutine,

for

example,

using

the

CALL

keyword

instruction.

The

program

can

optionally

return

a

result.

v

Bit

3

-

Set

this

bit

on

if

you

want

ARXEXEC

to

return

extended

return

codes

in

the

range

20001–20099.

If

a

syntax

error

occurs,

ARXEXEC

returns

a

value

in

the

range

20001–20099

in

the

evaluation

block,

regardless

of

the

setting

of

bit

3.

If

a

syntax

error

occurs

and

bit

3

is

on,

ARXEXEC

returns

with

a

return

code

in

the

range

20001–20099

that

matches

the

value

returned

in

the

evaluation

block.

If

a

syntax

error

occurs

and

bit

3

is

off,

ARXEXEC

returns

with

return

code

0.

For

more

information,

see

“How

ARXEXEC

Returns

Information

about

Syntax

Errors”

on

page

346.

Parameter

4

4

Specifies

the

address

of

the

in-storage

control

block

(INSTBLK),

which

defines

the

structure

of

a

preloaded

program

in

storage.

The

INSTBLK

contains

pointers

to

each

statement

in

the

program

and

the

length

of

each

statement.

“The

In-Storage

Control

Block

(INSTBLK)”

on

page

343

describes

the

control

block.

This

parameter

is

required

if

the

caller

of

ARXEXEC

has

preloaded

the

program.

Otherwise,

this

parameter

must

be

0.

If

you

specify

this

parameter,

ARXEXEC

ignores

parameter

1

(address

of

the

exec

block).

Parameter

5

4

This

parameter

is

reserved.

Parameter

6

4

Specifies

the

address

of

an

evaluation

block

(EVALBLOCK).

ARXEXEC

uses

the

evaluation

block

to

return

the

result

from

the

program

that

was

specified

on

either

the

RETURN

or

EXIT

instruction.

“The

Evaluation

Block

(EVALBLOCK)”

on

page

345

describes

the

format

of

the

evaluation

block,

how

ARXEXEC

uses

the

parameter,

and

whether

or

not

you

should

provide

an

EVALBLOCK

on

the

call.

If

you

do

not

want

to

provide

an

evaluation

block,

specify

an

address

of

0.

If

you

do

not

provide

an

evaluation

block

or

if

the

evaluation

block

is

too

small,

you

can

use

the

get

result

routine,

ARXRLT,

to

obtain

the

result

from

the

program.

Calling

REXX

340

REXX/VSE

Reference

Table

14.

Parameters

for

ARXEXEC

Routine

(continued)

Parameter

Number

of

Bytes

Description

Parameter

7

4

Specifies

the

address

of

an

8-byte

field

(the

work-area

header)

that

defines

a

work

area

for

the

ARXEXEC

routine.

In

the

8-byte

field,

the:

v

The

first

4

bytes

contain

the

address

of

the

work

area

v

The

last

4

bytes

contain

the

length

of

the

work

area.

The

work

area

contains

the

storage

for

control

blocks.

The

work

area

is

passed

to

the

language

processor

to

use

for

processing

the

program.

If

the

work

area

is

too

small,

ARXEXEC

returns

with

a

return

code

of

20

and

a

message

indicates

an

error.

The

minimum

length

required

for

the

work

area

is

X'1800'

bytes.

If

you

do

not

want

to

pass

a

work

area,

specify

an

address

of

0.

In

this

case,

ARXEXEC

obtains

storage

for

its

work

area

or

calls

the

replaceable

storage

routine

specified

in

the

GETFREER

field

for

the

environment,

if

you

provided

a

storage

routine.

Parameter

8

4

Specifies

the

address

of

a

user

field.

ARXEXEC

does

not

use

or

check

this

pointer

or

the

user

field.

You

can

use

this

field

for

your

own

processing.

If

you

do

not

want

to

use

a

user

field,

specify

an

address

of

0.

Parameter

9

4

This

parameter

is

optional.

It

is

the

address

of

the

environment

block

to

use

when

performing

the

requested

service.

If

you

specify

a

nonzero

value

for

the

environment

block

address

parameter,

ARXEXEC

uses

the

value

you

specify

and

ignores

register

0.

However,

ARXEXEC

does

not

check

whether

the

address

is

valid.

Therefore,

ensure

that

the

address

you

specify

is

correct

or

unpredictable

results

can

occur.

For

more

information,

see

“Specifying

the

Address

of

the

Environment

Block”

on

page

331.

Parameter

10

4

This

parameter

is

optional.

ARXEXEC

uses

this

field

for

the

return

code.

If

you

use

this

parameter,

ARXEXEC

returns

the

return

code

in

the

parameter

and

also

in

register

15.

Otherwise,

ARXEXEC

uses

only

register

15.

If

the

parameter

list

is

incorrect,

the

return

code

is

returned

in

register

15

only.

“″Return

Codes″”

on

page

347

describes

the

return

codes.

The

Exec

Block

(EXECBLK):

Parameter

1

specifies

the

address

of

the

exec

block

(EXECBLK).

This

is

a

control

block

that

describes

the

program

to

load.

If

the

program

is

not

preloaded,

you

must

build

the

exec

block

and

pass

the

address

in

parameter

1

on

the

call

to

ARXEXEC.

You

need

not

pass

an

exec

block

if

the

program

is

preloaded.

Note:

If

you

want

to

preload

the

program,

you

can

use

the

supplied

exec

load

routine

ARXLOAD

or

your

own

exec

load

replaceable

routine

(see

page

446).

A

mapping

macro

for

the

exec

block,

ARXEXECB,

is

in

PRD1.BASE.

The

following

table

shows

the

format

of

the

exec

block.

Note:

In

the

following

table,

the

field

names

ACRYN

and

LENGTH

must

include

the

prefix

EXEC_BLK_.

All

other

fields

must

include

the

prefix

EXEC_.

Calling

REXX

Chapter

17.

Programming

Services

341

Table

15.

Format

of

the

Exec

Block

(EXECBLK)

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

0

8

ACRYN

Identifies

the

exec

block.

This

field

must

contain

the

character

string

ARXEXECB.

8

4

LENGTH

Specifies

the

length

of

the

exec

block

in

bytes.

12

4

—

Reserved.

16

8

MEMBER

Specifies

the

member

name

of

the

program

if

the

program

is

in

a

sublibrary

in

the

active

PROC

chain.

A

LIBDEF

specifying

the

sublibrary

must

precede

loading

a

member.

24

8

DDNAME

Reserved.

32

8

SUBCOM

Specifies

the

name

of

the

initial

host

command

environment

when

the

program

starts

running.

If

this

field

is

blank,

the

environment

specified

in

the

INITIAL

field

of

the

host

command

environment

table

is

used.

The

default

is

VSE.

“Host

Command

Environment

Table”

on

page

404

describes

the

table.

40

4

DSNPTR

Specifies

the

address

of

a

sublibrary

from

which

the

member

was

loaded.

The

PARSE

SOURCE

instruction

returns

a

string

to

which

this

address

points.

The

name

usually

represents

the

name

of

the

exec

load

member.

The

name

can

be

up

to

34

characters

for

the

fully

qualified

sublibrary

name

(7

characters

for

the

library

name,

8

for

the

sublibrary

name,

8

for

the

member

name,

and

8

for

the

type).

If

you

do

not

want

to

specify

a

sublibrary

name,

specify

an

address

of

0.

44

4

DSNLEN

Specifies

the

length

of

the

sublibrary

name

to

which

the

address

at

offset

+40

points.

The

length

can

be

0–34.

If

no

name

is

specified,

the

length

is

0.

REXX

programs

are

kept

in

PROC

sublibraries.

Programs

must

consist

of

fixed

length,

80-byte

records.

(This

is

a

Librarian

restriction.)

REXX

programs

are

loaded

from

sublibraries.

The

interpreter

uses

Librarian

services

to

locate,

open,

and

read

REXX

programs.

A

LIBDEF

specifying

the

sublibrary

must

precede

loading

the

member

that

the

member

at

offset

+16

specifies.

The

fields

at

offset

+40

and

+44

in

the

exec

block

are

only

for

input

to

the

PARSE

SOURCE

instruction

and

are

for

informational

purposes

only.

If

the

program

is

preloaded,

loading

is

not

performed.

Otherwise,

the

program

is

loaded

using

the

member

name

in

the

active

PROC

chain.

Format

of

Argument

List:

Parameter

2

points

to

the

arguments

for

the

program.

The

arguments

are

arranged

as

a

vector

of

address/length

pairs,

one

for

each

argument.

The

first

four

bytes

are

the

address

of

the

argument

string.

The

second

four

bytes

are

the

length

of

the

argument

string,

in

bytes.

The

vector

must

end

in

X'FFFFFFFFFFFFFFFF'.

There

is

no

limit

on

the

number

of

arguments

you

can

pass.

Table

16

shows

the

format

of

the

argument

list.

REXX/VSE

provides

a

mapping

macro

ARXARGTB

for

the

vector.

The

mapping

macro

is

in

PRD1.BASE.

Calling

REXX

342

REXX/VSE

Reference

Note:

Each

field

name

in

the

following

table

must

include

the

prefix

ARGTABLE_.

Table

16.

Format

of

the

Argument

List

Offset

(Dec)

Number

of

Bytes

Field

Name

Description

0

4

ARGSTRING_PTR

Address

of

argument

1

4

4

ARGSTRING_LENGTH

Length

of

argument

1

8

4

ARGSTRING_PTR

Address

of

argument

2

12

4

ARGSTRING_LENGTH

Length

of

argument

2

16

4

ARGSTRING_PTR

Address

of

argument

3

20

4

ARGSTRING_LENGTH

Length

of

argument

3

...
...

x

4

ARGSTRING_PTR

Address

of

argument

n

x+4

4

ARGSTRING_LENGTH

Length

of

argument

n

x+8

8

X'FFFFFFFFFFFFFFFF'

The

In-Storage

Control

Block

(INSTBLK):

Parameter

4

points

to

the

in-storage

control

block

(INSTBLK).

The

in-storage

control

block

defines

the

structure

of

a

preloaded

program

in

storage.

The

INSTBLK

contains

pointers

to

each

record

in

the

program

and

the

length

of

each

record.

If

you

preload

the

program

in

storage,

you

must

pass

the

address

of

the

in-storage

control

block

(parameter

4).

You

must

provide

the

storage,

format

the

control

block,

and

free

the

storage

after

ARXEXEC

returns.

ARXEXEC

simply

reads

information

from

the

in-storage

control

block.

It

does

not

change

any

of

the

information.

To

preload

a

program

into

storage,

you

can

use

the

exec

load

replaceable

routine

ARXLOAD.

Or

you

can

provide

your

own

routine

to

preload

the

program.

“Exec

Load

Routine”

on

page

446

describes

the

replaceable

routine.

If

you

are

not

preloading

the

program,

specify

an

address

of

0

for

the

in-storage

control

block

parameter

(parameter

4).

The

in-storage

control

block

consists

of

a

header

and

the

records

in

the

program,

which

are

arranged

as

a

vector

of

address/length

pairs.

Table

17

shows

the

format

of

the

in-storage

control

block

header.

Table

18

on

page

344

shows

the

format

of

the

vector

of

records.

A

mapping

macro

for

the

in-storage

control

block,

ARXINSTB,

is

in

PRD1.BASE.

Note:

Each

field

name

in

the

following

table

must

include

the

prefix

INSTBLK_.

Table

17.

Format

of

the

Header

for

the

In-Storage

Control

Block

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

0

8

ACRONYM

Identifies

the

control

block.

This

field

must

contain

the

characters

ARXINSTB.

8

4

HDRLEN

Specifies

the

length

of

the

in-storage

control

block

header

only.

The

value

must

be

128

bytes.

12

4

Reserved.

Calling

REXX

Chapter

17.

Programming

Services

343

Table

17.

Format

of

the

Header

for

the

In-Storage

Control

Block

(continued)

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

16

4

ADDRESS

Specifies

the

address

of

the

vector

of

records.

See

Table

18

for

the

format

of

the

address/length

pairs.

If

this

field

is

0,

the

program

contains

no

records.

20

4

USEDLEN

Specifies

the

length

of

the

address/length

vector

of

records

in

bytes.

This

is

not

the

number

of

records.

The

value

is

the

number

of

records

multiplied

by

8.

If

this

field

is

0,

the

program

contains

no

records.

24

8

MEMBER

Specifies

the

name

of

the

sublibrary

from

which

the

member

was

loaded.

The

PARSE

SOURCE

instruction

returns

the

member

name

you

specify.

If

this

field

is

blank,

PARSE

SOURCE

returns

a

question

mark

(?).

32

8

DDNAME

Reserved.

40

8

SUBCOM

Specifies

the

name

of

the

initial

host

command

environment

when

the

program

starts

running.

48

4

Reserved.

52

4

DSNLEN

Specifies

the

length

of

the

sublibrary

name

(from

which

the

member

was

loaded)

that

is

specified

at

offset

+56.

If

a

sublibrary

name

is

not

specified,

this

field

must

be

0.

56

72

DSNAME

This

field

contains

the

name

of

the

sublibrary,

if

known,

from

which

the

program

was

loaded.

The

name

can

be

up

to

34

characters

for

the

fully

qualified

sublibrary

name

(7

characters

for

the

library

name,

8

for

the

sublibrary

name,

8

for

the

member

name,

and

8

for

the

type).

The

remaining

bytes

of

the

field

(2

bytes

plus

9

fullwords)

are

not

used.

They

are

reserved

and

contain

binary

zeros.

At

offset

+16

in

the

in-storage

control

block

header,

the

field

points

to

the

vector

of

records

that

are

in

the

program.

The

records

are

arranged

as

a

vector

of

address/length

pairs.

Table

18

shows

the

format

of

the

address/length

pairs.

The

addresses

point

to

the

text

of

the

record

to

be

processed.

This

can

be

one

or

more

REXX

clauses,

parts

of

a

clause

that

are

continued

with

the

REXX

continuation

character

(the

continuation

character

is

a

comma),

or

a

combination

of

these.

The

address

is

the

actual

address

of

the

record.

The

length

is

the

length

of

the

record

in

bytes.

Note:

Each

field

name

in

the

following

table

must

include

the

prefix

INSTBLK_.

Table

18.

Vector

of

Records

for

the

In-Storage

Control

Block

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

0

4

STMT@

Address

of

record

1

4

4

STMTLEN

Length

of

record

1

8

4

STMT@

Address

of

record

2

12

4

STMTLEN

Length

of

record

2

16

4

STMT@

Address

of

record

3

20

4

STMTLEN

Length

of

record

3

Calling

REXX

344

REXX/VSE

Reference

...
...

x

4

STMT@

Address

of

record

n

x+4

4

STMTLEN

Length

of

record

n

The

Evaluation

Block

(EVALBLOCK):

Parameter

6

specifies

the

address

of

an

evaluation

block

(EVALBLOCK).

This

is

a

control

block

that

ARXEXEC

uses

to

return

the

result

from

the

program.

The

program

can

return

a

result

on

either

the

RETURN

or

EXIT

instruction.

For

example,

the

REXX

instruction

RETURN

var1

returns

the

value

of

the

variable

var1.

ARXEXEC

returns

the

value

of

var1

in

the

evaluation

block.

If

the

program

you

are

running

will

return

a

result,

specify

the

address

of

an

evaluation

block

when

you

call

ARXEXEC

(parameter

6).

You

must

obtain

the

storage

for

the

control

block

yourself.

If

the

program

does

not

return

a

result

or

you

want

to

ignore

the

result,

you

need

not

allocate

an

evaluation

block.

In

this

case,

specify

an

address

of

0

for

the

evaluation

block.

If

the

result

from

the

program

fits

into

the

evaluation

block,

the

data

is

placed

into

the

block

(EVDATA

field)

and

the

length

of

the

block

is

updated

(EVLEN

field).

See

“″Using

an

Evaluation

Block

to

Return

a

Result″”

on

page

369

for

details

about

how

to

use

ARXRLT

to

obtain

the

result

if

it

does

not

fit

in

the

area

provided

or

if

you

did

not

allocate

an

evaluation

block.

Note:

The

language

processor

environment

is

the

environment

in

which

the

language

processor

processes

the

program.

See

Chapter

19,

“Language

Processor

Environments”

for

more

information

about

the

initialization

and

termination

of

environments

and

customization

services.

The

evaluation

block

consists

of

a

header

and

data,

which

contains

the

result.

Table

19

shows

the

format

of

the

evaluation

block.

Additional

information

about

each

field

follows

the

table.

REXX/VSE

provides

a

mapping

macro

ARXEVALB

for

the

evaluation

block.

The

mapping

macro

is

in

PRD1.BASE.

Note:

Each

field

name

in

the

following

table

must

include

the

prefix

EVALBLOCK_.

Table

19.

Format

of

the

Evaluation

Block

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

0

4

EVPAD1

A

fullword

that

must

contain

X'00'.

This

field

is

reserved

and

is

not

used.

4

4

EVSIZE

Specifies

the

total

size

of

the

evaluation

block

in

doublewords.

8

4

EVLEN

On

entry,

this

field

is

not

used

and

must

be

set

to

X'00'.

On

return,

it

specifies

the

length

of

the

result,

in

bytes,

that

is

returned.

The

result

is

returned

in

the

EVDATA

field

at

offset

+16.

12

4

EVPAD2

A

fullword

that

must

contain

X'00'.

This

field

is

reserved

and

is

not

used.

Calling

REXX

Chapter

17.

Programming

Services

345

Table

19.

Format

of

the

Evaluation

Block

(continued)

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

16

n

EVDATA

The

field

in

which

ARXEXEC

returns

the

result

from

the

program.

The

length

of

the

field

depends

on

the

total

size

specified

for

the

control

block

in

the

EVSIZE

field.

The

total

size

of

the

EVDATA

field

is:

EVSIZE

*

8

-

16.

It

is

recommended

that

you

use

250

bytes

for

the

EVDATA

field.

For

information

about

the

values

ARXEXEC

returns

if

the

language

processor

detects

a

syntax

error

in

the

program,

see

“How

ARXEXEC

Returns

Information

about

Syntax

Errors.”

If

the

result

does

not

fit

into

the

EVDATA

field,

ARXEXEC

stores

as

much

of

the

result

as

it

can

into

the

field

and

sets

the

length

field

(EVLEN)

to

the

negative

of

the

required

length

for

the

result.

You

can

then

use

the

ARXRLT

routine

to

obtain

the

result.

See

“Get

Result

Routine

–

ARXRLT”

on

page

368

for

more

information.

On

return,

if

the

result

has

a

length

of

0,

the

length

field

(EVLEN)

is

0,

which

means

the

result

is

null.

If

no

result

is

returned

on

the

EXIT

or

RETURN

instruction,

the

length

field

contains

X'80000000'.

If

you

call

the

program

as

a

“command”

(bit

0

is

set

on

in

parameter

3),

the

result

the

program

returns

must

be

a

numeric

value.

The

result

can

be

from

-2,147,483,648

through

+2,147,483,647.

If

the

result

is

not

numeric

or

is

greater

than

or

less

than

the

valid

values,

this

indicates

a

syntax

error

and

the

value

20026

is

returned

in

the

EVDATA

field.

How

ARXEXEC

Returns

Information

about

Syntax

Errors:

If

the

language

processor

detects

a

syntax

error

in

the

program,

ARXEXEC

returns

the

following:

v

A

value

of

20000

plus

the

REXX

error

number

in

the

EVDATA

field

of

the

evaluation

block.

v

A

value

of

5

for

the

length

of

the

result

in

the

EVLEN

field

of

the

evaluation

block.

The

REXX

error

numbers

are

between

1

and

99.

Therefore,

the

range

of

values

that

ARXEXEC

can

return

for

a

syntax

error

are

20001–20099.

The

REXX

error

numbers

correspond

to

the

REXX

message

numbers.

For

example,

error

26

corresponds

to

the

REXX

message

ARX0026I.

For

error

26,

ARXEXEC

returns

the

value

20026

in

the

EVDATA

field.

The

REXX

error

messages

are

described

in

VSE/ESA

Messages

and

Codes.

The

program

may

also

return

a

value

on

the

RETURN

or

EXIT

instruction

in

the

range

20001–20099.

ARXEXEC

returns

the

value

from

the

program

in

the

EVDATA

field

of

the

evaluation

block.

To

determine

whether

the

value

in

the

EVDATA

field

is

the

value

from

the

program

or

the

value

related

to

a

syntax

error,

use

bit

3

in

parameter

3

of

the

parameter

list.

Bit

3

lets

you

enable

the

extended

return

codes

in

the

range

20001–20099.

If

you

set

bit

3

off

and

the

program

processes

successfully

but

the

language

processor

detects

a

syntax

error,

the

following

occurs.

ARXEXEC

returns

a

return

code

of

0

in

register

15.

(ARXEXEC

also

places

this

return

code

in

parameter

10

of

the

ARXEXEC

routine.)

ARXEXEC

also

returns

a

value

of

20000

plus

the

REXX

error

number

in

the

EVDATA

field

of

the

evaluation

block.

In

this

case,

you

cannot

determine

whether

the

program

returned

the

200xx

value

or

the

value

represents

a

syntax

error.

If

you

set

bit

3

on

and

the

program

processes

successfully

but

the

language

processor

detects

a

syntax

error,

the

following

occurs.

ARXEXEC

sets

a

return

code

in

register

15

equal

to

20000

plus

the

REXX

error

message.

That

is,

the

return

code

in

register

15

is

in

the

range

20001–20099.

ARXEXEC

also

returns

Calling

REXX

346

REXX/VSE

Reference

the

200xx

value

in

the

EVDATA

field

of

the

evaluation

block.

If

you

set

bit

3

on

and

the

program

processes

without

a

syntax

error,

ARXEXEC

returns

with

a

return

code

of

0

in

register

15.

If

ARXEXEC

returns

a

value

of

20001–20099

in

the

EVDATA

field

of

the

evaluation

block,

that

value

must

be

the

value

that

the

program

returned

on

the

RETURN

or

EXIT

instruction.

By

setting

bit

3

on

in

parameter

3

of

the

parameter

list,

you

can

check

the

return

code

from

ARXEXEC

to

determine

whether

a

syntax

error

occurred.

Return

Specifications:

For

the

ARXEXEC

routine,

the

contents

of

the

registers

on

return

are:

Register

0

Address

of

the

environment

block

Registers

1-14

Same

as

on

entry

Register

15

Return

code

Return

Codes:

Table

20

shows

the

return

codes

for

the

ARXEXEC

routine.

ARXEXEC

returns

the

return

code

in

register

15.

If

you

specify

the

return

code

parameter

(parameter

10),

ARXEXEC

also

returns

the

return

code

in

the

parameter.

Table

20.

ARXEXEC

Return

Codes

Return

Code

Description

0

Processing

was

successful.

The

program

has

completed

processing.

If

the

program

returns

a

result,

the

result

may

or

may

not

fit

into

the

evaluation

block.

You

must

check

the

length

field

(EVLEN).

On

the

call

to

ARXEXEC,

you

can

set

bit

3

in

parameter

3

of

the

parameter

list

to

indicate

how

ARXEXEC

should

handle

information

about

syntax

errors.

If

ARXEXEC

returns

with

return

code

0

and

bit

3

is

on,

the

language

processor

did

not

detect

a

syntax

error.

In

this

case,

the

value

ARXEXEC

returns

in

the

EVDATA

field

of

the

evaluation

block

is

the

value

the

program

returned.

If

ARXEXEC

returns

with

return

code

0

and

bit

3

is

off,

the

language

processor

may

or

may

not

have

detected

a

syntax

error.

If

ARXEXEC

returns

a

value

of

20001–20099

in

the

evaluation

block,

you

cannot

determine

whether

the

value

represents

a

syntax

error

or

the

value

the

program

returned.

For

more

information,

see

“How

ARXEXEC

Returns

Information

about

Syntax

Errors”

on

page

346.

20

Processing

was

not

successful.

An

error

occurred.

The

program

has

not

been

processed.

REXX/VSE

issues

an

error

message

that

describes

the

error.

32

Processing

was

not

successful.

The

parameter

list

is

not

valid.

The

parameter

list

contains

either

too

few

or

too

many

parameters,

or

the

high-order

bit

of

the

last

address

in

the

parameter

list

is

not

set

to

1

to

indicate

the

end

of

the

parameter

list.

20001–20099

Processing

was

successful.

The

program

completed

processing,

but

the

language

processor

detected

a

syntax

error.

The

return

code

that

ARXEXEC

returns

in

register

15

is

the

value

20000

plus

the

REXX

error

number.

See

“How

ARXEXEC

Returns

Information

about

Syntax

Errors”

on

page

346.

Note:

The

language

processor

environment

is

the

environment

in

which

the

program

runs.

If

ARXEXEC

cannot

locate

an

environment

in

which

to

process

the

program,

an

environment

is

automatically

initialized.

If

an

environment

was

being

initialized

and

an

error

occurred

during

the

initialization

process,

ARXEXEC

returns

with

return

code

20,

but

an

error

message

is

not

issued.

Calling

REXX

Chapter

17.

Programming

Services

347

External

Functions

and

Subroutines

and

Function

Packages

You

can

write

your

own

external

functions

and

subroutines,

which

allow

you

to

extend

the

capabilities

of

the

REXX

language.

You

can

write

external

functions

or

subroutines

that

supplement

the

built-in

functions

or

external

functions

that

are

provided.

You

can

also

write

a

function

to

replace

one

of

the

functions

that

is

provided.

For

example,

if

you

want

a

new

substring

function

that

performs

differently

from

the

SUBSTR

built-in

function,

you

can

write

your

own

substring

function

and

name

it

STRING.

Users

at

your

installation

can

then

use

the

STRING

function

in

their

programs.

You

can

write

external

functions

or

subroutines

in

REXX.

You

can

store

the

program

containing

the

function

or

subroutine

in

a

sublibrary

of

member

type

PROC.

You

can

also

write

an

external

function

or

subroutine

in

assembler

or

a

high-level

programming

language.

You

can

then

store

the

function

or

subroutine

in

a

sublibrary

of

type

PHASE.

The

language

in

which

you

write

the

program

must

support

the

system-dependent

interfaces

that

the

language

processor

uses

to

call

the

function

or

subroutine.

For

faster

access

of

a

function

or

subroutine,

and,

therefore,

better

performance,

you

can

group

frequently

used

external

functions

and

subroutines

in

a

function

package.

A

function

package

is

a

group

of

external

functions

and

subroutines

that

are

packaged

together.

To

include

an

external

function

or

subroutine

in

a

function

package,

you

must

link-edit

the

function

or

subroutine

into

a

phase.

You

can

link-edit

only

a

compiled

program

into

a

phase.

If

you

write

a

function

or

subroutine

as

a

REXX

program

and

the

program

is

interpreted

(that

is,

the

interpreter

executes

the

program),

you

cannot

include

the

function

or

subroutine

in

a

function

package.

However,

if

you

write

the

function

or

subroutine

in

REXX

and

the

REXX

program

is

compiled,

you

can

include

the

program

in

a

function

package

because

the

compiled

program

can

be

link-edited

into

a

phase.

See

page

502

for

a

list

of

books

for

the

IBM

Compiler

and

Library

for

REXX/370.

Interface

for

Writing

External

Function

and

Subroutine

Code

You

can

use

the

same

interface

to

call

a

subroutine

or

function.

The

only

difference

is

how

the

language

processor

handles

the

result

after

your

code

completes

and

returns

control

to

the

language

processor.

Before

your

code

gets

control,

the

language

processor

allocates

a

control

block

called

the

evaluation

block

(EVALBLOCK).

The

address

of

the

evaluation

block

is

passed

to

the

function

or

subroutine

code.

The

function

or

subroutine

code

places

the

result

into

the

evaluation

block,

which

is

returned

to

the

language

processor.

If

the

code

was

called

as

a

subroutine,

the

result

in

the

evaluation

block

is

placed

into

the

REXX

special

variable

RESULT.

If

the

code

was

called

as

a

function,

the

result

in

the

evaluation

block

is

used

in

the

interpretation

of

the

REXX

instruction

that

contained

the

function.

An

external

function

or

subroutine

receives

the

address

of

an

environment

block

in

register

0.

This

environment

block

address

should

be

passed

on

any

REXX/VSE

programming

services

called

from

the

external

function

or

subroutine.

This

is

particularly

important

if

the

environment

is

reentrant

because

programming

services

cannot

automatically

locate

a

reentrant

environment.

For

more

information

about

reentrant

environments,

see

“Using

the

Environment

Block

for

Reentrant

Environments”

on

page

332.

The

following

topics

describe

the

contents

of

the

registers

when

the

function

or

subroutine

code

gets

control

and

the

parameters

the

code

receives.

Entry

Specifications:

The

code

for

the

external

function

or

subroutine

receives

control

in

an

unauthorized

state.

The

contents

of

the

registers

are:

Register

0

Address

of

the

environment

block

of

the

program

that

called

the

external

function

or

subroutine

Register

1

Address

of

the

external

function

parameter

list

(EFPL)

Registers

2-12

Unpredictable

Functions,

Subroutines,

Function

Packages

348

REXX/VSE

Reference

Register

13

Address

of

a

register

save

area

Register

14

Return

address

Register

15

Entry

point

address

Parameters:

When

the

external

function

or

subroutine

gets

control,

register

1

points

to

the

external

function

parameter

list

(EFPL).

Table

21

describes

the

parameter

list.

A

mapping

macro

for

the

external

function

parameter

list,

ARXEFPL,

is

in

PRD1.BASE.

Table

21.

External

Function

Parameter

List

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

0

4

EFPLCOM

Reserved.

4

4

EFPLBARG

Reserved.

8

4

EFPLEARG

Reserved.

12

4

EFPLFB

Reserved.

16

4

EFPLARG

An

address

that

points

to

the

parsed

argument

list.

Each

argument

is

represented

by

an

address/length

pair.

X'FFFFFFFFFFFFFFFF'

ends

the

argument

list.

(See

Table

16

on

page

343

for

the

format

of

the

argument

list.)

If

the

function

or

subroutine

call

includes

no

arguments,

the

address

points

to

X'FFFFFFFFFFFFFFFF'.

20

4

EFPLEVAL

An

address

that

points

to

a

fullword.

The

fullword

contains

the

address

of

an

evaluation

block

(EVALBLOCK).

You

use

the

evaluation

block

to

return

the

result

of

the

function

or

subroutine.

Table

22

on

page

350

describes

the

evaluation

block.

Argument

List:

See

Table

16

on

page

343

for

the

format

of

the

argument

list

the

function

or

subroutine

code

receives

at

offset

+16

(decimal)

in

the

external

function

parameter

list.

A

mapping

macro

for

the

argument

list,

ARXARGTB,

is

in

PRD1.BASE.

Evaluation

Block:

Before

the

function

or

subroutine

code

is

called,

the

language

processor

allocates

a

control

block

called

the

evaluation

block

(EVALBLOCK).

The

address

of

a

fullword

containing

the

address

of

the

evaluation

block

is

passed

to

your

function

or

subroutine

code

at

offset

+20

in

the

external

function

parameter

list.

The

function

or

subroutine

code

computes

the

result

and

returns

the

result

in

the

evaluation

block.

The

evaluation

block

consists

of

a

header

and

data,

in

which

you

place

the

result

from

your

function

or

subroutine

code.

Table

22

shows

the

format

of

the

evaluation

block.

A

mapping

macro

for

the

evaluation

block,

ARXEVALB,

is

in

PRD1.BASE.

Notes:

1.

The

ARXEXEC

routine

also

uses

an

evaluation

block

to

return

the

result

from

a

program

that

is

specified

on

either

the

RETURN

or

EXIT

instruction.

The

format

of

the

evaluation

block

that

ARXEXEC

uses

is

identical

to

the

format

of

the

evaluation

block

passed

to

your

function

or

subroutine

code.

“The

Evaluation

Block

(EVALBLOCK)”

on

page

345

describes

the

control

block

for

ARXEXEC.

2.

Each

field

name

in

the

following

table

must

include

the

prefix

EVALBLOCK_.

Functions,

Subroutines,

Function

Packages

Chapter

17.

Programming

Services

349

Table

22.

Format

of

the

Evaluation

Block

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

0

4

EVPAD1

A

fullword

that

contains

X'00'.

This

field

is

reserved

and

is

not

used.

4

4

EVSIZE

Specifies

the

total

size

of

the

evaluation

block

in

doublewords.

8

4

EVLEN

On

entry,

this

field

is

set

to

X'80000000'.

This

indicates

no

result

is

currently

stored

in

the

evaluation

block.

On

return,

specify

the

length

of

the

result,

in

bytes,

that

your

code

is

returning.

The

result

is

returned

in

the

EVDATA

field

at

offset

+16.

12

4

EVPAD2

A

fullword

that

contains

X'00'.

This

field

is

reserved

and

is

not

used.

16

n

EVDATA

The

field

in

which

you

place

the

result

from

the

function

or

subroutine

code.

The

length

of

the

field

depends

on

the

total

size

specified

for

the

control

block

in

the

EVSIZE

field.

The

total

size

of

the

EVDATA

field

is:

EVSIZE

*

8

-

16

The

function

or

subroutine

code

must

compute

the

result,

move

the

result

into

the

EVDATA

field

(at

offset

+16),

and

update

the

EVLEN

field

(at

offset

+8).

The

EVDATA

field

of

the

evaluation

block

that

REXX/VSE

passes

to

your

code

is

250

bytes.

Because

the

evaluation

block

is

passed

to

the

function

or

subroutine

code,

the

EVDATA

field

in

the

evaluation

block

may

be

too

small

to

hold

the

complete

result.

If

the

evaluation

block

is

too

small,

you

can

call

the

ARXRLT

(get

result)

routine

to

get

a

larger

evaluation

block.

Call

ARXRLT

using

the

GETBLOCK

function.

ARXRLT

creates

the

new

evaluation

block

and

returns

the

address

of

the

new

block.

Your

code

can

then

place

the

result

in

the

new

evaluation

block.

You

must

also

change

the

parameter

at

offset

+20

in

the

external

function

parameter

list

to

point

to

the

new

evaluation

block.

For

information

about

using

ARXRLT,

see

“Get

Result

Routine

–

ARXRLT”

on

page

368.

Functions

must

return

a

result.

Subroutines

may

optionally

return

a

result.

If

a

subroutine

does

not

return

a

result,

it

must

return

a

data

length

of

X'80000000'

in

the

EVLEN

field

in

the

evaluation

block.

Return

Specifications:

When

your

function

or

subroutine

code

returns

control,

the

contents

of

the

registers

must

be:

Registers

0-14

Same

as

on

entry

Register

15

Return

code

Return

Codes:

Your

function

or

subroutine

code

must

return

a

return

code

in

register

15.

Table

23

on

page

351

shows

the

return

codes.

Functions,

Subroutines,

Function

Packages

350

REXX/VSE

Reference

Table

23.

Return

Codes

from

Function

or

Subroutine

Code

(in

Register

15)

Return

Code

Description

0

Function

or

subroutine

code

processing

was

successful.

If

the

called

routine

is

a

function,

the

function

must

return

a

value

in

the

EVDATA

field

of

the

evaluation

block.

The

value

replaces

the

function

call.

If

the

function

does

not

return

a

result

in

the

evaluation

block,

syntax

error

44

occurs.

See

VSE/ESA

Messages

and

Codes

for

information

about

error

numbers

and

their

corresponding

messages.

If

the

called

routine

is

a

subroutine,

the

subroutine

can

optionally

return

a

value

in

the

EVDATA

field

of

the

evaluation

block.

The

REXX

special

variable

RESULT

is

set

to

the

returned

value.

Nonzero

Function

or

subroutine

code

processing

was

not

successful.

The

language

processor

stops

processing

the

REXX

program

that

called

your

function

or

subroutine

with

an

error

code

of

40,

unless

you

trap

the

error

with

a

SYNTAX

trap.

See

VSE/ESA

Messages

and

Codes

for

information

about

error

numbers

and

their

corresponding

messages.

Function

Packages

Function

packages

are

groups

of

external

functions

and

subroutines

that

are

packaged

together.

When

the

language

processor

encounters

a

function

call

or

call

to

a

subroutine,

the

language

processor

searches

the

function

packages

before

searching

sublibraries.

Grouping

frequently

used

external

functions

and

subroutines

in

a

function

package

permits

faster

access

to

the

function

or

subroutine.

“Search

Order”

on

page

62

describes

the

complete

search

order.

There

are

three

types

of

function

packages:

v

User

packages

are

function

packages

that

an

individual

user

can

write

to

replace

or

supplement

certain

supplied

functions.

v

Local

packages

are

function

packages

that

a

system

support

or

application

group

can

write.

Local

packages

may

contain

functions

and

subroutines

that

are

available

to

a

specific

group

of

users

or

to

the

entire

installation.

v

System

packages

are

function

packages

that

an

installation

can

write

for

system-wide

use

or

for

use

in

a

particular

language

processor

environment.

It

is

important

to

consider

the

search

order

when

assigning

a

function

to

a

particular

type

of

package.

The

search

order

for

the

types

of

function

packages

is:

1.

User

packages

2.

Local

packages

3.

System

packages.

To

provide

function

packages,

there

are

several

steps:

1.

First

write

the

individual

external

functions

and

subroutines

you

want

to

include

in

a

function

package.

You

can

write

an

external

function

or

subroutine

in

REXX

or

in

any

language

that

supports

the

interfaces

the

language

processor

uses

to

call

the

function

or

subroutine.

“Interface

for

Writing

External

Function

and

Subroutine

Code”

on

page

348

describes

the

interfaces.

To

add

an

external

function

or

subroutine

to

a

function

package,

you

must

link-edit

the

function

or

subroutine

into

a

phase.

You

can

link-edit

only

a

compiled

program

into

a

phase.

For

information

about

compiled

REXX

programs,

see

page

502

for

a

list

of

books

for

the

IBM

Compiler

and

Library

for

REXX/370.

2.

Write

the

directory

for

the

function

package.

Each

function

package

must

contain

a

directory.

The

function

package

directory

is

contained

in

a

phase.

The

directory

contains

a

header

followed

by

individual

entries

that

define

the

names

and/or

the

addresses

of

the

entry

points

of

your

function

or

subroutine

code.

“Directory

for

Function

Packages”

on

page

352

describes

the

directory

for

function

packages.

3.

Specify

the

function

package

name

(the

name

of

the

entry

point

at

the

beginning

of

the

directory)

in

the

function

package

table

for

a

language

processor

environment.

“Function

Package

Table”

on

page

406

Functions,

Subroutines,

Function

Packages

Chapter

17.

Programming

Services

351

406

describes

the

format

of

this

table.

There

are

several

ways

to

do

this,

depending

on

the

type

of

function

package

(user,

local,

or

system)

and

whether

you

are

providing

only

one

or

several

user

and

local

function

packages.

If

you

are

providing

a

local

or

user

function

package,

you

can

name

the

function

package

directory

ARXFLOC

(local

package)

or

ARXFUSER

(user

package).

These

two

“dummy”

directory

names

are

in

the

default

parameters

module

ARXPARMS.

By

naming

your

local

function

package

directory

ARXFLOC

and

your

user

function

package

directory

ARXFUSER,

the

external

functions

and

subroutines

in

the

packages

are

automatically

available

to

REXX

programs.

If

you

write

your

own

system

function

package

or

more

than

one

local

or

user

function

package,

you

must

provide

a

function

package

table

containing

the

name

of

your

directory.

You

must

also

provide

your

own

parameters

module

that

points

to

your

function

package

table.

Your

parameters

module

then

replaces

the

default

parameters

module

that

REXX/VSE

uses

to

initialize

a

default

language

processor

environment.

“Specifying

Directory

Names

in

the

Function

Package

Table”

on

page

356

describes

how

to

define

directory

names

in

the

function

package

table.

Note:

If

you

explicitly

call

the

ARXINIT

routine,

you

can

pass

the

address

of

a

function

package

table

containing

your

directory

names

on

the

call.

REXX/VSE

provides

the

ARXEFVSE

system

function

package.

The

function

package

provides

the

external

functions

ASSGN,

REXXIPT,

REXXMSG.

SETLANG,

SLEEP,

STORAGE,

SYSVAR,

and

OUTTRAP.

(“External

Functions”

on

page

96

describes

these.)

The

default

parameters

module

defines

the

ARXEFVSE

function

package.

(See

“Values

in

the

ARXPARMS

Default

Parameters

Module”

on

page

409.)

Other

IBM

products

may

also

provide

system

function

packages

that

you

can

use

for

REXX

processing.

If

you

install

a

product

that

provides

a

system

function

package

for

REXX/VSE,

you

must

change

the

function

package

table

and

provide

your

own

parameters

module.

The

product

itself

supplies

the

individual

functions

in

the

function

package

and

the

directory

for

their

function

package.

To

use

the

functions,

you

must

do

the

following:

1.

Change

the

function

package

table.

The

function

package

table

contains

information

about

the

user,

local,

and

system

function

packages

for

a

particular

language

processor

environment.

Table

57

on

page

407

shows

the

format

of

the

table.

Add

the

name

of

the

function

package

directory

to

the

entries

in

the

table.

You

must

also

change

the

SYSTEM_TOTAL

and

SYSTEM_USED

fields

in

the

table

header

(offsets

+28

and

+32).

Increment

the

value

in

each

field

by

1

to

indicate

the

additional

function

package

supplied.

2.

Provide

your

own

ARXPARMS

parameters

module.

The

function

package

table

is

part

of

the

parameters

module

that

REXX/VSE

uses

to

initialize

language

processor

environments.

Chapter

19,

“Language

Processor

Environments”

describes

environments,

their

characteristics,

and

the

format

of

the

parameters

module.

In

the

same

chapter,

“Changing

the

Default

Values

for

Initializing

an

Environment”

on

page

416

describes

how

to

provide

your

own

parameters

module.

Directory

for

Function

Packages

After

you

write

the

code

for

the

functions

and

subroutines

you

want

to

group

in

a

function

package,

you

must

write

a

directory

for

the

function

package.

You

need

a

directory

for

each

individual

function

package.

The

function

package

directory

is

contained

in

a

phase.

The

function

package

directory

name

is

the

name

of

the

entry

point

at

the

beginning

of

the

directory.

The

name

of

the

directory

is

specified

only

on

the

CSECT.

The

function

package

directory

also

defines

each

entry

point

for

the

individual

functions

and

subroutines

that

are

part

of

the

function

package.

The

directory

consists

of

two

parts:

a

header

followed

by

individual

entries

for

each

function

and

subroutine

included

in

the

function

package.

Table

24

on

page

353

shows

the

format

of

the

directory

header.

Table

25

on

page

353

illustrates

the

rows

of

entries

in

the

function

package

directory.

A

mapping

macro

for

the

function

package

directory

header

and

entries,

ARXFPDIR,

is

in

PRD1.BASE.

Functions,

Subroutines,

Function

Packages

352

REXX/VSE

Reference

Note:

Each

field

name

in

the

following

table

must

include

the

prefix

FPCKDIR_.

Table

24.

Format

of

the

Function

Package

Directory

Header

Offset

(Decimal)

Number

of

Bytes

Description

0

8

A

character

field

that

must

contain

the

character

string

ARXFPACK.

8

4

Specifies

the

length,

in

bytes,

of

the

header.

This

is

the

offset

from

the

beginning

of

the

header

to

the

first

entry

in

the

directory.

This

must

be

a

fullword

binary

number

equivalent

to

decimal

24.

12

4

The

number

of

functions

and

subroutines

defined

in

the

function

package

(the

number

of

rows

in

the

directory).

The

format

is

a

fullword

binary

number.

16

4

A

fullword

of

X'00'.

20

4

The

length,

in

bytes,

of

an

entry

in

the

directory

(length

of

a

row).

This

must

be

a

fullword

binary

number

equivalent

to

decimal

32.

As

stated

earlier,

the

function

package

table

for

the

default

parameters

module

ARXPARMS

contains

two

“dummy”

function

package

directory

names:

ARXFLOC

for

a

local

function

package

and

ARXFUSER

for

a

user

function

package.

If

you

create

a

local

or

user

function

package,

you

can

name

the

directory

ARXFLOC

and

ARXFUSER,

respectively.

By

using

ARXFLOC

and

ARXFUSER,

you

need

not

create

a

new

function

package

table

containing

your

directory

names.

If

you

are

creating

a

system

function

package

or

several

local

or

user

packages,

you

must

define

the

directory

names

in

a

function

package

table.

“Specifying

Directory

Names

in

the

Function

Package

Table”

on

page

356

describes

how

to

do

this

in

more

detail.

You

must

link-edit

the

external

function

or

subroutine

code

and

the

directory

for

the

function

package

into

a

phase.

You

can

link-edit

the

code

and

directory

into

separate

phases

or

into

the

same

phase.

Place

the

sublibrary

with

the

phases

in

the

search

sequence

for

a

CDLOAD.

The

sublibrary

must

be

in

the

active

PHASE

chain.

Note:

For

best

performance,

link-edit

the

code

for

individual

functions

or

subroutines

in

the

same

phase

as

the

function

package

directory.

Because

the

function

package

directory

is

always

loaded

during

REXX

environment

initialization

and

remains

in

storage,

the

functions

and

subroutines

are

loaded

once

and

are

in

storage

when

you

need

them.

If

the

code

for

your

external

function

or

subroutine

is

link-edited

into

a

phase

separate

from

the

function

package

directory,

that

phase

is

loaded

prior

to

each

call

of

the

function

or

subroutine

and

then

deleted

after

that

function

or

subroutine

has

completed.

Format

of

Entries

in

the

Directory:

Table

25

shows

two

rows

(two

entries)

in

a

function

package

directory.

The

first

entry

starts

immediately

after

the

directory

header.

Each

entry

defines

a

function

or

subroutine

in

the

function

package.

The

individual

fields

are

described

following

the

table.

Table

25.

Format

of

Entries

in

Function

Package

Directory

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

0

8

FUNCNAME

The

name

of

the

first

function

or

subroutine

(entry)

in

the

directory.

8

4

FUNCADDR

The

address

of

the

entry

point

of

the

function

or

subroutine

code

(for

the

first

entry).

12

4

Reserved.

Functions,

Subroutines,

Function

Packages

Chapter

17.

Programming

Services

353

Table

25.

Format

of

Entries

in

Function

Package

Directory

(continued)

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

16

8

SYSNAME

The

name

of

the

entry

point

in

a

phase

that

corresponds

to

the

function

or

subroutine

code

(for

the

first

entry).

24

8

SYSDD

Reserved.

32

8

FUNCNAME

The

name

of

the

second

function

or

subroutine

(entry)

in

the

directory.

40

4

FUNCADDR

The

address

of

the

entry

point

of

the

function

or

subroutine

code

(for

the

second

entry).

44

4

Reserved.

48

8

SYSNAME

The

name

of

the

entry

point

in

a

phase

that

corresponds

to

the

function

or

subroutine

code

(for

the

second

entry).

56

8

SYSDD

Reserved.

The

following

describes

each

entry

(row)

in

the

directory.

FUNCNAME

The

8-character

name

of

the

external

function

or

subroutine.

This

is

the

name

that

is

used

in

the

REXX

program.

The

name

must

be

in

uppercase,

left

justified,

and

padded

to

the

right

with

blanks.

If

this

field

is

blank,

the

entry

is

ignored.

FUNCADDR

A

4-byte

field

containing

the

address,

in

storage,

of

the

entry

point

of

the

function

or

subroutine

code.

This

address

is

used

only

if

the

code

has

already

been

loaded.

If

the

address

is

0,

REXX/VSE

uses

the

SYSNAME.

REXX/VSE

issues

a

CDLOAD

for

the

entry

point

SYSNAME

specifies.

If

the

address

is

present,

REXX/VSE

ignores

the

SYSNAME

field.

SYSNAME

An

8-byte

character

name

of

the

entry

point

in

a

phase

that

corresponds

to

the

function

or

subroutine

code

to

be

called

for

the

FUNCNAME.

The

name

must

be

in

uppercase,

left

justified,

and

padded

to

the

right

with

blanks.

If

the

address

is

present,

this

field

can

be

blank.

If

the

address

is

0

and

this

field

is

blank,

REXX/VSE

ignores

the

entry.

Example

of

a

Function

Package

Directory:

Figure

16

on

page

355

shows

an

example

of

a

function

package

directory.

The

example

is

explained

after

the

figure.

Functions,

Subroutines,

Function

Packages

354

REXX/VSE

Reference

In

Figure

16,

the

name

of

the

function

package

directory

is

ARXFUSER,

which

is

one

of

the

“dummy”

function

package

directory

names

in

the

default

parameters

module.

This

function

package

defines

four

entries:

v

MYF1,

which

is

an

external

function

v

MYF2,

which

is

an

external

function

v

MYS3,

which

is

an

external

subroutine

v

MYF4,

which

is

an

external

function

If

a

program

calls

the

external

function

MYF1,

REXX/VSE

loads

the

phase

with

entry

point

ABCFUN1.

If

a

program

calls

MYF2,

REXX/VSE

loads

the

phase

with

entry

point

ABCFUN2

from

the

active

phase

chain

or

the

SVA

because

the

ADDRESS

is

0.

ARXFUSER

CSECT

DC

CL8’ARXFPACK’

String

identifying

directory

DC

FL4’24’

Length

of

header

DC

FL4’4’

Number

of

rows

in

directory

DC

FL4’0’

Word

of

zeros

DC

FL4’32’

Length

of

directory

entry

*

Start

of

definition

of

first

entry

DC

CL8’MYF1

’

Name

used

in

program

DC

FL4’0’

Address

of

preloaded

code

DC

FL4’0’

Reserved

field

DC

CL8’ABCFUN1

’

Name

of

entry

point

DC

CL8’

’

Reserved

*

Start

of

definition

of

second

entry

DC

CL8’MYF2

’

Name

used

in

program

DC

FL4’0’

Address

of

preloaded

code

DC

FL4’0’

Reserved

field

DC

CL8’ABCFUN2

’

Name

of

entry

point

DC

CL8’

’

Reserved

*

Start

of

definition

of

third

entry

DC

CL8’MYS3

’

Name

used

in

program

DC

AL4(ABCSUB3)

Address

of

preloaded

code

DC

FL4’0’

Reserved

field

DC

CL8’ABCFUN3

’

Name

of

entry

point

DC

CL8’

’

Reserved

*

Start

of

definition

of

fourth

entry

DC

CL8’MYF4

’

Name

used

in

program

DC

VL4(ABCFUNC4)

Address

of

preloaded

code

DC

FL4’0’

Reserved

field

DC

CL8’ABCFUN4

’

Name

of

entry

point

DC

CL8’

’

Reserved

SPACE

2

ABCSUB3

EQU

*

*

Subroutine

code

for

subroutine

MYS3

*

*

End

of

subroutine

code

END

ARXFUSER

-

-

-

-

-

New

Object

Module

-

-

-

-

-

ABCFUNC4

CSECT

*

Function

code

for

function

MYF4

*

*

End

of

function

code

END

ABCFUNC4

Figure

16.

Example

of

a

Function

Package

Directory

Functions,

Subroutines,

Function

Packages

Chapter

17.

Programming

Services

355

The

phases

for

MYS3

and

MYF4

do

not

have

to

be

loaded.

The

MYS3

subroutine

has

been

assembled

as

part

of

the

same

object

module

as

the

function

package

directory.

The

MYF4

function

has

been

assembled

in

a

different

object

module,

but

has

been

link-edited

as

part

of

the

same

phase

as

the

directory.

The

assembler,

linkage

editor,

and

loader

have

resolved

the

addresses.

If

the

name

of

the

directory

is

not

ARXFLOC

or

ARXFUSER,

you

must

specify

the

directory

name

in

the

function

package

table

for

an

environment.

“Specifying

Directory

Names

in

the

Function

Package

Table”

describes

how

you

can

do

this.

When

a

language

processor

environment

is

initialized,

either

by

default

or

when

ARXINIT

is

explicitly

called,

the

phases

containing

the

function

package

directories

for

the

environment

are

automatically

loaded.

External

functions

or

subroutines

that

are

link-edited

as

separate,

stand-alone

phases

and

are

not

defined

in

any

function

package

are

loaded

prior

to

each

invocation

and

then

deleted

after

completion.

For

best

performance,

link-edit

the

code

for

individual

functions

or

subroutines

in

the

same

phase

as

the

function

package

directory.

Because

the

function

package

directory

is

always

loaded

during

REXX

environment

initialization,

the

functions

and

subroutines

are

loaded

once

and

are

in

storage

when

you

need

them.

Specifying

Directory

Names

in

the

Function

Package

Table

After

you

write

the

function

and

subroutine

code

and

the

directory,

you

must

define

the

directory

name

in

the

function

package

table.

The

function

package

table

contains

information

about

the

user,

local,

and

system

function

packages

that

are

available

to

REXX

programs

running

in

a

specific

language

processor

environment.

Each

environment

that

is

initialized

has

its

own

function

package

table.

“Function

Package

Table”

on

page

406

describes

the

format

of

the

table.

The

parameters

module

(and

the

PARMBLOCK

that

is

created)

defines

the

characteristics

for

a

language

processor

environment

and

contains

the

address

of

the

function

package

table

(in

the

PACKTB

field).

Variable

Pool

–

ARXEXCOM

The

language

processor

provides

an

interface

that

commands

and

programs

can

use

to

easily

access

and

manipulate

the

current

generation

of

REXX

variables.

Any

variable

can

be

inspected,

set,

or

dropped.

If

required,

all

active

variables

can

be

inspected

in

turn.

The

interface

code

checks

names

for

validity

and

optionally

does

substitution

into

compound

symbols

according

to

REXX

rules.

The

interface

also

makes

available

certain

other

information

about

the

program

that

is

running.

You

can

use

the

variable

pool

access

interface

ARXEXCOM

to

access

and

manipulate

REXX

program

variables.

ARXEXCOM

can

be

used

only

if

a

REXX

program

has

been

enabled

for

variable

pool

access

in

the

language

processor

environment.

That

is,

a

program

must

have

been

called,

but

is

not

currently

being

processed.

For

example,

you

can

call

a

REXX

program

that

calls

a

routine

and

the

routine

can

then

call

ARXEXCOM.

When

the

routine

calls

ARXEXCOM,

the

REXX

program

is

enabled

for

variable

pool

access,

but

it

is

not

being

processed.

If

a

routine

calls

ARXEXCOM

and

a

program

has

not

been

enabled,

ARXEXCOM

returns

with

an

error.

Note:

To

permit

FORTRAN

programs

to

call

ARXEXCOM,

there

is

an

alternate

entry

point

for

the

ARXEXCOM

routine.

The

alternate

entry

point

name

is

ARXEXC.

You

can

obtain

the

address

of

the

ARXEXCOM

routine

from

the

REXX

vector

of

external

entry

points.

“Format

of

the

REXX

Vector

of

External

Entry

Points”

on

page

421

describes

the

vector.

A

program

can

also

access

ARXEXCOM

by

using

a

VSE

CDLOAD

macro

to

obtain

the

entry

point

address.

If

a

program

uses

ARXEXCOM,

it

must

create

a

parameter

list

and

pass

the

address

of

the

parameter

list

in

register

1.

Functions,

Subroutines,

Function

Packages

356

REXX/VSE

Reference

Environment

Customization

Considerations

If

you

use

the

ARXINIT

initialization

routine

to

initialize

language

processor

environments,

you

can

specify

the

environment

in

which

you

want

ARXEXCOM

to

run.

On

the

call

to

ARXEXCOM,

you

can

optionally

specify

the

address

of

the

environment

block

for

the

environment

in

either

the

parameter

list

or

in

register

0.

For

more

information

about

specifying

environments

and

how

routines

determine

the

environment

in

which

to

run,

see

“Specifying

the

Address

of

the

Environment

Block”

on

page

331.

Entry

Specifications:

For

the

ARXEXCOM

routine,

the

contents

of

the

registers

on

entry

are:

Register

0

Address

of

an

environment

block

(optional)

Register

1

Address

of

the

parameter

list

the

caller

passes

Registers

2-12

Unpredictable

Register

13

Address

of

a

register

save

area

Register

14

Return

address

Register

15

Entry

point

address

Parameters:

In

register

1,

you

pass

the

address

of

a

parameter

list,

which

consists

of

a

list

of

addresses.

Each

address

in

the

parameter

list

points

to

a

parameter.

To

indicate

the

end

of

the

parameter

list,

set

the

high-order

bit

of

the

last

address

in

the

parameter

list

to

1.

For

more

information

about

passing

parameters,

see

“Parameter

Lists

for

REXX/VSE

Routines”

on

page

329.

Table

26

describes

the

parameters

for

ARXEXCOM.

Table

26.

Parameters

for

ARXEXCOM

Parameter

Number

of

Bytes

Description

Parameter

1

8

This

field

that

must

contain

the

character

string

’ARXEXCOM’.

Parameter

2

4

Parameter

2

and

parameter

3

must

be

identical,

that

is,

they

must

be

at

the

same

location

in

storage.

This

means

that

in

the

parameter

list

register

1

points

to

the

address

at

offset

+4

and

the

address

at

offset

+8

must

be

the

same.

Both

addresses

in

the

parameter

list

may

be

set

to

0.

Parameter

3

4

Same

as

Parameter

2.

Parameter

4

32

The

first

shared

variable

(request)

block

(SHVBLOCK)

in

a

chain

of

one

or

more

request

blocks.

The

format

of

the

SHVBLOCK

is

described

in

“″SHVBLOCK″”

on

page

358.

Parameter

5

4

The

address

of

the

environment

block

of

the

environment

in

which

you

want

ARXEXCOM

to

run.

This

parameter

is

optional.

If

you

specify

a

nonzero

value

for

the

environment

block

address

parameter,

ARXEXCOM

uses

the

value

you

specify

and

ignores

register

0.

However,

ARXEXCOM

does

not

check

whether

the

address

is

valid.

Therefore,

you

must

ensure

the

address

you

specify

is

correct

or

unpredictable

results

can

occur.

For

more

information,

see

“Specifying

the

Address

of

the

Environment

Block”

on

page

331.

Variable

Pool.

(ARXEXCOM)

Chapter

17.

Programming

Services

357

Table

26.

Parameters

for

ARXEXCOM

(continued)

Parameter

Number

of

Bytes

Description

Parameter

6

4

A

field

that

ARXEXCOM

uses

to

return

the

return

code.

This

is

optional.

If

you

use

this

parameter,

ARXEXCOM

returns

the

return

code

in

the

parameter

and

also

in

register

15.

Otherwise,

ARXEXCOM

uses

register

15

only.

If

the

parameter

list

is

incorrect,

the

return

code

is

returned

in

register

15

only.

“″Return

Codes″”

on

page

362

describes

the

return

codes.

The

Shared

Variable

(Request)

Block

-

SHVBLOCK:

Parameter

4

is

the

address

of

the

first

shared

variable

(request)

block

in

a

chain

of

one

or

more

blocks.

Each

SHVBLOCK

in

the

chain

must

have

the

structure

shown

in

Figure

17

on

page

359.

Variable

Pool.

(ARXEXCOM)

358

REXX/VSE

Reference

Table

27

on

page

360

describes

the

SHVBLOCK.

A

mapping

macro

for

the

SHVBLOCK,

ARXSHVB,

is

in

PRD1.BASE.

The

services

you

can

perform

using

ARXEXCOM

are

specified

in

the

SHVCODE

field

of

each

SHVBLOCK.

“″SHVCODE″”

on

page

360

describes

the

values

you

can

use.

**

*

SHVBLOCK:

Layout

of

shared-variable

PLIST

element

**

SHVBLOCK

DSECT

SHARED

VARIABLE

REQUEST

BLOCK

SHVNEXT

DS

A

Chain

pointer

to

next

SHVBLOCK

*

(0

if

last

block)

SHVUSER

DS

F

Available

for

private

use,

except

during

*

"Fetch

Next"

when

it

identifies

the

*

length

of

the

buffer

SHVNAMA

points

to.

SHVCODES

DS

0F

SHVCODE

DS

CL1

Individual

function

code

indicating

*

the

type

of

variable

pool

access

request

*

(S,F,D,s,f,d,N,

or

P)

SHVRET

DS

XL1

Individual

return

code

flags

DS

H’0’

Reserved,

should

be

0

SHVBUFL

DS

F

Length

of

’fetch’

value

buffer

SHVNAMA

DS

A

Address

of

variable

name

SHVNAML

DS

F

Length

of

variable

name

SHVVALA

DS

A

Address

of

value

buffer

SHVVALL

DS

F

Length

of

value

buffer

*

(Set

on

fetch)

SHVBLEN

EQU

*-SHVBLOCK

Length

of

SHVBLOCK

*

(length

of

this

block

=

32)

SPACE

1

*

*

Function

Codes

(Placed

in

SHVCODE):

*

*

(Note

that

the

symbolic

name

codes

are

lowercase)

SHVFETCH

EQU

C’F’

Copy

value

of

variable

to

buffer

SHVSTORE

EQU

C’S’

Set

variable

from

given

value

SHVDROPV

EQU

C’D’

Drop

variable

SHVSYFET

EQU

C’f’

Symbolic

name

Fetch

variable

SHVSYSET

EQU

C’s’

Symbolic

name

Set

variable

SHVSYDRO

EQU

C’d’

Symbolic

name

Drop

variable

SHVNEXTV

EQU

C’N’

Fetch

"next"

variable

SHVPRIV

EQU

C’P’

Fetch

private

information

SPACE

1

*

*

Return

Code

Flags

(Stored

in

SHVRET):

*

SHVCLEAN

EQU

X’00’

Execution

was

successful

SHVNEWV

EQU

X’01’

Variable

did

not

exist

SHVLVAR

EQU

X’02’

Last

variable

transferred

(for

"N")

SHVTRUNC

EQU

X’04’

Truncation

occurred

during

"Fetch"

SHVBADN

EQU

X’08’

Variable

name

not

valid

SHVBADV

EQU

X’10’

Value

not

valid,

may

be

too

long

SHVBADF

EQU

X’80’

Function

code

(SHVCODE)

not

valid

SPACE

1

*

*

R15

return

codes

*

SPACE

1

SHVRCOK

EQU

0

Entire

Plist

chain

processed

SHVRCINV

EQU

-1

Entry

conditions

not

valid

SHVRCIST

EQU

-2

Insufficient

storage

available

SPACE

MEND

Figure

17.

Request

Block

(SHVBLOCK)

Variable

Pool.

(ARXEXCOM)

Chapter

17.

Programming

Services

359

“″Return

Codes″”

on

page

362

describes

the

return

codes

from

the

ARXEXCOM

routine.

Table

27.

Format

of

the

SHVBLOCK

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

0

4

SHVNEXT

Specifies

the

address

of

the

next

SHVBLOCK

in

the

chain.

If

this

is

the

only

SHVBLOCK

in

the

chain

or

the

last

one

in

a

chain,

this

field

is

0.

4

4

SHVUSER

Specifies

the

length

of

a

buffer

pointed

to

by

the

SHVNAMA

field.

This

field

is

available

for

the

user’s

own

use,

except

for

a

“FETCH

NEXT”

request.

A

FETCH

NEXT

request

uses

this

field.

8

1

SHVCODE

A

1-byte

character

field

that

specifies

the

function

code,

which

indicates

the

type

of

variable

pool

access

request.

“″SHVCODE″”

describes

the

valid

codes.

9

1

SHVRET

Specifies

the

return

code

flag,

whose

values

are

shown

in

Figure

17

on

page

359.

10

2

Reserved.

12

4

SHVBUFL

Specifies

the

length

of

the

“Fetch”

value

buffer.

16

4

SHVNAMA

Specifies

the

address

of

the

variable

name.

20

4

SHVNAML

Specifies

the

length

of

the

variable

name.

The

maximum

length

of

a

variable

name

is

250

characters.

24

4

SHVVALA

Specifies

the

address

of

the

value

buffer.

28

4

SHVVALL

Specifies

the

length

of

the

value

buffer.

This

is

set

for

a

“Fetch”.

Function

Codes

(SHVCODE):

The

function

code

is

specified

in

the

SHVCODE

field

in

the

SHVBLOCK.

Three

function

codes

(S,

F,

and

D)

can

be

in

either

lowercase

or

uppercase.

Lowercase

(The

Symbolic

interface).

The

names

must

be

valid

REXX

symbols

(in

mixed

case

if

desired).

REXX

substitution

occurs

in

compound

variables.

Uppercase

(The

Direct

interface).

No

substitution

or

case

translation

takes

place.

Simple

symbols

must

be

valid

REXX

variable

names

(that

is,

in

uppercase

and

not

starting

with

a

digit

or

a

period),

but

in

compound

symbols

any

characters

(including

lowercase,

blanks,

and

so

on)

are

permitted

following

a

valid

REXX

stem.

Note:

If

you

want

generality,

use

the

Direct

interface

rather

than

the

Symbolic

interface.

The

other

function

codes,

N

and

P,

must

always

be

uppercase.

The

specific

actions

for

each

function

code

are

as

follows:

S

and

s

Set

variable.

The

SHVNAMA/SHVNAML

address/length

pair

describes

the

name

of

the

variable

to

set.

SHVVALA/SHVVALL

describes

the

value

to

be

assigned

to

it.

The

name

is

validated

to

ensure

it

contains

only

characters

that

can

appear

in

names.

The

variable

is

then

set.

If

the

name

is

a

stem,

all

variables

with

that

stem

are

set,

just

as

for

a

REXX

assignment.

SHVNEWV

is

set

if

the

variable

did

not

exist

before

the

operation.

F

and

f

Fetch

variable.

The

SHVNAMA/SHVNAML

address/length

pair

describes

the

name

of

the

variable

to

fetch.

SHVVALA

specifies

the

address

of

a

buffer

into

which

the

data

is

copied.

SHVBUFL

contains

the

length

of

the

buffer.

The

name

is

validated

to

ensure

that

it

contains

only

characters

that

can

appear

in

names.

The

variable

is

then

located

and

copied

to

the

buffer.

The

total

length

of

Variable

Pool.

(ARXEXCOM)

360

REXX/VSE

Reference

the

variable

is

put

into

SHVVALL;

if

the

value

was

truncated

(because

the

buffer

was

not

big

enough),

the

SHVTRUNC

bit

is

set.

If

the

variable

is

shorter

than

the

length

of

the

buffer,

no

padding

takes

place.

If

the

name

is

a

stem,

the

initial

value

of

that

stem

(if

any)

is

returned.

SHVNEWV

is

set

if

the

variable

did

not

exist

before

the

operation.

In

this

case,

the

value

copied

to

the

buffer

is

the

derived

name

of

the

variable,

after

substitution,

and

so

on.

(See

page

20.)

D

and

d

Drop

variable.

The

SHVNAMA/SHVNAML

address/length

pair

describes

the

name

of

the

variable

to

drop.

SHVVALA/SHVVALL

are

not

used.

The

name

is

validated

to

ensure

that

it

contains

only

characters

that

can

appear

in

names.

The

variable

is

then

dropped,

if

it

exists.

If

the

name

given

is

a

stem,

all

variables

starting

with

that

stem

are

dropped.

N

Fetch

Next

variable.

This

function

searches

through

all

the

variables

known

to

the

language

processor

(that

is,

all

those

of

the

current

generation

except

those

“hidden”

with

PROCEDURE

instructions).

The

order

in

which

the

variables

are

revealed

is

not

specified.

The

language

processor

maintains

a

pointer

to

its

list

of

variables.

This

is

reset

to

point

to

the

first

variable

in

the

list

whenever:

v

A

host

command

is

issued,

or

v

Any

function

other

than

“N”

is

processed

using

the

ARXEXCOM

interface.

Whenever

an

N

(Next)

function

is

processed,

the

name

and

value

of

the

next

variable

available

are

copied

to

two

buffers

the

caller

supplies.

SHVNAMA

specifies

the

address

of

a

buffer

into

which

the

name

is

to

be

copied,

and

SHVUSER

contains

the

length

of

that

buffer.

The

total

length

of

the

name

is

put

into

SHVNAML;

if

the

name

was

truncated

(because

the

buffer

was

not

big

enough)

the

SHVTRUNC

bit

is

set.

If

the

name

is

shorter

than

the

length

of

the

buffer,

no

padding

takes

place.

The

value

of

the

variable

is

copied

to

the

user’s

buffer

area

using

exactly

the

same

protocol

as

for

the

Fetch

operation.

If

SHVRET

has

SHVLVAR

set,

the

end

of

the

list

of

known

variables

has

been

found,

the

internal

pointers

have

been

reset,

and

no

valid

data

has

been

copied

to

the

user

buffers.

If

SHVTRUNC

is

set,

either

the

name

or

the

value

has

been

truncated.

By

repeatedly

executing

the

N

function

(until

the

SHVLVAR

flag

is

set),

a

program

can

locate

all

the

REXX

variables

of

the

current

generation.

P

Fetch

private

information.

This

interface

is

identical

to

the

F

fetch

interface,

except

that

the

name

refers

to

certain

fixed

information

items

that

are

available.

Only

the

first

letter

of

each

name

is

checked

(though

callers

should

supply

the

whole

name).

The

following

names

are

recognized:

ARG

Fetch

primary

argument

string.

Copies

to

the

user’s

buffer

area

the

first

argument

string

that

ARG

would

parse.

SOURCE

Fetch

source

string.

Copies

to

the

user’s

buffer

the

source

string,

as

described

for

PARSE

SOURCE

on

page

47.

VERSION

Fetch

version

string.

Copies

to

the

user’s

buffer

the

version

string,

as

described

for

PARSE

VERSION

on

page

48.

Return

Specifications:

For

the

ARXEXCOM

routine,

the

contents

of

the

registers

on

return

are:

Registers

0-14

Same

as

on

entry

Register

15

Return

code

The

output

from

ARXEXCOM

is

stored

in

each

SHVBLOCK.

Variable

Pool.

(ARXEXCOM)

Chapter

17.

Programming

Services

361

Return

Codes:

Table

28

shows

the

return

codes

for

the

ARXEXCOM

routine.

ARXEXCOM

returns

the

return

code

in

register

15.

If

you

specify

the

return

code

parameter

(parameter

6),

ARXEXCOM

also

returns

the

return

code

in

the

parameter.

Figure

17

on

page

359

shows

the

return

code

flags

that

are

stored

in

the

SHVRET

field

in

the

SHVBLOCK.

Table

28.

Return

Codes

from

ARXEXCOM

(in

Register

15)

Return

Code

Description

-2

Processing

was

not

successful.

Insufficient

storage

was

available

for

a

requested

SET.

Processing

was

terminated.

Some

of

the

request

blocks

(SHVBLOCKs)

may

not

have

been

processed;

their

SHVRET

bytes

are

unchanged.

-1

Processing

was

not

successful.

The

parameter

list

was

incorrect

or

the

environment

was

not

valid.

Entry

conditions

were

not

valid

for

one

of

the

following

reasons:

v

The

values

in

the

parameter

list

may

have

been

incorrect,

for

example,

parameter

2

and

parameter

3

may

not

have

been

identical

v

A

REXX

program

was

not

currently

running

v

Another

task

is

accessing

the

variable

pool

v

A

REXX

program

is

currently

running

but

is

not

enabled

for

variable

pool

access.

0

Processing

was

successful.

28

Processing

was

not

successful.

A

language

processor

environment

could

not

be

located.

32

Processing

was

not

successful.

The

parameter

list

is

incorrect.

The

parameter

list

contains

either

too

few

or

too

many

parameters,

or

the

high-order

bit

of

the

last

address

in

the

parameter

list

is

not

set

to

1

to

indicate

the

end

of

the

parameter

list.

n

Any

other

return

code

is

a

composite

formed

by

the

logical

OR

of

SHVRETs,

excluding

SHVNEWV

and

SHVLVAR.

Maintain

Entries

in

the

Host

Command

Environment

Table

–

ARXSUBCM

Use

the

ARXSUBCM

routine

to

maintain

entries

in

the

host

command

environment

table.

The

table

contains

the

names

of

the

valid

host

command

environments

that

REXX

programs

can

use

to

process

host

commands.

In

a

program,

you

can

use

the

ADDRESS

instruction

to

direct

a

host

command

to

a

specific

environment

for

processing.

The

host

command

environment

table

also

contains

the

name

of

the

routine

that

is

called

to

handle

the

processing

of

commands

for

each

specific

environment.

“Host

Command

Environment

Table”

on

page

404

describes

the

table

in

more

detail.

Note:

To

permit

FORTRAN

programs

to

call

ARXSUBCM,

there

is

an

alternate

entry

point

for

the

ARXSUBCM

routine.

The

alternate

entry

point

name

is

ARXSUB.

Using

ARXSUBCM,

you

can

add,

delete,

update,

or

query

entries

in

the

table.

(You

can

also

use

ARXSUBCM

to

dynamically

update

the

host

command

environment

table

while

a

REXX

program

is

running.)

You

can

obtain

the

address

of

the

ARXSUBCM

routine

from

the

REXX

vector

of

external

entry

points.

“Format

of

the

REXX

Vector

of

External

Entry

Points”

on

page

421

describes

the

vector.

A

program

can

also

access

ARXSUBCM

by

using

a

VSE

CDLOAD

macro

to

obtain

the

entry

point

address.

If

a

program

uses

ARXSUBCM,

it

must

create

a

parameter

list

and

pass

the

address

of

the

parameter

list

in

register

1.

ARXSUBCM

changes

or

queries

the

host

command

environment

table

for

the

current

language

processor

environment,

that

is,

for

the

environment

in

which

it

runs

(see

“General

Considerations

for

Calling

Variable

Pool.

(ARXEXCOM)

362

REXX/VSE

Reference

REXX/VSE

Routines”

on

page

328

for

information).

ARXSUBCM

affects

only

the

environment

in

which

it

runs.

Changes

to

the

table

take

effect

immediately

and

remain

in

effect

until

the

language

processor

environment

is

terminated.

Environment

Customization

Considerations

If

you

use

the

ARXINIT

initialization

routine

to

initialize

language

processor

environments,

you

can

specify

the

environment

in

which

you

want

ARXSUBCM

to

run.

On

the

call

to

ARXSUBCM,

you

can

optionally

specify

the

address

of

the

environment

block

for

the

environment

in

either

the

parameter

list

or

in

register

0.

For

more

information

about

specifying

environments

and

how

routines

determine

the

environment

in

which

to

run,

see

“Specifying

the

Address

of

the

Environment

Block”

on

page

331.

If

the

environment

in

which

ARXSUBCM

runs

is

part

of

a

chain

of

environments

and

you

use

ARXSUBCM

to

change

the

host

command

environment

table,

the

following

applies:

v

The

changes

do

not

affect

the

environments

that

are

higher

in

the

chain

or

existing

environments

that

are

lower

in

the

chain.

v

The

changes

are

propagated

to

any

language

processor

environment

that

is

created

on

the

chain

after

ARXSUBCM

updates

the

table.

Entry

Specifications:

For

the

ARXSUBCM

routine,

the

contents

of

the

registers

on

entry

are:

Register

0

Address

of

an

environment

block

(optional)

Register

1

Address

of

the

parameter

list

the

caller

passes

Registers

2-12

Unpredictable

Register

13

Address

of

a

register

save

area

Register

14

Return

address

Register

15

Entry

point

address

Parameters:

In

register

1,

you

pass

the

address

of

a

parameter

list,

which

consists

of

a

list

of

addresses.

Each

address

in

the

parameter

list

points

to

a

parameter.

To

indicate

the

end

of

the

parameter

list,

set

the

high-order

bit

of

the

last

address

in

the

parameter

list

to

1.

For

more

information

about

passing

parameters,

see

“Parameter

Lists

for

REXX/VSE

Routines”

on

page

329.

Table

29

describes

the

parameters

for

ARXSUBCM.

Table

29.

Parameters

for

ARXSUBCM

Parameter

Number

of

Bytes

Description

Parameter

1

8

The

function

to

be

performed.

The

name

of

the

function

must

be

left

justified

and

padded

to

the

right

with

blanks.

The

valid

functions

are:

v

ADD

v

DELETE

v

UPDATE

v

QUERY.

If

the

function

is

ADD,

UPDATE,

or

QUERY,

then

parameter

3,

the

string

length,

must

be

the

length

of

a

SUBCOMTB

entry.

If

the

function

is

DELETE,

parameter

2,

the

string

address,

and

parameter

3,

the

string

length,

must

be

0.

See

“″Functions″”

on

page

364

for

descriptions

of

each

function.

ARXSUBCM

Routine

Chapter

17.

Programming

Services

363

Table

29.

Parameters

for

ARXSUBCM

(continued)

Parameter

Number

of

Bytes

Description

Parameter

2

4

The

address

of

a

string.

On

both

input

and

output,

the

string

has

the

same

format

as

an

entry

in

the

host

command

environment

table.

“″Format

of

a

Host

Command

Environment

Table

Entry″”

describes

the

entry

in

more

detail.

Parameter

3

4

The

length

of

the

string

(entry)

to

which

parameter

2

points.

Parameter

4

8

The

name

of

the

subcommand.

The

name

must

be

left

justified

and

padded

to

the

right

with

blanks.

The

host

command

environment

name

can

contain

alphabetic

(a-z,

A-Z),

national

(@,

$,

#),

or

numeric

(0-9)

characters

and

is

translated

to

uppercase

before

it

is

stored

in

the

host

command

table.

Parameter

5

4

The

address

of

the

environment

block

for

the

environment

in

which

you

want

ARXSUBCM

to

run.

This

parameter

is

optional.

If

you

specify

a

nonzero

value

for

the

environment

block

address

parameter,

ARXSUBCM

uses

the

value

you

specify

and

ignores

register

0.

However,

ARXSUBCM

does

not

check

whether

the

address

is

valid.

Therefore,

you

must

ensure

the

address

you

specify

is

correct

or

unpredictable

results

can

occur.

For

more

information,

see

“Specifying

the

Address

of

the

Environment

Block”

on

page

331.

Parameter

6

4

A

4-byte

field

that

ARXSUBCM

uses

to

return

the

return

code.

The

return

code

parameter

is

optional.

If

you

use

this

parameter,

ARXSUBCM

returns

the

return

code

in

the

parameter

and

also

in

register

15.

Otherwise,

ARXSUBCM

uses

register

15

only.

If

the

parameter

list

is

incorrect,

the

return

code

is

returned

in

register

15

only.

“″Return

Codes″”

on

page

365

describes

the

return

codes.

Functions:

Parameter

1

contains

the

name

of

the

function

ARXSUBCM

is

to

perform.

The

functions

are:

ADD

Adds

an

entry

to

the

table

using

the

values

that

the

call

specifies.

ARXSUBCM

does

not

check

for

duplicate

entries.

If

you

add

a

duplicate

entry

and

then

call

ARXSUBCM

to

delete

the

entry,

ARXSUBCM

deletes

the

duplicate

entry

and

leaves

the

original

one.

DELETE

Deletes

the

last

occurrence

of

the

specified

entry

from

the

table.

UPDATE

Updates

the

specified

entry

with

the

new

values

the

call

specifies.

ARXSUBCM

does

not

change

the

entry

name

(the

name

of

the

host

command

environment).

QUERY

Returns

the

values

associated

with

the

last

occurrence

of

the

entry

the

call

specifies.

Format

of

a

Host

Command

Environment

Table

Entry:

Parameter

2

points

to

a

string

that

has

the

same

format

as

an

entry

(row)

in

the

host

command

environment

table.

Table

30

on

page

365

shows

the

format

of

an

entry.

A

mapping

macro

for

the

table

entries,

ARXSUBCT,

is

in

PRD1.BASE.

“Host

Command

Environment

Table”

on

page

404

describes

the

table

in

more

detail.

ARXSUBCM

Routine

364

REXX/VSE

Reference

Note:

Each

field

name

in

the

following

table

must

include

the

prefix

SUBCOMTB_.

Table

30.

Format

of

an

Entry

in

the

Host

Command

Environment

Table

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

0

8

NAME

The

name

of

the

host

command

environment.

The

name

must

contain

alphabetic

(a-z,

A-Z),

national

(@,

$,

#),

or

numeric

(0-9)

characters

and

is

translated

to

uppercase

before

it

is

stored

in

the

host

command

table.

8

8

ROUTINE

The

name

of

the

host

command

environment

routine

that

is

called

to

handle

the

processing

of

host

commands

in

the

specified

environment.

The

host

command

environment

routine

is

one

of

the

replaceable

routines.

See

“Host

Command

Environment

Routine”

on

page

459

for

information

about

writing

the

routine.

The

routine

must

contain

alphabetic

(a-z,

A-Z),

national

(@,

$,

#),

or

numeric

(0-9)

characters,

must

begin

with

an

alphabetic

or

national

character,

and

is

translated

to

uppercase

before

it

is

stored

in

the

host

command

table.

16

16

TOKEN

A

user

token

that

is

passed

to

the

routine

when

it

is

called.

Return

Specifications:

The

contents

of

the

registers

on

return

from

ARXSUBCT

are:

Registers

0-14

Same

as

on

entry

Register

15

Return

code

Return

Codes:

Table

31

shows

the

return

codes,

which

ARXSUBCM

puts

in

register

15.

If

you

specify

parameter

6,

the

return

code

parameter,

ARXSUBCM

also

puts

the

return

code

in

this

parameter.

Table

31.

Return

Codes

for

ARXSUBCM

Return

Code

Description

0

Processing

was

successful.

4

Entry

was

not

found

(for

FIND

and

DELETE

functions

only).

8

Processing

was

not

successful.

The

specified

entry

was

not

found

in

the

table.

A

return

code

of

8

is

used

only

for

the

DELETE,

UPDATE,

and

QUERY

functions.

20

Processing

was

not

successful.

An

error

occurred.

A

message

that

explains

the

error

is

also

issued.

28

Processing

was

not

successful.

A

language

processor

environment

could

not

be

located.

32

Processing

was

not

successful.

The

parameter

list

was

incorrect.

The

parameter

list

contains

too

few

or

too

many

parameters,

or

the

high-order

bit

of

the

last

address

is

not

set

to

1

to

indicate

the

end

of

the

parameter

list.

Note:

ARXSUBCM

does

not

support

the

use

of

DBCS

characters

in

host

command

environment

names.

Trace

and

Execution

Control

Routine

–

ARXIC

Use

the

ARXIC

routine

to

control

the

tracing

and

execution

of

REXX

programs.

A

program

can

call

ARXIC

to

use

the

following

REXX

immediate

commands:

v

HI

(Halt

Interpretation)

—

to

halt

the

interpretation

of

REXX

programs

v

HT

(Halt

Typing)

—

to

suppress

output

that

REXX

programs

generate

v

RT

(Resume

Typing)

—

to

restore

output

you

previously

suppressed

ARXSUBCM

Routine

Chapter

17.

Programming

Services

365

v

TQ

(Trace

Query)

—

to

test

if

tracing

of

REXX

programs

is

set

on

or

off

by

TS

or

TE.

v

TS

(Trace

Start)

—

to

start

tracing

of

REXX

programs

v

TE

(Trace

End)

—

to

end

tracing

of

REXX

programs.

The

immediate

commands

are

described

in

Chapter

10,

“REXX/VSE

Commands.”

You

can

obtain

the

address

of

the

ARXIC

routine

from

the

REXX

vector

of

external

entry

points.

“Format

of

the

REXX

Vector

of

External

Entry

Points”

on

page

421

describes

the

vector.

A

program

can

also

access

ARXIC

by

using

a

VSE

CDLOAD

macro

to

obtain

the

entry

point

address.

If

a

program

uses

ARXIC,

the

program

must

create

a

parameter

list

and

pass

the

address

of

the

parameter

list

in

register

1.

Environment

Customization

Considerations

If

you

use

the

ARXINIT

initialization

routine

to

initialize

language

processor

environments,

you

can

specify

the

environment

in

which

you

want

ARXIC

to

run.

On

the

call

to

ARXIC,

you

can

optionally

specify

the

address

of

the

environment

block

for

the

environment

in

either

the

parameter

list

or

in

register

0.

For

more

information

about

specifying

environments

and

how

routines

determine

the

environment

in

which

to

run,

see

“Specifying

the

Address

of

the

Environment

Block”

on

page

331.

ARXIC

affects

only

the

language

processor

environment

in

which

it

runs.

Entry

Specifications:

For

the

ARXIC

routine,

the

contents

of

the

registers

on

entry

are:

Register

0

Address

of

an

environment

block

(optional)

Register

1

Address

of

the

parameter

list

the

caller

passes

Registers

2-12

Unpredictable

Register

13

Address

of

a

register

save

area

Register

14

Return

address

Register

15

Entry

point

address.

Parameters:

In

register

1,

you

pass

the

address

of

a

parameter

list,

which

consists

of

a

list

of

addresses.

Each

address

in

the

parameter

list

points

to

a

parameter.

Set

the

high-order

bit

of

the

last

address

to

1

to

indicate

the

end

of

the

parameter

list.

For

more

information

about

passing

parameters,

see

“Parameter

Lists

for

REXX/VSE

Routines”

on

page

329.

Table

32

describes

the

parameters

for

ARXIC.

Table

32.

Parameters

for

ARXIC

Parameter

Number

of

Bytes

Description

Parameter

1

4

The

address

of

the

name

of

the

command

you

want

ARXIC

to

process.

The

valid

command

names

are

HI,

HT,

RT,

TQ,

TS,

and

TE.

Descriptions

of

the

command

names

follow

the

table.

Parameter

2

4

The

length

of

the

command

name

to

which

parameter

1

points.

ARXIC

Routine

366

REXX/VSE

Reference

Table

32.

Parameters

for

ARXIC

(continued)

Parameter

Number

of

Bytes

Description

Parameter

3

4

This

parameter

is

optional.

It

is

the

address

of

the

environment

block

to

use

when

performing

the

requested

service.

If

you

specify

a

nonzero

value

for

the

environment

block

address

parameter,

ARXIC

uses

the

value

you

specify

and

ignores

register

0.

However,

ARXIC

does

not

check

whether

the

address

is

valid.

Therefore,

you

must

ensure

the

address

you

specify

is

correct

or

unpredictable

results

can

occur.

For

more

information,

see

“Specifying

the

Address

of

the

Environment

Block”

on

page

331.

Parameter

4

4

This

parameter

is

optional.

It

is

a

field

that

ARXIC

uses

to

return

the

return

code.

If

you

use

this

parameter,

ARXIC

returns

the

return

code

in

the

parameter

and

also

in

register

15.

Otherwise,

ARXIC

uses

register

15

only.

If

the

parameter

list

is

incorrect,

the

return

code

is

returned

in

register

15

only.

“″Return

Codes″”

describes

return

codes.

The

valid

command

names

that

you

can

specify

are:

HI

(Halt

Interpretation)

The

halt

condition

is

set.

Between

instructions,

the

language

processor

checks

whether

it

should

halt

the

processing

of

REXX

programs.

If

HI

has

been

issued,

the

language

processor

stops

processing

REXX

programs.

HI

is

reset

if

a

halt

condition

is

enabled

or

when

no

programs

are

running

in

the

environment.

Note:

The

RXHLT

exit

can

also

raise

the

halt

condition.

See

page

475.

HT

(Halt

Typing)

This

suppresses

output

from

REXX

programs

(for

example,

the

SAY

instruction

does

not

produce

its

output).

HT

does

not

affect

output

from

any

other

part

of

REXX/VSE

and

does

not

affect

error

messages.

HT

is

reset

when

the

last

program

running

in

the

environment

ends.

RT

(Resume

Typing)

Resets

the

halt

typing

condition,

restoring

the

production

of

output

from

REXX

programs.

TQ

(Trace

Query)

Checks

if

tracing

of

REXX

programs

is

set

on

or

off.

TS

(Trace

Start)

Starts

tracing

of

REXX

programs.

TE

(Trace

End)

Ends

tracing

of

REXX

programs.

Return

Specifications:

For

the

ARXIC

routine,

the

contents

of

the

registers

on

return

are:

Registers

0-14

Same

as

on

entry

Register

15

Return

code.

Return

Codes:

Table

33

shows

the

return

codes

for

the

ARXIC

routine.

ARXIC

returns

the

return

code

in

register

15.

If

you

specify

the

return

code

parameter

(parameter

4),

ARXIC

also

returns

the

return

code

in

the

parameter.

Table

33.

Return

Codes

for

ARXIC

Return

Code

Description

0

Processing

was

successful.

For

TQ,

it

indicates

REXX

trace

was

set

OFF.

ARXIC

Routine

Chapter

17.

Programming

Services

367

Table

33.

Return

Codes

for

ARXIC

(continued)

Return

Code

Description

4

Processing

was

successful.

REXX

trace

is

set

ON.

This

return

code

only

applies

for

the

TQ

(Trace

Query)

command.

20

Processing

was

not

successful.

An

error

occurred.

REXX/VSE

issues

a

message

that

explains

the

error.

28

Processing

was

not

successful.

A

language

processor

environment

could

not

be

found.

32

Processing

was

not

successful.

The

parameter

list

is

incorrect.

The

parameter

list

contains

either

too

few

or

too

many

parameters,

or

the

high-order

bit

of

the

last

address

is

not

set

to

1

to

indicate

the

end

of

the

parameter

list.

Get

Result

Routine

–

ARXRLT

Use

the

ARXRLT

(get

result)

routine

to

obtain:

v

The

result

from

a

program

that

was

processed

by

calling

the

ARXEXEC

routine.

v

A

larger

evaluation

block

to

return

the

result

from

an

external

function

or

subroutine

that

you

have

written

in

a

programming

language

that

supports

the

parameter

interface.

v

An

evaluation

block

that

a

compiler

runtime

processor

can

use

to

handle

the

result

from

a

compiled

REXX

program.

See

page

“″Using

an

Evaluation

Block

to

Return

a

Result″”

on

page

369

for

details

about

obtaining

the

result

or

a

larger

evaluation

block.

You

can

access

ARXRLT

through

the

REXX

vector

of

external

entry

points.

“Format

of

the

REXX

Vector

of

External

Entry

Points”

on

page

421

describes

this

vector.

A

program

can

also

access

ARXRLT

by

using

a

VSE

CDLOAD

macro

to

obtain

the

entry

point

address.

A

compiler

runtime

processor

can

also

use

ARXRLT

to

obtain

an

evaluation

block

to

handle

the

result

from

a

compiled

REXX

program

that

is

currently

running.

The

evaluation

block

that

ARXRLT

returns

has

the

same

format

as

the

evaluation

block

for

ARXEXEC

or

for

external

functions

or

subroutines.

For

information

about

when

a

compiler

runtime

processor

might

require

an

evaluation

block,

see

Chapter

24,

“Support

for

the

Library

for

REXX/370

in

REXX/VSE,”

on

page

501.

For

information

about

the

format

of

the

evaluation

block,

see

“The

ARXEXEC

Routine”

on

page

338

and

“″Evaluation

Block″”

on

page

349.

Environment

Customization

Considerations

If

you

use

the

ARXINIT

initialization

routine

to

initialize

language

processor

environments,

you

can

specify

the

environment

in

which

you

want

ARXRLT

to

run.

On

the

call

to

ARXRLT,

you

can

optionally

specify

the

address

of

the

environment

block

for

the

environment

in

either

the

parameter

list

or

in

register

0.

For

more

information

about

specifying

environments

and

how

routines

determine

the

environment

in

which

to

run,

see

“Specifying

the

Address

of

the

Environment

Block”

on

page

331.

Entry

Specifications:

For

the

ARXRLT

routine,

the

contents

of

the

registers

on

entry

are:

Register

0

Address

of

an

environment

block

(optional)

Register

1

Address

of

the

parameter

list

the

caller

passes

Registers

2-12

Unpredictable

Register

13

Address

of

a

register

save

area

ARXIC

Routine

368

REXX/VSE

Reference

Register

14

Return

point

address

Register

15

Entry

point

address.

Parameters:

In

register

1,

you

pass

the

address

of

a

parameter

list,

which

consists

of

a

list

of

addresses.

Each

address

in

the

parameter

list

points

to

a

parameter.

Set

the

high-order

bit

of

the

last

address

to

1

to

indicate

the

end

of

the

parameter

list.

For

more

information

about

passing

parameters,

see

“Parameter

Lists

for

REXX/VSE

Routines”

on

page

329.

Table

34

describes

the

parameters

for

ARXRLT.

Table

34.

Parameters

for

ARXRLT

Parameter

Number

of

Bytes

Description

Parameter

1

8

The

function

to

be

performed.

The

name

of

the

function

must

be

left

justified,

in

uppercase,

and

padded

to

the

right

with

blanks.

“″Functions″”

on

page

370

describes

the

valid

functions.

Parameter

2

4

The

address

of

the

evaluation

block.

On

input,

this

parameter

is

used

only

for

the

GETRLT

and

GETRLTE

functions

but

not

for

the

GETBLOCK

and

GETEVAL

functions.

On

input,

specify

the

address

of

an

evaluation

block

that

is

large

enough

to

hold

the

result

from

the

program.

On

output,

this

parameter

is

used

only

for

the

GETBLOCK

and

GETEVAL

functions.

v

On

output

for

the

GETBLOCK

function,

the

parameter

returns

the

address

of

a

larger

evaluation

block

that

the

function

or

subroutine

code

can

use

to

return

a

result.

v

On

output

for

the

GETEVAL

function,

the

parameter

returns

the

address

of

an

evaluation

block

that

the

compiler

runtime

processor

can

use

for

the

compiled

program

that

is

currently

running.

Parameter

3

4

The

length,

in

bytes,

of

the

data

area

in

the

evaluation

block.

This

parameter

is

used

on

input

for

the

GETBLOCK

and

GETEVAL

functions

only.

Specify

the

size

needed

to

store

the

result

from

the

program

that

is

currently

running.

This

parameter

is

not

used

for

the

GETRLT

and

GETRLTE

functions.

Parameter

4

4

This

parameter

is

optional.

It

is

the

address

of

the

environment

block

to

use

when

performing

the

requested

service.

If

you

specify

a

nonzero

value

for

the

environment

block

address

parameter,

ARXRLT

uses

the

value

you

specify

and

ignores

register

0.

However,

ARXRLT

does

not

check

whether

the

address

is

valid.

Therefore,

ensure

the

address

you

specify

is

correct,

or

unpredictable

results

can

occur.

For

more

information,

see

“Specifying

the

Address

of

the

Environment

Block”

on

page

331.

Parameter

5

4

This

code

parameter

is

optional.

It

is

a

field

that

ARXRLT

uses

to

return

the

return

code.

If

you

use

this

parameter,

ARXRLT

returns

the

return

code

in

the

parameter

and

also

in

register

15.

Otherwise,

ARXRLT

uses

register

15

only.

If

the

parameter

list

is

incorrect,

the

return

code

is

returned

only

in

register

15.

“″Return

Codes″”

on

page

371

describes

the

return

codes.

Using

an

Evaluation

Block

to

Return

a

Result:

The

REXX

instructions

RETURN

and

EXIT

can

return

a

result

from

a

REXX

program.

When

the

program

you

are

running

does

not

return

a

result

or

you

want

to

ignore

the

result,

you

need

not

allocate

an

evaluation

block.

If

you

want

to

return

a

result,

when

you

call

ARXEXEC

you

can

allocate

an

evaluation

block

and

pass

its

address

to

ARXEXEC

for

use

in

returning

the

Get

Result

Routine

-

ARXRLT

Chapter

17.

Programming

Services

369

result

in

the

evaluation

block.

If

the

result

from

the

program

fits

into

the

evaluation

block,

the

data

is

placed

in

the

EVDATA

field

of

the

block

(padded

with

blanks

on

the

right),

and

the

length

of

the

block

(EVLEN

field)

is

updated.

Even

if

you

did

not

specify

an

evaluation

block,

or

if

the

evaluation

block

is

too

small

to

contain

the

result,

the

result

is

not

lost.

REXX/VSE

stores

the

result

in

its

own

evaluation

block.

ARXEXEC

also

places

as

much

of

the

result

as

fits

into

the

EVDATA

field

of

the

evaluation

block

and

returns

(in

EVLEN)

the

negative

of

the

length

needed.

You

can

get

the

result

as

follows:

1.

Obtain

an

evaluation

block

that

is

large

enough

to

contain

the

result.

Call

ARXRLT

(GETBLOCK

function),

specifying

the

length

of

the

data

area

you

require

in

parameter

3.

ARXRLT

returns

the

address

of

the

new

evaluation

block

in

parameter

2.

(It

also

frees

the

original

evaluation

block,

which

was

too

small

to

contain

the

result.)

2.

Call

ARXRLT

(GETRLT

or

GETRLTE

function)

to

return

the

result.

(You

pass

the

address

of

the

new

evaluation

block

in

parameter

2.)

ARXRLT

copies

the

result

from

the

program

that

was

stored

in

the

REXX’s

evaluation

block

into

your

evaluation

block

and

returns.

(If

the

evaluation

block

you

specify

on

a

call

to

ARXRLT

is

too

small,

you

can

use

the

same

technique

to

get

the

result.)

The

result

is

available

until

one

of

the

following

occurs:

v

You

call

ARXRLT

to

obtain

the

result

and

this

is

successful

v

Another

REXX

program

runs

in

the

same

language

processor

environment,

or

v

The

language

processor

environment

is

terminated.

Note:

The

language

processor

environment

is

the

environment

in

which

REXX

programs

and

routines

run.

See

“General

Considerations

for

Calling

REXX/VSE

Routines”

on

page

328

for

information.

Chapter

19,

“Language

Processor

Environments”

provides

more

details

about

environments

and

customization

services.

See

“″Evaluation

Block″”

on

page

349

for

more

information

about

the

format

of

the

evaluation

block.

Functions:

Parameter

1

contains

the

name

of

the

function

ARXRLT

is

to

perform:

GETBLOCK

Use

the

GETBLOCK

function

to

obtain

an

evaluation

block

if

you

did

not

do

so

before

or

if

a

larger

one

is

needed

for

the

external

function

or

subroutine

that

is

running.

The

GETBLOCK

function

is

valid

only

when

a

program

is

currently

running.

You

can

write

external

functions

and

subroutines

in

REXX

or

in

any

programming

language

that

VSE/ESA

supports

and

that

can

follow

the

REXX

conventions

for

passing

parameters.

If

your

external

function

or

subroutine

is

not

in

REXX,

when

your

code

is

called,

it

receives

the

address

of

an

evaluation

block.

Your

code

can

use

the

evaluation

block

to

return

the

result.

GETRLT

and

GETRLTE

These

functions

obtain

the

result

from

the

last

REXX

program

that

was

processed

in

the

language

processor

environment.

If

you

use

the

ARXEXEC

routine

to

run

a

program

and

then

need

to

call

ARXRLT

to

obtain

the

result

from

the

program,

call

ARXRLT

with

the

GETRLT

or

GETRLTE

function.

You

can

use

GETRLT

only

if

a

program

is

not

currently

running

in

the

language

processor

environment.

You

can

use

GETRLTE

regardless

of

whether

or

not

a

program

is

currently

running

in

the

environment;

this

provides

support

for

nested

REXX

programs.

For

example,

suppose

you

use

the

ARXEXEC

routine

to

run

a

program

and

the

result

from

the

program

does

not

fit

into

the

evaluation

block.

After

ARXEXEC

returns

control,

you

can

call

the

ARXRLT

routine

with

the

GETRLT

function

to

get

the

result

from

the

program.

At

this

point,

the

REXX

program

is

no

longer

running

in

the

environment.

For

example,

suppose

you

have

a

program

that

calls

an

external

function

that

is

written

in

assembler.

The

external

function

(assembler

program)

uses

the

ARXEXEC

routine

to

call

a

REXX

program.

However,

the

result

from

the

called

program

is

too

large

to

be

returned

to

the

external

function

in

the

evaluation

block.

The

external

function

can

allocate

a

larger

evaluation

block

and

then

use

ARXRLT

with

the

GETRLTE

function

to

obtain

the

result

from

the

program.

At

this

point,

the

original

program

Get

Result

Routine

-

ARXRLT

370

REXX/VSE

Reference

that

called

the

external

function

is

still

running

in

the

language

processor

environment.

GETRLTE

obtains

the

result

from

the

last

program

that

completed

in

the

environment,

which,

in

this

case,

is

the

program

the

external

function

called.

For

more

information

about

running

a

program

using

the

ARXEXEC

routine

and

the

evaluation

block,

see

“The

ARXEXEC

Routine”

on

page

338.

GETEVAL

The

GETEVAL

function

is

intended

for

use

by

a

compiler

runtime

processor.

GETEVAL

lets

a

compiler

runtime

processor

obtain

an

evaluation

block

whenever

it

has

to

handle

the

result

from

a

compiled

REXX

program

that

is

currently

running.

The

GETEVAL

function

is

supported

only

when

a

compiled

program

is

currently

running

in

the

language

processor

environment.

Note

that

if

you

write

an

external

function

or

subroutine

in

a

programming

language

other

than

REXX

and

your

function

or

subroutine

code

requires

a

larger

evaluation

block,

you

should

use

the

GETBLOCK

function,

not

the

GETEVAL

function.

Return

Specifications:

For

the

ARXRLT

get

result

routine,

the

contents

of

the

registers

on

return

are:

Registers

0-14

Same

as

on

entry

Register

15

Return

code.

Return

Codes:

ARXRLT

returns

a

return

code

in

register

15.

If

you

specify

the

return

code

parameter

(parameter

5),

ARXRLT

also

returns

the

return

code

in

the

parameter.

Table

35

shows

the

return

codes

if

you

call

ARXRLT

with

the

GETBLOCK

function

or

GETEVAL

function.

Table

35.

ARXRLT

Return

Codes

for

GETBLOCK

or

GETEVAL

Return

Code

Description

0

Processing

was

successful.

ARXRLT

allocated

a

new

evaluation

block

and

returned

the

address

of

the

evaluation

block.

20

Processing

was

not

successful.

A

new

evaluation

block

was

not

allocated.

This

could

be

because:

v

The

length

you

specified

(in

parameter

3)

was

incorrect.

The

length

may

have

been

negative

or

exceeded

the

maximum

value

of

16

megabytes

minus

the

length

of

the

evaluation

block

header.

v

REXX/VSE

could

not

obtain

the

storage.

v

The

function

was

requested

at

an

incorrect

time.

(Perhaps

a

program

was

not

running

in

the

language

processor

environment.)

v

You

specified

the

function

name

incorrectly

in

parameter

1.

The

evaluation

block

is

set

to

all

blanks

and

the

length

field

is

set

to

0.

28

Processing

was

not

successful.

A

valid

language

processor

environment

could

not

be

located.

32

Processing

was

not

successful.

The

parameter

list

is

not

valid.

The

parameter

list

contains

either

too

few

or

too

many

parameters,

or

the

high-order

bit

of

the

last

address

in

the

parameter

list

is

not

set

to

1

to

indicate

the

end

of

the

parameter

list.

Table

36

shows

the

return

codes

if

you

call

ARXRLT

with

the

GETRLT

or

GETRLTE

function.

Table

36.

ARXRLT

Return

Codes

for

the

GETRLT

and

GETRLTE

Functions

Return

Code

Description

0

Processing

was

successful.

A

return

code

of

0

indicates

that

ARXRLT

completed

successfully.

You

receive

this

return

code

when:

v

ARXRLT

copied

the

entire

result

and

set

the

length

field

to

the

length

of

the

data.

v

The

complete

result

was

not

returned.

In

this

case,

the

evaluation

block

was

too

small.

ARXRLT

sets

the

length

field

to

the

negative

of

the

length

needed.

v

No

result

was

available

(ARXRLT

could

not

find

an

evaluation

block).

Get

Result

Routine

-

ARXRLT

Chapter

17.

Programming

Services

371

Table

36.

ARXRLT

Return

Codes

for

the

GETRLT

and

GETRLTE

Functions

(continued)

Return

Code

Description

20

Processing

was

not

successful.

This

could

be

because:

v

You

specified

parameter

2,

the

pointer

to

the

evaluation

block,

as

0

v

The

evaluation

block

was

incorrect

(for

example,

the

value

in

the

EVLEN

field

was

less

than

0).

v

ARXRLT

could

not

locate

a

valid

REXX

environment

under

the

current

task.

(You

may

have

called

GETRLT

or

GETEVAL

when

a

program

was

not

running

in

the

language

processor

environment.

Or

you

may

have

called

GETEVAL

when

a

compiled

program

was

not

running

in

the

language

processor

environment)

v

You

specified

the

function

name

incorrectly

in

parameter

1.

28

Processing

was

not

successful.

A

valid

language

processor

environment

could

not

be

located.

32

Processing

was

not

successful.

The

parameter

list

is

not

valid.

The

parameter

list

contains

either

too

few

or

too

many

parameters,

or

the

high-order

bit

of

the

last

address

in

the

parameter

list

is

not

set

to

1

to

indicate

the

end

of

the

parameter

list.

SAY

Instruction

Routine

–

ARXSAY

The

SAY

instruction

routine,

ARXSAY,

lets

you

write

a

character

string

to

the

same

output

stream

as

the

REXX

keyword

instruction

SAY.

For

example,

you

can

write

a

string

to

the

default

output

stream

SYSLST.

“SAY”

on

page

53

describes

the

SAY

keyword

instruction.

You

can

obtain

the

address

of

the

ARXSAY

routine

from

the

REXX

vector

of

external

entry

points.

“Format

of

the

REXX

Vector

of

External

Entry

Points”

on

page

421

describes

the

vector.

A

program

can

also

access

ARXSAY

by

using

a

VSE

CDLOAD

macro

to

obtain

the

entry

point

address.

If

a

program

uses

ARXSAY,

it

must

create

a

parameter

list

and

pass

the

address

of

the

parameter

list

in

register

1.

Environment

Customization

Considerations

If

you

use

the

ARXINIT

initialization

routine

to

initialize

language

processor

environments,

you

can

specify

the

environment

in

which

you

want

ARXSAY

to

run.

On

the

call

to

ARXSAY,

you

can

optionally

specify

the

address

of

the

environment

block

for

the

environment

in

either

the

parameter

list

or

in

register

0.

For

more

information

about

specifying

environments

and

how

routines

determine

the

environment

in

which

to

run,

see

“Specifying

the

Address

of

the

Environment

Block”

on

page

331.

Entry

Specifications:

For

the

ARXSAY

routine,

the

contents

of

the

registers

on

entry

are:

Register

0

Address

of

an

environment

block

(optional)

Register

1

Address

of

the

parameter

list

the

caller

passes

Registers

2-12

Unpredictable

Register

13

Address

of

a

register

save

area

Register

14

Return

address

Register

15

Entry

point

address.

Parameters:

In

register

1,

you

pass

can

the

address

of

a

parameter

list,

which

consists

of

a

list

of

addresses.

Each

address

in

the

parameter

list

points

to

a

parameter.

Set

the

high-order

bit

of

the

last

Get

Result

Routine

-

ARXRLT

372

REXX/VSE

Reference

address

to

1

to

indicate

the

end

of

the

parameter

list.

For

more

information

about

passing

parameters,

see

“Parameter

Lists

for

REXX/VSE

Routines”

on

page

329.

Table

37

describes

the

parameters

for

ARXSAY.

Table

37.

Parameters

for

ARXSAY

Parameter

Number

of

Bytes

Description

Parameter

1

8

The

function

to

be

performed.

This

must

be

in

uppercase,

left

justified,

and

padded

to

the

right

with

blanks.

The

valid

functions

are:

v

WRITE

v

WRITEERR.

“″Functions″”

describes

the

functions

in

more

detail.

Parameter

2

4

The

address

of

a

fullword

in

storage

that

points

to

an

input

buffer

containing

a

string.

The

caller

supplies

the

string,

which

is

a

string

of

bytes

that

you

want

ARXSAY

to

write

to

the

output

stream.

There

are

no

restrictions

on

the

contents

of

the

string.

However,

the

target

device

for

producing

the

data

may

limit

the

characters

you

can

specify.

Parameter

3

4

The

length,

in

bytes,

of

the

string

to

which

parameter

2

points.

Parameter

4

4

This

parameter

is

optional.

It

is

address

of

the

environment

block

that

represents

the

environment

to

use

when

performing

the

requested

service.

If

you

specify

a

nonzero

value

for

the

environment

block

address

parameter,

ARXSAY

uses

the

value

you

specify

and

ignores

register

0.

However,

ARXSAY

does

not

check

whether

the

address

is

valid.

Therefore,

ensure

the

address

you

specify

is

correct,

or

unpredictable

results

can

occur.

For

more

information,

see

“Specifying

the

Address

of

the

Environment

Block”

on

page

331.

Parameter

5

4

This

parameter

is

optional.

It

is

a

field

that

ARXSAY

uses

to

return

the

return

code.

If

you

use

this

parameter,

ARXSAY

returns

the

return

code

in

the

parameter

and

also

in

register

15.

Otherwise,

ARXSAY

uses

register

15

only.

If

the

parameter

list

is

incorrect,

the

return

code

is

returned

in

register

15

only.

“″Return

Codes″”

on

page

374

describes

the

return

codes.

Functions:

Parameter

1

contains

the

name

of

the

function

ARXSAY

is

to

perform:

WRITE

Specifies

that

you

want

ARXSAY

to

write

the

input

string

you

provide

to

the

output

stream.

Output

is

directed

to

the

current

output

stream.

ASSGN(STDOUT)

returns

the

name

of

the

current

output

stream.

WRITEERR

Specifies

that

you

want

ARXSAY

to

write

the

input

string

you

provide

to

the

output

stream

to

which

error

messages

are

written.

The

settings

for

the

NOMSGWTO

and

NOMSGIO

flags

control

message

processing

in

a

language

processor

environment.

“Flags

and

Corresponding

Masks”

on

page

397

describes

the

flags.

Return

Specifications:

For

the

ARXSAY

routine,

the

contents

of

the

registers

on

return

are:

Registers

0-14

Same

as

on

entry

Register

15

Return

code.

ARXSAY

Routine

Chapter

17.

Programming

Services

373

Return

Codes:

Table

38

shows

the

return

codes

for

the

ARXSAY

routine.

ARXSAY

returns

the

return

code

in

register

15.

If

you

specify

the

return

code

parameter

(parameter

5),

ARXSAY

also

returns

the

return

code

in

the

parameter.

Table

38.

Return

Codes

for

ARXSAY

Return

Code

Description

0

Processing

was

successful.

The

input

string

was

written

to

the

output

stream.

8

Processing

was

successful.

However,

the

input

string

was

not

written

to

the

output

stream

because

Halt

Typing

(HT)

is

in

effect.

20

Processing

was

not

successful.

One

of

the

parameters

is

incorrect.

An

error

occurred

and

the

requested

function

is

not

performed.

REXX/VSE

may

issue

a

message

that

describes

the

error.

28

Processing

was

not

successful.

A

language

processor

environment

could

not

be

located.

32

Processing

was

not

successful.

The

format

of

the

parameter

list

is

incorrect.

The

parameter

list

has

too

few

or

too

many

parameters,

or

the

high-order

bit

of

the

last

address

is

not

set

to

1

to

indicate

the

end

of

the

parameter

list.

Halt

Condition

Routine

–

ARXHLT

The

halt

condition

routine,

ARXHLT,

lets

you

query

or

reset

the

halt

condition.

Using

ARXHLT,

you

can

determine

whether

a

halt

condition

has

been

set,

for

example,

with

the

HI

immediate

command.

You

can

also

reset

the

halt

condition.

You

can

obtain

the

address

of

the

ARXHLT

routine

from

the

REXX

vector

of

external

entry

points.

“Format

of

the

REXX

Vector

of

External

Entry

Points”

on

page

421

describes

the

vector.

A

program

can

also

access

ARXHLT

by

using

a

VSE

CDLOAD

macro

to

obtain

the

entry

point

address.

If

a

program

uses

ARXHLT,

it

must

create

a

parameter

list

and

pass

the

address

of

the

parameter

list

in

register

1.

Environment

Customization

Considerations

If

you

use

the

ARXINIT

initialization

routine

to

initialize

language

processor

environments,

you

can

specify

the

environment

in

which

you

want

ARXHLT

to

run.

On

the

call

to

ARXHLT,

you

can

optionally

specify

the

address

of

the

environment

block

for

the

environment

in

either

the

parameter

list

or

in

register

0.

For

more

information

about

specifying

environments

and

how

routines

determine

the

environment

in

which

to

run,

see

“Specifying

the

Address

of

the

Environment

Block”

on

page

331.

Entry

Specifications:

For

the

ARXHLT

routine,

the

contents

of

the

registers

on

entry

are:

Register

0

Address

of

an

environment

block

(optional)

Register

1

Address

of

the

parameter

list

the

caller

passes

Registers

2-12

Unpredictable

Register

13

Address

of

a

register

save

area

Register

14

Return

address

Register

15

Entry

point

address.

Parameters:

In

register

1,

you

can

pass

the

address

of

a

parameter

list,

which

consists

of

a

list

of

addresses.

Each

address

in

the

parameter

list

points

to

a

parameter.

Set

the

high-order

bit

of

the

last

ARXSAY

Routine

374

REXX/VSE

Reference

address

to

1

to

indicate

the

end

of

the

parameter

list.

For

more

information

about

passing

parameters,

see

“Parameter

Lists

for

REXX/VSE

Routines”

on

page

329.

Table

39

describes

the

parameters

for

ARXHLT.

Table

39.

Parameters

for

ARXHLT

Parameter

Number

of

Bytes

Description

Parameter

1

8

The

function

to

be

performed.

This

must

be

in

uppercase,

left

justified,

and

padded

to

the

right

with

blanks.

Valid

functions

are:

v

TESTHLT

v

CLEARHLT.

“″Functions″”

describes

the

functions.

Parameter

2

4

This

parameter

is

optional.

It

is

the

address

of

the

environment

block

that

represents

the

environment

in

which

you

want

ARXHLT

to

run.

If

you

specify

an

environment

block

address,

ARXHLT

uses

the

value

you

specify

and

ignores

register

0.

However,

ARXHLT

does

not

check

whether

the

address

is

valid.

Therefore,

ensure

the

address

you

specify

is

correct,

or

unpredictable

results

can

occur.

You

can

also

use

register

0

to

specify

the

address

of

an

environment

block.

If

you

use

register

0,

ARXHLT

checks

whether

the

address

is

valid.

For

more

information,

see

“Specifying

the

Address

of

the

Environment

Block”

on

page

331.

Parameter

3

4

This

parameter

is

optional.

It

is

a

field

that

ARXHLT

uses

to

return

the

return

code.

If

you

use

this

parameter,

ARXHLT

returns

the

return

code

in

the

parameter

and

also

in

register

15.

Otherwise,

ARXHLT

uses

only

register

15.

“″Return

Codes″”

describes

the

return

codes.

Functions:

Parameter

1

contains

the

name

of

the

function

ARXHLT

is

to

perform:

TESTHLT

Determines

whether

the

halt

condition

has

been

set.

For

example,

the

HI

immediate

command

or

ARXIC

(the

trace

and

execution

control

routine)

can

set

the

halt

condition.

Return

codes

0

and

4

from

ARXHLT

indicate

whether

or

not

the

halt

condition

has

been

set.

See

“″Return

Codes″”

for

more

information.

CLEARHLT

Resets

the

halt

condition.

Return

Specifications:

For

the

ARXHLT

routine,

the

contents

of

the

registers

on

return

are:

Registers

0-14

Same

as

on

entry

Register

15

Return

code.

Return

Codes:

Table

40

on

page

376

shows

the

return

codes

for

the

ARXHLT

routine.

ARXHLT

returns

the

return

code

in

register

15.

If

you

specify

the

return

code

parameter

(parameter

3),

ARXHLT

also

returns

the

return

code

in

the

parameter.

ARXHLT

Routine

Chapter

17.

Programming

Services

375

Table

40.

Return

Codes

for

ARXHLT

Return

Code

Description

0

Processing

was

successful.

For

TESTHLT,

this

indicates

the

halt

condition

was

tested

and

is

not

set.

This

means

that

REXX

program

processing

continues.

For

CLEARHLT,

it

indicates

successfully

resetting

the

halt

condition.

4

Processing

was

successful.

A

return

code

of

4

is

used

only

for

the

TESTHLT

function.

It

indicates

the

halt

condition

was

tested

and

is

set.

This

means

that

REXX

processing

will

be

halted,

for

example,

just

as

if

HI

were

processed.

20

Processing

was

not

successful.

One

of

the

parameters

was

incorrect.

An

error

occurred,

and

the

requested

function

is

not

performed.

ARXHLT

returns

a

return

code

of

20

if

the

function

name

you

specify

in

parameter

1

is

incorrect.

28

Processing

was

not

successful.

A

language

processor

environment

could

not

be

located.

32

Processing

was

not

successful.

The

format

of

the

parameter

list

is

incorrect.

It

contains

too

few

or

too

many

parameters,

or

the

high-order

bit

of

the

last

address

is

not

set

to

1

to

indicate

the

end

of

the

parameter

list.

Note:

The

ARXHLT

routine

also

calls

the

RXHLT

exit,

if

one

exists.

See

page

475

for

more

information.

Text

Retrieval

Routine

–

ARXTXT

The

text

retrieval

routine,

ARXTXT,

lets

you

retrieve

data

from

the

message

repository.

Besides

error

messages

(ERRORTEXT

built-in

function

output),

this

data

includes

information

that

the

DATE

built-in

function

could

return.

Using

ARXTXT,

you

can

retrieve

the:

v

English

names

for

the

days

of

the

week,

in

mixed

case

(for

example,

Thursday)

v

English

names

for

the

months

of

the

year,

in

mixed

case

(for

example,

August)

v

Abbreviated

English

names

for

the

months

of

the

year,

in

mixed

case

(for

example,

Aug)

v

Text

of

a

REXX

syntax

error

message.

For

example,

for

error

number

26

(message

ARX0026I),

the

message

text

is:

Invalid

whole

number

You

can

obtain

the

address

of

the

ARXTXT

routine

from

the

REXX

vector

of

external

entry

points.

“Format

of

the

REXX

Vector

of

External

Entry

Points”

on

page

421

describes

the

vector.

A

program

can

also

access

ARXTXT

by

using

a

VSE

CDLOAD

macro

to

obtain

the

entry

point

address.

If

a

program

uses

ARXTXT,

it

must

create

a

parameter

list

and

pass

the

address

of

the

parameter

list

in

register

1.

Environment

Customization

Considerations

If

you

use

the

ARXINIT

initialization

routine

to

initialize

language

processor

environments,

you

can

specify

the

environment

in

which

you

want

ARXTXT

to

run.

On

the

call

to

ARXTXT,

you

can

optionally

specify

the

address

of

the

environment

block

for

the

environment

in

either

the

parameter

list

or

in

register

0.

For

more

information

about

specifying

environments

and

how

routines

determine

the

environment

in

which

to

run,

see

“Specifying

the

Address

of

the

Environment

Block”

on

page

331.

Entry

Specifications:

For

the

ARXTXT

routine,

the

contents

of

the

registers

on

entry

are:

Register

0

Address

of

an

environment

block

(optional)

Register

1

Address

of

the

parameter

list

the

caller

passes

ARXHLT

Routine

376

REXX/VSE

Reference

Registers

2-12

Unpredictable

Register

13

Address

of

a

register

save

area

Register

14

Return

address

Register

15

Entry

point

address.

Parameters:

In

register

1,

you

pass

the

address

of

a

parameter

list,

which

consists

of

a

list

of

addresses.

Each

address

in

the

parameter

list

points

to

a

parameter.

Set

the

high-order

bit

of

the

last

address

to

1

to

indicate

the

end

of

the

parameter

list.

For

more

information

about

passing

parameters,

see

“Parameter

Lists

for

REXX/VSE

Routines”

on

page

329.

Table

41

describes

the

parameters

for

ARXTXT.

Table

41.

Parameters

for

ARXTXT

Parameter

Number

of

Bytes

Description

Parameter

1

8

The

function

to

be

performed.

The

name

of

the

function

must

be

in

uppercase,

left

justified,

and

padded

to

the

right

with

blanks.

Valid

functions

are:

v

DAY

v

MTHLONG

v

MTHSHORT

v

SYNTXMSG.

“″Functions

and

Text

Units″”

on

page

378

describes

the

functions.

Parameter

2

4

A

fullword

binary

field

that

contains

the

text

unit

corresponding

to

the

function

in

parameter

1.

The

text

unit

you

specify

depends

on

the

function

you

use

in

parameter

1

and

the

corresponding

value

you

want

ARXTXT

to

return.

“″Functions

and

Text

Units″”

on

page

378

describes

the

text

units

in

more

detail.

Parameter

3

4

The

address

of

an

area

in

storage

to

hold

the

text

that

ARXTXT

retrieves.

Parameter

4

4

The

length

of

the

area

in

storage

to

which

parameter

3

points.

You

are

recommended

to

provide

a

large

buffer

area

to

hold

the

result,

for

example,

250

bytes.

If

the

buffer

is

too

small

to

hold

the

returned

text,

ARXTXT

returns

with

return

code

20.

On

output,

ARXTXT

updates

parameter

4

to

contain

the

length

of

the

actual

text

it

returns.

Parameter

5

4

This

parameter

is

optional.

It

is

the

address

of

the

environment

block

that

represents

the

environment

in

which

you

want

ARXTXT

to

run.

If

you

specify

a

nonzero

value

for

the

environment

block

address

parameter,

ARXTXT

uses

the

value

you

specify

and

ignores

register

0.

However,

ARXTXT

does

not

check

whether

the

address

is

valid.

Therefore,

ensure

the

address

you

specify

is

correct

or

unpredictable

results

can

occur.

For

more

information,

see

“Specifying

the

Address

of

the

Environment

Block”

on

page

331.

Parameter

6

4

This

parameter

is

optional.

It

is

a

field

that

ARXTXT

uses

to

return

the

return

code.

If

you

use

this

parameter,

ARXTXT

returns

the

return

code

in

the

parameter

and

also

in

register

15.

Otherwise,

ARXTXT

uses

only

register

15.

If

the

parameter

list

is

incorrect,

the

return

code

is

returned

only

in

register

15.

“″Return

Codes″”

on

page

379

describes

the

return

codes.

ARXTXT

Routine

Chapter

17.

Programming

Services

377

Functions

and

Text

Units:

Parameter

1

contains

the

name

of

the

function

ARXTXT

is

to

perform.

Parameter

2

specifies

the

text

unit

you

want

ARXTXT

to

retrieve

for

the

particular

function.

The

functions

and

their

corresponding

text

units

you

can

request

are:

DAY

returns

the

English

name

of

a

day

of

the

week

in

mixed

case.

The

names

that

ARXTXT

retrieves

are

the

same

values

the

language

processor

uses

for

the

DATE(Weekday)

function.

The

name

of

the

day

that

ARXTXT

retrieves

depends

on

the

text

unit

you

specify

in

parameter

2.

Table

42

shows

the

text

units

for

parameter

2

and

the

corresponding

day

ARXTXT

retrieves

for

each

text

unit.

For

example,

if

you

want

ARXTXT

to

return

the

value

Saturday,

you

specify

text

unit

3.

Table

42.

Text

Unit

and

Day

Returned

-

DAY

Function

Text

Unit

Name

of

Day

Returned

1

Thursday

2

Friday

3

Saturday

4

Sunday

5

Monday

6

Tuesday

7

Wednesday

MTHLONG

returns

the

English

name

of

a

month,

in

mixed

case.

The

names

that

ARXTXT

retrieves

are

the

same

values

the

language

processor

uses

for

the

DATE(Month)

function.

The

name

of

the

month

that

ARXTXT

retrieves

depends

on

the

text

unit

you

specify

in

parameter

2.

Table

43

shows

the

text

units

for

parameter

2

and

the

corresponding

name

of

the

month

ARXTXT

retrieves

for

each

text

unit.

For

example,

if

you

want

ARXTXT

to

return

the

value

April,

you

specify

text

unit

4.

Table

43.

Text

Unit

and

Month

Returned

-

MTHLONG

Function

Text

Unit

Name

of

Month

Returned

1

January

2

February

3

March

4

April

5

May

6

June

7

July

8

August

9

September

10

October

11

November

12

December

MTHSHORT

returns

the

first

three

characters

of

the

English

name

of

a

month

in

mixed

case.

ARXTXT

retrieves

the

same

values

that

the

language

processor

uses

for

the

month

in

the

DATE(Normal)

function.

ARXTXT

Routine

378

REXX/VSE

Reference

The

abbreviated

name

of

the

month

that

ARXTXT

retrieves

depends

on

the

text

unit

you

specify

in

parameter

2.

Table

44

shows

the

text

units

for

parameter

2

and

the

corresponding

abbreviated

names

of

the

month

that

ARXTXT

retrieves

for

each

text

unit.

For

example,

if

you

want

ARXTXT

to

return

the

value

Sep,

you

specify

text

unit

9.

Table

44.

Text

Unit

and

Abbreviated

Month

Returned

-

MTHSHORT

Function

Text

Unit

Abbreviated

Name

of

Month

Returned

1

Jan

2

Feb

3

Mar

4

Apr

5

May

6

Jun

7

Jul

8

Aug

9

Sep

10

Oct

11

Nov

12

Dec

SYNTXMSG

The

SYNTXMSG

function

returns

the

message

text

for

a

specific

REXX

syntax

error

message.

ARXTXT

retrieves

the

same

text

that

the

ERRORTEXT

function

returns.

The

message

text

that

ARXTXT

retrieves

depends

on

the

text

unit

you

specify

in

parameter

2.

For

the

text

unit,

specify

the

error

number

corresponding

to

the

error

message.

For

example,

error

number

26

corresponds

to

message

ARX0026I.

The

message

text

for

ARX0026I

is:

Invalid

whole

number

The

SYNTXMSG

function

returns

this

value

if

you

specify

text

unit

26.

REXX

reserves

the

values

1–99

for

error

numbers.

However,

REXX

does

not

use

all

these

values

for

syntax

error

messages.

See

VSE/ESA

Messages

and

Codes

for

REXX

error

numbers

and

messages.

If

you

specify

a

text

unit

in

the

range

1-99

and

the

value

is

not

supported,

ARXTXT

returns

a

string

of

length

0.

Return

Specifications:

For

the

ARXTXT

routine,

the

contents

of

the

registers

on

return

are:

Registers

0-14

Same

as

on

entry

Register

15

Return

code.

Return

Codes:

Table

45

shows

the

return

codes

for

the

ARXTXT

routine.

ARXTXT

returns

the

return

code

in

register

15.

If

you

specify

the

return

code

parameter

(parameter

6),

ARXTXT

also

returns

the

return

code

in

the

parameter.

Table

45.

Return

Codes

for

ARXTXT

Return

Code

Description

0

Processing

was

successful.

ARXTXT

retrieved

the

text

you

requested

and

placed

the

text

into

the

buffer

area.

ARXTXT

Routine

Chapter

17.

Programming

Services

379

Table

45.

Return

Codes

for

ARXTXT

(continued)

Return

Code

Description

20

Processing

was

not

successful.

An

error

occurred

and

the

requested

function

is

not

performed.

ARXTXT

does

not

retrieve

the

text.

You

may

receive

a

return

code

of

20

if

the:

v

Buffer

is

too

small

to

hold

the

complete

text

v

Function

name

you

specified

for

parameter

1

is

incorrect

v

Text

unit

you

specified

for

parameter

2

is

incorrect

for

the

particular

function

you

requested

in

parameter

1.

28

Processing

was

not

successful.

A

language

processor

environment

could

not

be

located.

32

Processing

was

not

successful.

The

parameter

list

is

incorrect.

It

contains

too

few

or

too

many

parameters,

or

the

high-order

bit

of

the

last

address

is

not

1

to

indicate

the

end

of

the

parameter

list.

LINESIZE

Function

Routine

–

ARXLIN

The

LINESIZE

function

routine,

ARXLIN,

lets

you

obtain

the

same

value

that

the

LINESIZE

built-in

function

returns.

“LINESIZE”

on

page

96

describes

the

built-in

function.

You

can

obtain

the

address

of

the

ARXLIN

routine

from

the

REXX

vector

of

external

entry

points.

“Format

of

the

REXX

Vector

of

External

Entry

Points”

on

page

421

describes

the

vector.

A

program

can

also

access

ARXLIN

by

using

a

VSE

CDLOAD

macro

to

obtain

the

entry

point

address.

If

a

program

uses

ARXLIN,

it

must

create

a

parameter

list

and

pass

the

address

of

the

parameter

list

in

register

1.

Environment

Customization

Considerations

If

you

use

the

ARXINIT

initialization

routine

to

initialize

language

processor

environments,

you

can

specify

the

environment

in

which

you

want

ARXLIN

to

run.

On

the

call

to

ARXLIN,

you

can

optionally

specify

the

address

of

the

environment

block

for

the

environment

in

either

the

parameter

list

or

in

register

0.

For

more

information

about

specifying

environments

and

how

routines

determine

the

environment

in

which

to

run,

see

“Specifying

the

Address

of

the

Environment

Block”

on

page

331.

Entry

Specifications:

For

the

ARXLIN

routine,

the

contents

of

the

registers

on

entry

are:

Register

0

Address

of

an

environment

block

(optional)

Register

1

Address

of

the

parameter

list

the

caller

passes

Registers

2-12

Unpredictable

Register

13

Address

of

a

register

save

area

Register

14

Return

address

Register

15

Entry

point

address.

Parameters:

In

register

1,

you

pass

the

address

of

a

parameter

list,

which

consists

of

a

list

of

addresses.

Each

address

in

the

parameter

list

points

to

a

parameter.

Set

the

high-order

bit

of

the

last

address

to

1

to

indicate

the

end

of

the

parameter

list.

For

more

information

about

passing

parameters,

see

“Parameter

Lists

for

REXX/VSE

Routines”

on

page

329.

ARXTXT

Routine

380

REXX/VSE

Reference

Table

46

describes

the

parameters

for

ARXLIN.

Table

46.

Parameters

for

ARXLIN

Parameter

Number

of

Bytes

Description

Parameter

1

8

The

name

of

the

function

to

be

performed.

This

must

be

in

uppercase,

left

justified,

and

padded

to

the

right

with

blanks.

The

only

valid

function

name

is

LINESIZE.

ARXLIN

returns

the

same

value

that

the

LINESIZE

built-in

function

returns.

Parameter

2

4

ARXLIN

returns

the

LINESIZE

value

in

this

parameter.

ARXLIN

returns

the

same

value

that

the

LINESIZE

built-in

function

returns.

“LINESIZE”

on

page

96

describes

the

built-in

function.

The

value

ARXLIN

returns

in

this

parameter

is

valid

only

if

the

return

code

is

0.

Parameter

3

4

This

parameter

is

optional.

It

is

the

address

of

the

environment

block

that

represents

the

environment

in

which

you

want

ARXLIN

to

run.

If

you

specify

an

environment

block

address,

ARXLIN

uses

the

value

you

specify

and

ignores

register

0.

However,

ARXLIN

does

not

check

whether

the

address

is

valid.

Therefore,

ensure

the

address

you

specify

is

correct

or

unpredictable

results

can

occur.

You

can

also

use

register

0

to

specify

the

address

of

an

environment

block.

If

you

use

register

0,

ARXLIN

checks

whether

the

address

is

valid.

For

more

information,

see

“Specifying

the

Address

of

the

Environment

Block”

on

page

331.

Parameter

4

4

This

parameter

is

optional.

It

is

a

field

that

ARXLIN

uses

to

return

the

return

code.

If

you

use

this

parameter,

ARXLIN

returns

the

return

code

in

the

parameter

and

also

in

register

15.

Otherwise,

ARXLIN

uses

only

register

15.

“″Return

Codes″”

describes

the

return

codes.

Return

Specifications:

For

the

ARXLIN

routine,

the

contents

of

the

registers

on

return

are:

Registers

0-14

Same

as

on

entry

Register

15

Return

code

Return

Codes:

Table

47

shows

the

return

codes

for

the

ARXLIN

routine.

ARXLIN

returns

the

return

code

in

register

15.

If

you

specify

the

return

code

parameter

(parameter

4),

ARXLIN

also

returns

the

return

code

in

the

parameter.

Table

47.

Return

Codes

for

ARXLIN

Return

Code

Description

0

Processing

was

successful.

ARXLIN

returned

the

LINESIZE

value

in

parameter

2.

20

Processing

was

not

successful.

You

may

have

specified

an

incorrect

function

name

in

parameter

1.

The

only

valid

function

is

LINESIZE.

28

Processing

was

not

successful.

A

language

processor

environment

could

not

be

located.

32

Processing

was

not

successful.

The

parameter

list

is

incorrect.

It

contains

too

few

or

too

many

parameters,

or

the

high-order

bit

of

the

last

address

is

not

1

to

indicate

the

end

of

the

parameter

list.

ARXLIN

Routine

Chapter

17.

Programming

Services

381

OUTTRAP

Interface

Routine

–

ARXOUT

Use

the

OUTTRAP

interface

routine,

ARXOUT,

to

allow

programs

to

write

a

character

string

to

the

REXX

stem

specified

by

the

OUTTRAP

external

function.

Only

programs

can

use

this

interface

which

have

been

invoked

by

the

LINK

or

LINKPGM

host

command

environment.

ARXOUT

writes

into

the

OUTTRAP

stem

specified

by

the

REXX

program

which

calls

one

of

these

two

ADRESS

LINK

environments.

Environment

Customization

Considerations

On

the

call

to

the

OUTTRAP

interface

routine

you

pass

the

address

of

the

parameter

list

in

register

1.

On

the

call

to

ARXOUT

you

can

optionally

specify

the

address

of

the

environment

block

in

either

the

parameter

list

or

in

register

0.

If

you

specify

a

nonzero

value

as

environment

block

in

the

parameter

list,

ARXOUT

uses

the

value

and

ignores

register

0.

However,

ARXOUT

does

not

check

whether

the

address

is

valid.

If

you

do

not

specify

an

environment

block

or

the

specified

value

is

not

valid

ARXOUT

locates

the

current

environment

and

runs

in

that

environment.

If

a

current

environment

does

not

exist,

or

the

current

environment

was

initialized

on

a

different

task,

ARXOUT

returns

with

return

code

28.

For

more

information

about

specifying

environments

and

how

routines

determine

the

environment

in

which

to

run,

see

“Specifying

the

Address

of

the

Environment

Block”

on

page

331.

Entry

Specifications:

ARXOUT

has

RMODE

24

and

AMODE

ANY.

ARXOUT

returns

in

the

mode

of

the

calling

program

which

can

have

any

AMODE.

For

the

ARXOUT

routine,

the

contents

of

the

registers

on

entry

are:

Register

0

unpredictable

Register

1

Address

of

the

parameter

list

the

caller

passes

Registers

2-12

Unpredictable

Register

13

Address

of

the

save

area

Register

14

Return

address

Register

15

Entry

point

address.

Parameters:

In

register

1,

you

can

pass

the

address

of

a

parameter

list,

which

consists

of

a

list

of

addresses.

Each

address

in

the

parameter

list

points

to

a

parameter.

The

first

two

parameters

are

mandatory.

Parameters

3

and

4

are

optional.

Set

the

high-order

bit

of

the

last

address

to

1

to

indicate

the

end

of

the

parameter

list.

For

more

information

about

passing

parameters,

see

“Parameter

Lists

for

REXX/VSE

Routines”

on

page

329.

Table

48

describes

the

parameters

for

ARXOUT.

Table

48.

Parameters

for

ARXOUT

Parameter

Number

of

Bytes

Description

Parameter

1

Specifies

the

address

of

a

fullword

in

storage

that

points

to

an

input

buffer

containing

the

character

string.

The

caller

supplies

the

string

you

want

ARXOUT

to

write

into

OUTTRAP.

Parameter

2

Specifies

the

length

in

bytes

of

the

string

parameter

1

points

to.

ARXOUT

Routine

382

REXX/VSE

Reference

Table

48.

Parameters

for

ARXOUT

(continued)

Parameter

Number

of

Bytes

Description

Parameter

3

This

parameter

is

optional.

It

is

the

address

of

the

environment

ARXOUT

uses.

If

you

specify

a

zero

value

for

parameter

3,

ARXOUT

uses

the

environment

block

address

specified

in

register

0.

Parameter

4

This

parameter

is

optional.

It

is

the

field

ARXOUT

uses

to

return

the

return

code.

If

you

use

this

parameter,

ARXOUT

returns

the

return

code

in

this

parameter

and

register

15,

else

only

in

register

15.

If

the

caller

is

in

AMODE

24,

all

specified

addresses

are

interpreted

as

24

bit

addresses.

If

the

caller

is

in

AMODE

31,

all

specified

addresses

are

interpreted

as

31

bit

addresses.

Return

Codes:

Table

49

shows

the

return

codes

for

the

ARXOUT

routine.

ARXOUT

returns

the

return

code

in

register

15.

If

you

specify

the

return

code

parameter

(parameter

4),

ARXOUT

also

returns

the

return

code

in

the

parameter.

Table

49.

Return

Codes

for

ARXOUT

Return

Code

Description

0

Processing

was

successful.

The

input

string

was

accepted

and

written

to

OUTTRAP

if

the

maximum

number

of

output

records

are

not

exceeded.

Input

records

are

ignored

with

a

return

code

of

0

if

v

OUTTRAP

is

full

(maximum

number

of

output

records

are

exceeded).

v

OUTTRAP

is

OFF.

8

Processing

was

not

successful.

GETVIS

cannot

be

obtained.

20

Processing

was

not

successful.

An

error

occurred,

and

the

requested

function

is

not

performed.

24

Processing

was

not

successful.

The

caller

was

not

authorized

to

use

ARXOUT,

it

was

either

not

called

by

ADDRESS

LINK

or

LINKPGM

or

the

REXX

tables

were

not

initialized.

28

Processing

was

not

successful.

The

current

environment

does

not

exist,

or

the

current

environment

was

initalized

with

a

different

task.

32

Processing

was

not

successful.

Invalid

parameter

list.

ARXOUT

Routine

Chapter

17.

Programming

Services

383

ARXOUT

Routine

384

REXX/VSE

Reference

Chapter

18.

Customizing

Services

REXX/VSE

provides

customizing

services

for

REXX

processing

to

let

you

change

how

REXX

programs

are

processed

and

how

the

language

processor

accesses

and

uses

system

services.

Customizing

services

include

the

following:

Environment

Characteristics

These

routines

and

services

let

you

customize

the

environment

in

which

the

language

processor

runs

a

REXX

program.

This

environment

is

known

as

the

language

processor

environment.

It

defines

various

characteristics

relating

to

how

programs

are

processed

and

how

the

language

processor

accesses

and

uses

system

services.

REXX/VSE

provides

default

environment

characteristics

that

you

can

change

and

also

provides

a

routine

you

can

use

to

define

your

own

environment.

Replaceable

Routines

When

a

REXX

program

runs,

the

language

processor

uses

various

system

services,

such

as

services

for

loading

and

freeing

a

program,

performing

I/O,

obtaining

and

freeing

storage,

and

handling

data

stack

requests.

Routines

that

handle

these

types

of

system

services

are

known

as

replaceable

routines

because

you

can

provide

your

own

routine

to

replace

the

one

REXX/VSE

provides.

Exit

Routines

You

can

provide

exit

routines

to

customize

various

aspects

of

REXX

processing.

The

topics

in

this

chapter

introduce

the

major

interfaces

and

customizing

services.

The

following

chapters

describe

the

customizing

services

in

more

detail:

v

Chapter

19,

“Language

Processor

Environments”

describes

how

you

can

customize

the

environment

in

which

the

language

processor

executes

a

REXX

program

and

accesses

and

uses

system

services.

v

Chapter

20,

“Initialization

and

Termination

Routines”

describes

the

ARXINIT

and

ARXTERM

routines

for

initializing

and

terminating

language

processor

environments.

v

Chapter

21,

“Replaceable

Routines

and

Exits”

describes

the

routines

you

can

provide

that

access

system

services,

such

as

I/O

and

storage,

and

the

exits

you

can

use

to

customize

REXX

processing.

Flow

of

REXX

Program

Processing

Figure

18

on

page

386

shows

the

processing

of

a

REXX

program.

©

Copyright

IBM

Corp.

1988,

2004

385

As

the

figure

shows,

before

the

language

processor

runs

a

REXX

program,

a

language

processor

environment

must

exist.

After

an

environment

is

located

or

initialized,

the

program

is

loaded

into

storage

and

is

then

run.

While

a

program

is

running,

the

language

processor

may

need

to

access

different

system

services,

for

example,

to

handle

data

stack

requests

or

for

I/O

processing.

Routines

known

as

replaceable

routines

handle

these

services.

The

following

topics

describe

the

initialization

and

termination

of

language

processor

environments,

the

loading

and

freeing

of

a

program,

and

the

replaceable

routines.

There

are

also

several

exits

you

can

provide

to

customize

REXX

processing.

See

page

471

for

a

summary

of

these

exits.

Language

Processor

Environment

Initialization

and

Termination

Before

the

language

processor

can

process

a

REXX

program,

a

language

processor

environment

must

exist.

A

language

processor

environment

is

the

environment

in

which

the

language

processor

processes

the

program.

This

environment

defines

characteristics

concerning

how

the

program

is

processed

and

how

the

language

processor

accesses

system

services.

A

language

processor

environment

defines

various

characteristics,

such

as:

v

The

search

order

for

locating

commands

and

external

functions

and

subroutines

v

The

member

names

for

reading

and

writing

data

and

from

which

REXX

programs

are

loaded

v

The

host

command

environments

you

can

use

in

a

program

to

process

host

commands

(that

is,

the

environments

you

can

specify

using

the

ADDRESS

instruction)

v

The

function

packages

(user,

local,

and

system)

that

are

available

to

programs

that

run

in

the

environment

and

the

entries

in

each

package

v

Whether

programs

that

run

in

the

environment

can

use

the

data

stack

or

can

perform

I/O

operations

Figure

18.

Overview

of

REXX

Program

Processing

Customizing

Services

386

REXX/VSE

Reference

v

The

names

of

routines

that

handle

system

services,

such

as

I/O

operations,

loading

of

a

program,

obtaining

and

freeing

storage,

and

data

stack

requests.

These

routines

are

known

as

replaceable

routines.

Note:

The

concept

of

a

language

processor

environment

is

different

from

that

of

a

host

command

environment.

The

language

processor

environment

is

the

environment

in

which

a

REXX

program

runs.

This

includes

how

a

program

is

loaded,

how

commands,

functions,

and

subroutines

are

located,

and

how

requests

for

system

services

are

handled.

A

host

command

environment

is

the

environment

to

which

the

language

processor

passes

commands

for

execution.

The

host

command

environment

handles

the

execution

of

host

commands.

The

host

command

environments

that

are

available

to

a

REXX

program

are

one

characteristic

of

a

language

processor

environment.

For

more

information

about

executing

host

commands

from

a

REXX

program,

see

“Commands

to

External

Environments”

on

page

22.

When

you

use

the

JCL

EXEC

command

to

call

a

batch

job

or

call

ARXEXEX

or

ARXJCL

to

run

a

program,

REXX/VSE

automatically

initializes

an

environment

(if

one

does

not

already

exist)

by

calling

the

initialization

routine

ARXINIT.

(REXX/VSE

terminates

a

language

processor

environment

by

calling

the

termination

routine

ARXTERM.)

As

previously

described,

many

language

processor

environments

can

exist

in

one

partition.

A

language

processor

environment

is

associated

with

a

task

and

environments

can

be

chained

together.

Chapter

19,

“Language

Processor

Environments,”

on

page

391

discusses

this

in

more

detail.

Whenever

a

REXX

program

is

called,

REXX/VSE

first

determines

whether

or

not

a

language

processor

environment

exists.

If

an

environment

does

exist,

the

REXX

program

runs

in

that

environment.

If

an

environment

does

not

exist,

REXX/VSE

automatically

initializes

one

by

calling

the

ARXINIT

routine.

When

the

program

completes,

REXX/VSE

terminates

the

environment.

“Chains

of

Environments

and

How

Environments

Are

Located”

on

page

412

describes

how

REXX/VSE

locates

a

previous

environment.

The

parameters

module

ARXPARMS

contains

the

default

values

that

define

a

language

processor

environment.

To

change

the

default

values

for

initializing

a

language

processor

environment,

you

can

provide

your

own

parameters

module.

Your

phase

is

then

used

instead

of

the

default

module.

Chapter

19,

“Language

Processor

Environments,”

on

page

391

describes

the

parameters

module

in

detail.

You

can

also

explicitly

call

ARXINIT

to

initialize

a

language

processor

environment

and

define

the

environment

characteristics

on

the

call.

When

you

call

ARXINIT,

you

specify

any

or

all

of

the

characteristics

you

want

defined

for

the

language

processor

environment.

Using

ARXINIT

gives

you

the

flexibility

to

define

your

own

environment.

This

lets

you

customize

how

REXX

programs

run

within

the

environment

and

the

handling

of

system

services.

If

you

explicitly

call

ARXINIT,

you

must

use

the

ARXTERM

routine

to

terminate

that

environment.

REXX/VSE

does

not

automatically

terminate

an

environment

that

you

initialized

by

explicitly

calling

ARXINIT.

See

Chapter

20,

“Initialization

and

Termination

Routines,”

on

page

431

for

descriptions

of

ARXINIT

and

ARXTERM.

Loading

and

Freeing

a

REXX

Program

After

a

language

processor

environment

has

been

located

or

initialized,

the

program

must

be

loaded

into

storage

for

the

language

processor

to

process

it.

After

the

program

runs,

storage

must

be

freed.

The

exec

load

routine

loads

and

frees

REXX

programs.

The

default

exec

load

routine

is

ARXLOAD.

The

exec

load

routine

is

one

of

the

replaceable

routines

that

you

can

provide

to

customize

REXX

processing.

You

can

provide

your

own

exec

load

routine

that

either

replaces

the

default

or

that

performs

pre-processing

and

then

calls

the

default

routine

ARXLOAD.

The

name

of

the

load

routine

is

defined

for

each

language

processor

environment.

Customizing

Services

Chapter

18.

Customizing

Services

387

Note:

If

you

use

ARXEXEC

to

run

a

REXX

program,

you

can

preload

the

program

in

storage

and

pass

the

address

of

the

preloaded

program

on

the

call

to

ARXEXEC.

In

this

case,

the

exec

load

routine

is

not

called

to

load

the

program.

“Calling

REXX”

on

page

333

describes

the

ARXEXEC

routine

and

how

you

can

preload

a

program.

Processing

of

the

REXX

Program

After

the

REXX

program

is

loaded

into

storage,

the

language

processor

is

called

to

process

the

program.

During

processing,

the

program

can

issue

commands,

call

external

functions

and

subroutines,

and

request

various

system

services.

When

the

language

processor

processes

a

command,

it

first

evaluates

the

expression

and

then

passes

the

command

to

the

host

for

execution.

The

specific

host

command

environment

handles

command

execution.

When

the

program

calls

an

external

function

or

subroutine,

the

language

processor

searches

for

the

function

or

subroutine.

This

includes

searching

any

function

packages

that

are

defined

for

the

language

processor

environment

in

which

the

program

is

running.

Overview

of

Replaceable

Routines

When

a

REXX

program

runs,

specific

routines

are

called

to

perform

requested

services

(for

example,

obtaining

and

freeing

storage,

I/O,

data

stack

requests,

and

so

on).

These

routines

are

called

replaceable

routines

because

you

can

provide

your

own

routines

to

replace

the

ones

REXX/VSE

provides.

Your

routine

can

check

the

request

for

a

system

service,

change

the

request

if

needed,

and

then

call

the

supplied

routine

to

actually

perform

the

service.

Your

routine

can

also

terminate

the

request

for

a

system

service

or

perform

the

request

itself

instead

of

calling

the

REXX/VSE

routine.

Replaceable

routines

are

defined

on

a

language

processor

environment

basis

and

are

specified

in

the

parameters

module

for

an

environment

(see

page

395).

Table

50

provides

a

brief

description

of

the

functions

your

replaceable

routine

must

perform.

Chapter

21,

“Replaceable

Routines

and

Exits,”

on

page

443

describes

each

replaceable

routine

in

detail,

its

input

and

output

parameters,

and

return

codes.

Table

50.

Overview

of

Replaceable

Routines

Replaceable

Routine

Description

Exec

load

The

exec

load

routine

loads

a

REXX

program

into

storage

and

frees

the

program

when

it

is

no

longer

needed.

Read

input

and

write

output

(I/O)

The

I/O

routine

reads

a

record

from

or

writes

a

record

to

a

file.

(The

file

can

be

a

member

of

a

sublibrary,

a

SAM

file,

SYSIPT,

or

SYSLST.)

For

example,

this

routine

is

called

for

the

SAY

instruction,

for

the

PULL

instruction

(when

the

data

stack

is

empty),

and

for

the

EXECIO

command.

The

routine

is

also

called

to

open

and

close

a

file.

Data

stack

This

routine

handles

any

requests

for

data

stack

services.

For

example,

it

is

called

for

the

PULL,

PUSH,

and

QUEUE

instructions

and

for

the

MAKEBUF

and

DROPBUF

commands.

Storage

management

This

routine

obtains

and

frees

storage.

User

ID

This

routine

obtains

the

user

ID.

You

can

use

the

USERID

built-in

function

to

obtain

this

result.

Message

identifier

This

routine

determines

if

the

message

identifier

(message

ID)

accompanies

a

REXX

error

message.

Host

command

environment

This

routine

is

called

to

handle

the

execution

of

a

host

command

for

a

particular

host

command

environment.

To

provide

your

own

replaceable

routine,

you

must

do

the

following:

Customizing

Services

388

REXX/VSE

Reference

v

Write

the

code

for

the

routine.

Chapter

21,

“Replaceable

Routines

and

Exits,”

on

page

443

describes

each

routine

in

detail.

v

Define

the

routine

name

to

a

language

processor

environment.

If

you

use

ARXINIT

to

initialize

a

new

environment,

you

can

pass

the

names

of

your

routines

on

the

call.

Chapter

19,

“Language

Processor

Environments,”

on

page

391

describes

the

concepts

of

replaceable

routines

and

their

relationship

to

language

processor

environments

in

more

detail.

The

replaceable

routines

are

external

interfaces

that

you

can

call

from

a

program.

For

example,

a

program

can

call

the

supplied

data

stack

routine

to

perform

data

stack

operations.

If

you

provide

your

own

replaceable

data

stack

routine,

a

program

can

call

your

routine

to

perform

data

stack

operations.

You

can

call

your

replaceable

routine

or

a

supplied

replaceable

routine

only

if

a

language

processor

environment

exists

in

which

the

routine

can

run.

Exit

Routines

There

are

several

exit

routines

you

can

use

to

customize

REXX

processing.

Several

exits

have

fixed

names.

Other

exits

do

not.

You

supply

the

name

of

these

exits

on

the

call

to

ARXINIT

or

by

changing

the

ARXPARMS

default

parameters

module.

Chapter

21,

“Replaceable

Routines

and

Exits,”

on

page

443

describes

the

exits

in

more

detail.

A

summary

of

each

exit

follows.

v

ARXINITX—Pre-environment

initialization

exit

routine.

The

exit

receives

control

whenever

ARXINIT

is

called

to

initialize

a

new

language

processor

environment.

It

gets

control

before

ARXINIT

evaluates

any

parameters.

v

ARXITMV—Post-environment

initialization

exit

routine.

This

exit

receives

control

whenever

ARXINIT

is

called

to

initialize

a

new

language

processor

environment.

It

receives

control

after

ARXINIT

initializes

a

new

environment

but

before

ARXINIT

completes.

v

ARXTERMX—Environment

termination

exit

routine.

The

exit

receives

control

whenever

ARXTERM

is

called

to

terminate

a

language

processor

environment.

It

gets

control

before

ARXTERM

starts

termination

processing.

v

Exec

Initialization

—

The

exit

receives

control

after

the

variable

pool

for

a

REXX

program

has

been

initialized

but

before

the

language

processor

processes

the

first

clause

in

the

program.

v

Exec

Termination

—

The

exit

receives

control

after

a

REXX

program

has

completed

processing

but

before

the

variable

pool

has

been

terminated.

v

Exec

processing

exit

(exit

for

the

ARXEXEC

routine)—This

exit

receives

control

whenever

the

ARXEXEC

routine

is

called

to

run

a

REXX

program.

REXX/VSE

or

a

user

can

explicitly

call

ARXEXEC

to

run

a

program.

REXX/VSE

always

calls

ARXEXEC

to

handle

program

execution.

For

example,

if

you

use

the

JCL

EXEC

command

or

ARXJCL

to

call

a

program,

REXX/VSE

calls

ARXEXEC

to

run

the

program.

If

you

provide

an

exit

for

ARXEXEC,

the

exit

is

called.

v

RXHLT—This

is

the

halt

processing

exit.

Customizing

Services

Chapter

18.

Customizing

Services

389

Customizing

Services

390

REXX/VSE

Reference

Chapter

19.

Language

Processor

Environments

As

described

in

Chapter

18,

“Customizing

Services,”

on

page

385,

a

language

processor

environment

is

the

environment

in

which

the

language

processor

processes

a

REXX

program.

Such

an

environment

must

exist

before

a

program

can

run.

The

topics

in

this

chapter

explain

language

processor

environments

and

the

default

parameters

module

in

more

detail.

They

explain

the

various

tasks

you

can

perform

to

customize

the

environment

in

which

REXX

programs

run.

This

chapter

describes:

v

Different

aspects

of

a

language

processor

environment

and

the

characteristics

that

make

up

such

an

environment.

The

chapter

explains

when

REXX/VSE

calls

the

initialization

routine,

ARXINIT,

to

initialize

an

environment

and

the

values

ARXINIT

uses

to

define

the

environment.

The

chapter

describes

the

values

in

the

default

parameters

module

and

how

to

change

the

values.

It

also

describes

what

values

you

can

and

cannot

specify.

v

The

various

control

blocks

that

are

defined

when

a

language

processor

environment

is

initialized

and

how

you

can

use

the

control

blocks

for

REXX

processing.

v

How

to

chain

language

processor

environments

together.

v

How

to

use

the

data

stack

in

different

language

processor

environments.

Note:

The

control

blocks

for

a

language

processor

environment

provide

information

about

the

environment.

You

can

obtain

information

from

the

control

blocks.

However,

you

must

not

change

any

of

the

control

blocks.

If

you

do,

unpredictable

results

may

occur.

Overview

of

Language

Processor

Environments

The

language

processor

environment

defines

various

characteristics

that

relate

to

the

processing

of

programs

and

the

access

and

use

of

system

services.

Some

of

the

environment

characteristics

include

the

following:

v

The

language

in

which

REXX/VSE

produces

REXX

messages

v

The

names

of

several

replaceable

routines

that

you

can

provide

for

system

services,

such

as

I/O

processing,

loading

REXX

programs,

and

processing

data

stack

requests

v

The

names

of

exit

routines

that

REXX/VSE

calls

at

different

points

in

REXX

processing,

such

as

when

the

ARXEXEC

routine

is

called

v

The

names

of

host

command

environments

and

the

corresponding

routines

that

process

commands

for

each

host

command

environment

v

The

function

packages

that

are

available

to

programs

that

run

in

the

environment

v

The

name

of

the

partition

(the

default

is

VSE)

v

Bit

settings

(flags)

that

define

many

characteristics,

such

as:

–

The

search

order

for

commands,

functions,

and

subroutines

–

Whether

REXX/VSE

produces

primary

and

alternate

messages.

“Characteristics

of

a

Language

Processor

Environment”

on

page

394

describes

the

environment

characteristics.

When

a

language

processor

environment

is

initialized,

you

can

define

different

routines

that

REXX/VSE

calls

for

system

services,

such

as

obtaining

and

freeing

storage

and

handling

I/O

requests.

The

language

processor

environment

provides

for

consistency

by

ensuring

that

REXX

programs

run

independently

of

the

way

in

which

REXX/VSE

accesses

system

services.

At

the

same

time,

the

language

processor

environment

provides

flexibility

to

handle

the

differences

between

the

partitions

and

lets

you

customize

how

REXX

programs

are

processed

and

how

REXX/VSE

accesses

and

uses

system

services.

©

Copyright

IBM

Corp.

1988,

2004

391

Initialization

of

an

Environment:

The

initialization

routine,

ARXINIT,

initializes

language

processor

environments.

When

you

use

the

JCL

EXEC

command

or

call

ARXEXEC

or

ARXJCL

to

run

a

REXX

program,

REXX/VSE

calls

ARXINIT

to

automatically

initialize

an

environment.

Because

REXX/VSE

automatically

initializes

language

processor

environments,

you

need

not

be

concerned

with

setting

up

such

an

environment,

changing

any

values,

or

even

that

the

environment

exists.

The

language

processor

environment

allows

application

programmers

and

system

programmers

to

customize

the

system

interfaces

between

the

language

processor

and

host

services.

“When

Environments

Are

Automatically

Initialized”

on

page

394

describes

when

REXX/VSE

initializes

environments.

When

REXX/VSE

calls

ARXINIT

to

automatically

initialize

an

environment,

REXX/VSE

uses

default

values.

The

default

parameters

module

(phase)

ARXPARMS

contains

the

parameter

values

ARXINIT

uses

to

initialize

the

language

processor

environment.

“Characteristics

of

a

Language

Processor

Environment”

on

page

394

describes

the

parameters

module

that

contains

all

of

the

characteristics

for

defining

a

language

processor

environment.

“Values

in

the

ARXPARMS

Default

Parameters

Module”

on

page

409

describes

the

defaults

in

ARXPARMS.

You

can

change

the

default

parameters

by

providing

your

own

phase.

“Changing

the

Default

Values

for

Initializing

an

Environment”

on

page

416

describes

how

to

change

the

parameters.

You

can

also

explicitly

call

ARXINIT

and

pass

the

parameter

values

for

ARXINIT

to

use

in

initializing

the

environment.

Using

ARXINIT

lets

you

customize

the

environment

in

which

REXX

programs

run

and

how

REXX/VSE

accesses

and

uses

system

services.

Chains

of

Environments:

Many

language

processor

environments

can

exist

in

a

particular

partition.

Each

language

processor

environment

is

associated

with

a

single

task.

More

than

one

environment

can

be

associated

with

a

particular

task.

Language

processor

environments

are

chained

together

in

a

hierarchical

structure

to

form

a

chain

of

environments

to

supply

a

default

environment

if

one

is

not

specified.

Each

environment

on

a

chain

is

related

to

the

other

environments

on

that

chain.

Environments

on

a

particular

chain

may

share

various

resources,

such

as

files

and

the

data

stack.

(“Chains

of

Environments

and

How

Environments

Are

Located”

on

page

412

provides

more

information

about

the

relationship

between

language

processor

environments

and

tasks

and

how

environments

are

chained

together.)

A

single

partition

can

contain

multiple

chains

of

language

processor

environments

Maximum

Number

of

Environments:

Although

many

language

processor

environments

can

be

initialized

in

a

single

partition,

there

is

a

maximum.

ARXANCHR

is

a

non-reentrant

phase

that

anchors

the

chains

of

language

processor

environments.

It

contains

an

environment

table

that

defines

the

maximum

number

of

environments

for

one

partition.

The

maximum

is

not

a

set

number

of

environments.

It

depends

on

the

number

of

chains

of

environments

and

the

number

of

environments

defined

on

each

chain.

The

default

maximum

should

be

sufficient

for

any

partition.

However,

if

ARXINIT

is

initializing

a

new

environment

and

this

exceeds

the

maximum,

ARXINIT

completes

unsuccessfully

and

returns

with

a

return

code

of

20

and

a

reason

code

of

24.

If

this

error

occurs,

you

can

change

the

maximum

by

providing

a

new

ARXANCHR

phase.

“Changing

the

Maximum

Number

of

Environments

in

a

Partition”

on

page

424

describes

the

ARXANCHR

phase

and

how

to

provide

a

new

one.

Control

Blocks:

When

ARXINIT

initializes

a

new

language

processor

environment,

ARXINIT

creates

a

number

of

control

blocks

that

contain

information

about

the

environment.

The

main

control

block

that

ARXINIT

creates

is

called

the

environment

block

(ENVBLOCK).

There

is

an

environment

block

for

each

language

processor

environment.

The

environment

block

contains

pointers

to

other

control

blocks

that

contain

information

about

the

parameters

that

define

the

environment,

the

resources

within

the

environment,

and

the

program

currently

running

in

the

environment.

“Control

Blocks

Created

for

a

Language

Processor

Environment”

on

page

417

describes

all

of

the

control

blocks

that

ARXINIT

creates.

ARXINIT

creates

an

environment

block

for

each

language

processor

environment

that

it

creates.

Except

for

ARXINIT,

no

REXX

program

or

service

can

operate

without

an

environment

being

available.

Language

Processor

Environments

392

REXX/VSE

Reference

Note

about

Changing

Any

Control

Blocks

You

can

obtain

information

from

the

control

blocks.

However,

you

must

not

change

any

of

the

control

blocks.

If

you

do,

unpredictable

results

may

occur.

Using

the

Environment

Block

The

main

control

block

that

ARXINIT

creates

for

a

language

processor

environment

is

the

environment

block.

The

environment

block

represents

the

language

processor

environment

and

points

to

other

control

blocks

that

contain

information

about

the

environment.

The

environment

block

is

known

as

the

anchor

that

all

callable

interfaces

to

REXX

use.

Except

for

the

ARXINIT

initialization

routine,

no

REXX

routine

can

run

unless

an

environment

block

exists,

that

is,

a

language

processor

environment

must

exist.

When

ARXINIT

initializes

a

new

language

processor

environment,

ARXINIT

always

returns

the

address

of

the

environment

block

in

register

0.

(If

you

explicitly

call

the

ARXINIT

routine,

ARXINIT

also

returns

the

address

of

the

environment

block

in

the

parameter

list.)

You

can

also

use

ARXINIT

to

obtain

the

address

of

the

environment

block

for

the

current

non-reentrant

environment

(see

page

431).

ARXINIT

returns

the

address

in

register

0

and

also

in

Parameter

6

in

the

parameter

list.

The

address

of

the

environment

block

is

useful

for

calling

a

REXX

routine

or

for

obtaining

information

from

the

control

blocks

that

ARXINIT

created

for

the

environment.

If

you

call

any

of

the

REXX/VSE

routines

(for

example,

ARXEXEC

to

process

a

program

or

the

variable

pool

access

interface

ARXEXCOM),

you

can

optionally

pass

the

address

of

an

environment

block

to

the

routine

in

register

0.

By

passing

the

address

of

an

environment

block,

you

can

specify

in

which

specific

environment

you

want

either

the

program

or

the

service

to

run.

This

is

particularly

useful

if

you

use

the

ARXINIT

routine

to

initialize

several

environments

on

a

chain

and

then

want

to

process

a

REXX/VSE

routine

in

a

specific

environment.

When

you

call

the

routine,

you

can

pass

the

address

of

the

environment

block

in

register

0.

An

external

function

or

subroutine

receives

the

address

of

an

environment

block

in

register

0.

All

calls

to

any

programming

service

should

pass

this

environment

block

address.

Passing

the

environment

block

address

is

particularly

important

when

the

environment

is

a

reentrant

environment

because

programming

services

cannot

automatically

locate

a

reentrant

environment.

For

more

information

about

reentrant

environments,

see

“Using

the

Environment

Block

for

Reentrant

Environments”

on

page

332.

If

you

call

a

REXX/VSE

routine

and

do

not

pass

the

address

of

an

environment

block

in

register

0

or

the

environment

block

parameter,

the

routine

runs

in

the

current

non-reentrant

environment

on

the

chain

under

the

current

task.

If

you

call

ARXEXEC

or

ARXJCL

and

a

language

processor

environment

does

not

exist,

REXX/VSE

calls

ARXINIT

to

initialize

an

environment

in

which

the

program

runs.

When

the

program

completes

processing,

REXX/VSE

terminates

the

newly

created

environment.

If

you

are

running

separate

tasks

simultaneously

and

two

or

more

tasks

are

running

REXX,

each

task

must

have

its

own

environment

block.

That

is,

you

must

initialize

a

language

processor

environment

for

each

of

the

tasks.

The

environment

block

points

to

several

other

control

blocks

that

contain

the

parameters

ARXINIT

used

in

defining

the

environment

and

the

addresses

of

REXX/VSE

routines,

such

as

ARXINIT,

ARXEXEC,

and

ARXTERM,

and

replaceable

routines.

You

can

access

these

control

blocks

to

obtain

this

information.

The

control

blocks

are

described

in

“Control

Blocks

Created

for

a

Language

Processor

Environment”

on

page

417.

Language

Processor

Environments

Chapter

19.

Language

Processor

Environments

393

Note

about

Changing

Any

Control

Blocks

You

can

obtain

information

from

the

control

blocks.

However,

you

must

not

change

any

of

the

control

blocks.

If

you

do,

unpredictable

results

may

occur.

The

following

topics

in

this

chapter

describe

the

characteristics

of

a

language

processor

environment,

the

different

types

of

environments,

and

the

default

parameters

module.

Chapter

20,

“Initialization

and

Termination

Routines”

describes

the

initialization

and

termination

routines

ARXINIT

and

ARXTERM.

When

Environments

Are

Automatically

Initialized

If

a

language

processor

environment

does

not

already

exist

on

the

current

task,

REXX/VSE

automatically

initializes

one

whenever:

v

You

use

the

JCL

EXEC

command

to

call

a

batch

job

v

A

program

calls

ARXEXEC

or

ARXJCL

to

call

a

REXX

program.

“Calling

REXX

with

ARXEXEC

or

ARXJCL”

on

page

335

describes

these

routines

in

detail.

When

ARXEXEC

or

ARXJCL

is

called,

it

determines

whether

a

language

processor

environment

already

exists.

(As

discussed

previously,

more

than

one

environment

can

be

initialized

in

a

single

partition.

The

environments

are

chained

together

in

a

hierarchical

structure).

ARXEXEC

and

ARXJCL

do

not

invoke

ARXINIT

to

initialize

an

environment

if

one

already

exists.

The

routines

use

the

current

environment

to

run

the

program.

“Chains

of

Environments

and

How

Environments

Are

Located”

on

page

412

describes

how

language

processor

environments

are

chained

together

and

how

environments

are

located.

If

ARXEXEC

or

ARXJCL

invokes

the

ARXINIT

routine

to

initialize

an

environment,

after

the

REXX

program

completes

processing,

REXX/VSE

calls

the

ARXTERM

routine

to

terminate

the

environment

that

ARXINIT

initialized.

Note:

If

several

language

processor

environments

already

exist,

you

can

pass

the

address

of

an

environment

block

in

register

0

on

the

call

to

ARXEXEC

or

ARXJCL.

This

indicates

the

environment

in

which

the

program

should

run.

See

“Using

the

Environment

Block”

on

page

393

for

more

information.

Chapter

21,

“Replaceable

Routines

and

Exits”

describes

the

replaceable

routines

and

exits

in

more

detail.

“Specifying

Values

for

Different

Environments”

on

page

417

describes

the

environment

characteristics

you

can

specify

for

language

processor

environments.

Characteristics

of

a

Language

Processor

Environment

When

ARXINIT

initializes

a

language

processor

environment,

ARXINIT

creates

several

control

blocks

that

contain

information

about

the

environment.

One

of

the

control

blocks

is

the

parameter

block

(PARMBLOCK).

The

parameter

block

contains

the

parameter

values

that

ARXINIT

used

to

define

the

environment.

The

parameter

block

also

contains

the

addresses

of

the

module

name

table,

the

host

command

environment

table,

and

the

function

package

table,

which

contain

additional

characteristics

for

the

environment.

REXX/VSE

provides

a

default

parameters

module

ARXPARMS.

This

is

a

phase

that

contains

the

values

for

initializing

language

processor

environments.

“Values

in

the

ARXPARMS

Default

Parameters

Module”

on

page

409

shows

the

default

values

for

this

module.

A

parameters

module

consists

of

the

parameter

block

(PARMBLOCK),

the

module

name

table,

the

host

command

environment

table,

and

the

function

package

table.

Figure

19

on

page

395

shows

the

format

of

the

parameters

module.

Using

the

Environment

Block

394

REXX/VSE

Reference

Table

51

shows

the

format

of

PARMBLOCK.

Each

field

is

described

in

more

detail

after

the

table.

Indicate

the

end

of

the

PARMBLOCK

with

X'FFFFFFFFFFFFFFFF'.

Subsequent

topics

describe

the

format

of

the

module

name

table,

host

command

environment

table,

and

function

package

table.

A

mapping

macro

for

the

parameter

block,

ARXPARMB,

is

in

PRD1.BASE.

Note:

Each

field

name

in

the

following

table

must

include

the

prefix

PARMBLOCK_.

Table

51.

Format

of

the

Parameter

Block

(PARMBLOCK)

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

0

8

ID

Identifies

the

parameter

block

(PARMBLOCK).

8

4

VERSION

Identifies

the

version

of

the

parameter

block.

12

3

LANGUAGE

Language

code

for

REXX

messages.

15

1

RESERVED

Reserved.

16

4

MODNAMET

Address

of

module

name

table.

20

4

SUBCOMTB

Address

of

host

command

environment

table.

24

4

PACKTB

Address

of

function

package

table.

28

8

PARSETOK

Token

for

PARSE

SOURCE

instruction.

36

4

FLAGS

A

fullword

of

bits

that

ARXINIT

uses

as

flags

to

define

characteristics

for

the

environment.

40

4

MASKS

A

fullword

of

bits

that

ARXINIT

uses

as

a

mask

for

the

setting

of

the

flag

bits.

44

4

SUBPOOL

This

field

is

reserved.

48

8

ADDRSPN

Name

of

the

partition.

Figure

19.

Overview

of

Parameters

Module

Environment

Characteristics

Chapter

19.

Language

Processor

Environments

395

Table

51.

Format

of

the

Parameter

Block

(PARMBLOCK)

(continued)

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

56

8

—

The

end

of

the

PARMBLOCK

must

be

indicated

by

X'FFFFFFFFFFFFFFFF'.

The

following

information

describes

each

field

in

the

PARMBLOCK.

If

you

change

the

default

parameters

module

or

use

ARXINIT

to

initialize

a

language

processor

environment,

read

“Changing

the

Default

Values

for

Initializing

an

Environment”

on

page

416

for

information

about

changing

the

values

that

define

an

environment.

ID

This

field

identifies

the

parameter

block

that

ARXINIT

creates.

The

value

for

ID

is

ARXPARMS.

Do

not

change

this

value.

VERSION

This

field

identifies

the

version

of

the

parameter

block

for

a

particular

release

and

level

of

REXX/VSE.

The

value

for

VERSION

is

0001.

Do

not

change

this

value.

LANGUAGE

This

field

contains

a

language

code

that

identifies

the

language

for

producing

REXX

messages.

The

only

valid

values

are:

v

ENU—the

language

code

for

US

English

in

mixed

case

(upper

and

lowercase)

v

ENP

(US

English

in

upper

case).

Reserved

This

field

is

reserved.

MODNAMET

This

field

contains

the

address

of

the

module

name

table.

The

table

contains

the

file

names

for

reading

and

writing

data

and

the

names

of

several

replaceable

routines

and

exit

routines.

“Module

Name

Table”

on

page

401

describes

the

table

in

detail.

SUBCOMTB

This

field

contains

the

address

of

the

host

command

environment

table.

This

table

contains

the

names

of

the

host

command

environments

for

processing

host

commands.

These

are

the

environments

that

REXX

programs

can

specify

using

the

ADDRESS

instruction.

“Commands

to

External

Environments”

on

page

22

describes

how

to

issue

host

commands

from

a

REXX

program

and

the

different

environments

for

command

processing.

The

table

also

contains

the

names

of

the

routines

that

are

called

to

handle

the

processing

of

commands

that

are

issued

in

each

host

command

environment.

“Host

Command

Environment

Table”

on

page

404

describes

the

table

in

detail.

PACKTB

This

field

contains

the

address

of

the

function

package

table

for

function

packages.

“Function

Package

Table”

on

page

406

describes

the

table

in

detail.

PARSETOK

This

field

is

a

character

string

containing

the

value

of

a

token

that

the

PARSE

SOURCE

instruction

uses.

This

token

is

the

last

token

of

the

string

that

PARSE

SOURCE

returns.

FLAGS

The

FLAGS

field

is

a

fullword

of

bits

that

ARXINIT

uses

as

flags.

The

flags

define

certain

characteristics

for

the

new

language

processor

environment

and

how

the

environment

and

programs

running

in

the

environment

operate.

See

“Flags

and

Corresponding

Masks”

on

page

397

for

details

about

each

flag.

The

mapping

of

the

parameter

block

(PARMBLOCK)

includes

the

mapping

of

the

flags.

REXX/VSE

provides

a

mapping

Environment

Characteristics

396

REXX/VSE

Reference

macro

ARXPARMB

for

the

parameter

block.

The

mapping

macro

is

in

PRD1.BASE.

The

parameter

after

the

flags

is

a

mask

field

that

works

with

the

flags.

MASKS

This

field

is

a

fullword

of

bits

that

ARXINIT

uses

as

a

mask

for

setting

the

flag

bits.

See

the

preceding

field

for

details

about

the

flags

field.

The

mask

field

is

a

string

that

has

the

same

length

as

the

flags

field.

Each

bit

position

in

the

mask

field

corresponds

to

a

bit

in

the

same

position

in

the

flags

field.

ARXINIT

uses

the

mask

field

to

determine

whether

it

should

use

or

ignore

the

corresponding

flag

bit.

For

a

given

bit

position,

if

the

value

in

the

mask

field

is

1

the

corresponding

bit

in

the

flags

field

is

used.

If

it

is

0,

the

corresponding

bit

in

the

flags

field

is

ignored

(that

is,

the

bit

is

considered

null).

SUBPOOL

This

field

is

reserved.

ADDRSPN

This

field

specifies

the

name

of

the

partition.

This

value

is

VSE.

X'FFFFFFFFFFFFFFFF'

X'FFFFFFFFFFFFFFFF'

indicates

the

end

of

the

parameter

block.

Flags

and

Corresponding

Masks

The

following

table

summarizes

the

flags

field.

Table

52.

Summary

of

Each

Flag

Bit

in

the

Parameters

Module

Bit

Position

Number

Flag

Name

Description

0

TSOFL

This

bit

is

reserved

and

must

be

off.

1

Reserved

This

bit

is

reserved.

2

CMDSOFL

Specifies

the

search

order

REXX/VSE

uses

for

locating

a

command.

3

FUNCSOFL

Specifies

the

search

order

REXX/VSE

uses

for

locating

functions

and

subroutines.

4

NOSTKFL

Specifies

whether

REXX

programs

running

in

the

environment

can

use

data

stack

operations.

5

NOREADFL

Specifies

whether

REXX

programs

running

in

the

environment

can

read

from

input

files.

6

NOWRTFL

Specifies

whether

REXX

programs

running

in

the

environment

can

write

to

output

files.

7

NEWSTKFL

Indicates

whether

a

new

data

stack

is

initialized

for

the

new

environment.

8

USERPKFL

Indicates

whether

the

user

function

packages

that

are

defined

for

the

previous

language

processor

environment

are

also

available

in

the

new

environment.

9

LOCPKFL

Indicates

whether

the

local

function

packages

that

are

defined

for

the

previous

language

processor

environment

are

also

available

in

the

new

environment.

10

SYSPKFL

Indicates

whether

the

system

function

packages

that

are

defined

for

the

previous

language

processor

environment

are

also

available

in

the

new

environment.

11

NEWSCFL

Indicates

whether

the

host

command

environments

(as

specified

in

the

host

command

environment

table)

that

are

defined

for

the

previous

language

processor

environment

are

also

available

in

the

new

environment.

12

CLOSEXFL

Indicates

whether

the

member

from

which

REXX

programs

are

obtained

is

closed

after

a

program

is

loaded

or

remains

open.

13

NOESTAE

This

bit

is

reserved.

Environment

Characteristics

Chapter

19.

Language

Processor

Environments

397

Table

52.

Summary

of

Each

Flag

Bit

in

the

Parameters

Module

(continued)

Bit

Position

Number

Flag

Name

Description

14

RENTRANT

Indicates

whether

the

environment

is

initialized

as

either

reentrant

or

non-reentrant.

15

NOPMSGS

Indicates

whether

primary

messages

are

printed.

16

ALTMSGS

Indicates

whether

alternate

messages

are

printed.

17

SPSHARE

This

bit

is

reserved.

18

STORFL

Indicates

whether

REXX

programs

running

in

the

environment

can

use

the

STORAGE

function.

19

NOLOADDD

This

bit

is

reserved.

20

NOMSGWTO

Indicates

whether

REXX

error

messages

are

issued.

21

NOMSGIO

Indicates

whether

REXX

error

messages

with

I/O

are

issued

to

the

current

output.

22

Reserved

The

remaining

bits

are

reserved.

TSOFL

This

field

is

reserved

and

must

be

0.

CMDSOFL

The

CMDSOFL

flag

specifies

the

search

order

REXX/VSE

uses

for

locating

a

command

that

is

issued

from

a

program.

0

Indicates

searching

for

a

phase

in

the

active

PHASE

chain,

then

for

a

program

in

the

active

PROC

chain.

1

Indicates

searching

the

PROC

chain

for

a

program

first,

then

search

for

a

phase

in

the

active

PHASE

chain.

FUNCSOFL

The

FUNCSOFL

flag

specifies

the

search

order

REXX/VSE

uses

for

locating

external

functions

and

subroutines

that

a

program

calls.

0

Indicates

searching

for

a

phase

in

the

active

PHASE

chain,

then

for

a

program

in

the

active

PROC

chain.

1

Indicates

searching

the

PROC

chain

for

a

program

first,

then

search

for

a

phase

in

the

active

PHASE

chain.

NOSTKFL

The

NOSTKFL

flag

specifies

whether

REXX

programs

running

in

the

environment

can

use

the

data

stack.

0

A

REXX

program

can

use

the

data

stack.

1

Attempts

to

use

the

data

stack

are

processed

as

though

the

data

stack

were

empty.

Any

data

that

is

pushed

(PUSH)

or

queued

(QUEUE)

is

lost.

A

PULL

operates

as

though

the

data

stack

were

empty.

The

QSTACK

command

returns

a

0.

The

NEWSTACK

command

seems

to

work,

but

a

new

data

stack

is

not

created

and

any

subsequent

data

stack

operations

operate

as

if

the

data

stack

is

permanently

empty.

NOREADFL

The

NOREADFL

flag

specifies

whether

REXX

programs

can

read

input

files

using

the

EXECIO

command

or

the

I/O

replaceable

routine

ARXINOUT.

0

Permits

reading

from

input

files.

1

Prohibits

reading

from

input

files.

Flags

and

Masks

398

REXX/VSE

Reference

NOWRTFL

The

NOWRTFL

flag

specifies

whether

REXX

programs

can

write

to

output

files

using

the

EXECIO

command

or

the

supplied

I/O

replaceable

routine

ARXINOUT.

0

Permits

writing

to

output

files.

1

Prohibits

writing

to

output

files.

NEWSTKFL

The

NEWSTKFL

flag

specifies

whether

ARXINIT

should

initialize

a

new

data

stack

for

the

language

processor

environment.

If

ARXINIT

creates

a

new

data

stack,

any

REXX

program

or

other

program

that

runs

in

the

new

environment

cannot

access

any

data

stacks

for

previous

environments.

Any

subsequent

environments

that

are

initialized

under

this

environment

accesses

the

data

stack

the

NEWSTKFL

flag

most

recently

created.

The

first

environment

that

is

initialized

on

any

chain

of

environments

is

always

initialized

as

though

the

NEWSTKFL

flag

is

on,

that

is,

ARXINIT

automatically

creates

a

new

data

stack.

When

you

terminate

the

environment

that

is

initialized,

the

data

stack

that

was

created

at

the

time

of

initialization

is

deleted

regardless

of

whether

the

data

stack

contains

any

elements.

All

data

on

that

data

stack

is

lost.

(“Using

the

Data

Stack”

on

page

425

describes

the

data

stack

in

different

environments.

Note

that

NOSTKFL

overrides

the

setting

of

the

NEWSTKFL.)

0

ARXINIT

does

not

create

a

new

data

stack.

However,

if

this

is

the

first

environment

being

initialized

on

a

chain,

ARXINIT

automatically

initializes

a

data

stack.

1

ARXINIT

creates

a

new

data

stack

during

the

initialization

of

the

new

language

processor

environment.

The

data

stack

is

deleted

when

the

environment

is

terminated.

USERPKFL

The

USERPKFL

flag

specifies

whether

the

user

function

packages

that

are

defined

for

the

previous

language

processor

environment

are

also

available

to

the

new

environment.

0

User

function

packages

from

the

previous

environment

are

added

to

the

user

function

packages

for

the

new

environment.

1

The

user

function

packages

from

the

previous

environment

are

not

added

to

the

user

function

packages

for

the

new

environment.

LOCPKFL

The

LOCPKFL

flag

specifies

whether

local

function

packages

defined

for

the

previous

language

processor

environment

are

also

available

to

the

new

environment.

0

The

local

function

packages

from

the

previous

environment

are

added

to

the

local

function

packages

for

the

new

environment.

1

The

local

function

packages

from

the

previous

environment

are

not

added

to

the

local

function

packages

for

the

new

environment.

SYSPKFL

The

SYSPKFL

flag

specifies

whether

the

system

function

packages

defined

for

the

previous

language

processor

environment

are

also

available

to

the

new

environment.

0

The

system

function

packages

from

the

previous

environment

are

added

to

the

system

function

packages

for

the

new

environment.

1

The

system

function

packages

from

the

previous

environment

are

not

added

to

the

system

function

packages

for

the

new

environment.

NEWSCFL

The

NEWSCFL

flag

specifies

whether

the

environments

for

issuing

host

commands

that

are

defined

for

the

previous

language

processor

environment

are

also

available

to

programs

running

in

the

new

environment.

Flags

and

Masks

Chapter

19.

Language

Processor

Environments

399

0

The

host

command

environments

from

the

previous

environment

are

added

to

the

host

command

environment

table

for

the

new

environment.

1

The

host

command

environments

from

the

previous

environment

are

not

added

to

the

host

command

environment

table

for

the

new

environment.

CLOSEXFL

The

CLOSEXFL

flag

specifies

whether

the

member

from

which

REXX

programs

are

fetched

is

closed

after

the

program

is

loaded

or

remains

open.

You

need

to

close

the

member

if

you

are

editing

REXX

programs

and

then

running

the

changed

programs

under

the

same

language

processor

environment.

If

you

do

not

close

the

member,

results

may

be

unpredictable.

0

The

member

is

opened

once

and

remains

open.

1

The

member

is

opened

for

each

load

and

then

closed.

NOESTAE

This

bit

is

reserved.

RENTRANT

The

RENTRANT

flag

specifies

whether

ARXINIT

initializes

the

new

environment

as

a

reentrant

or

a

non-reentrant

environment.

(For

information

about

reentrant

environments,

see

“Using

the

Environment

Block

for

Reentrant

Environments”

on

page

332.)

0

ARXINIT

initializes

a

non-reentrant

language

processor

environment.

1

ARXINIT

initializes

a

reentrant

language

processor

environment.

NOPMSGS

The

NOPMSGS

flag

specifies

whether

REXX

primary

messages

are

printed

in

the

environment.

0

Primary

messages

are

printed.

1

Primary

messages

are

not

printed.

ALTMSGS

The

ALTMSGS

flag

specifies

whether

REXX

alternate

messages

are

printed

in

the

environment.

(Alternate

messages

are

also

known

as

secondary

messages.)

0

Alternate

messages

are

not

printed.

1

Alternate

messages

are

printed.

SPSHARE

This

bit

is

reserved.

STORFL

The

STORFL

flag

specifies

whether

REXX

programs

running

in

the

environment

can

use

the

STORAGE

external

function.

0

Programs

can

use

the

STORAGE

external

function.

1

Programs

cannot

use

the

STORAGE

external

function.

NOLOADDD

This

bit

is

reserved.

NOMSGWTO

and

NOMSGIO

Together,

these

two

flags

control

where

REXX

error

messages

are

routed.

Flags

and

Masks

400

REXX/VSE

Reference

Table

53.

Flag

Settings

for

NOMSGWTO

and

NOMSGIO

NOMSGWTO

NOMSGIO

0

0

ASSGN(STDOUT)

returns

the

name

of

the

current

output

stream.

Error

messages

are

written

to

the

current

output

stream

and

SYSLOG.

If

the

current

output

is

SYSLOG,

messages

are

written

to

SYSLOG

only.

This

happens

regardless

of

whether

tracing

is

active.

1

0

REXX

error

messages

are

written

to

the

current

output.

If

the

current

output

is

SYSLOG,

messages

are

suppressed.

This

happens

regardless

of

whether

REXX

tracing

is

active.

0

1

REXX

error

messages

cannot

be

written

to

the

current

output.

Instead,

error

messages

are

written

to

SYSLOG.

This

happens

regardless

of

whether

REXX

tracing

is

active.

1

1

REXX

error

messages

are

suppressed,

regardless

of

whether

REXX

tracing

is

active.

The

default

flag

settings

are

off

(0)

for

both

NOMSGWTO

and

NOMSGIO.

REXX

error

messages

include

all

of

the

REXX

messages

numbered

ARXnnnnE

or

ARXnnnnI,

where

nnnn

is

the

message

number.

Error

messages

also

include

any

text

written

to

the

error

message

output

stream

using

the

’WRITEERR’

function

of

ARXSAY.

Module

Name

Table

The

module

name

table

contains

the

names

of:

v

The

file

or

device

for

reading

and

writing

data

v

Replaceable

routines

v

Several

exit

routines.

In

the

parameter

block,

the

MODNAMET

field

points

to

the

module

name

table

(see

page

395).

Table

54

on

page

402

shows

the

format

of

the

module

name

table.

Each

field

is

described

in

detail

following

the

table.

Indicate

the

end

of

the

table

with

X'FFFFFFFFFFFFFFFF'.

REXX/VSE

provides

a

mapping

macro

ARXMODNT

for

the

module

name

table.

The

mapping

macro

is

in

PRD1.BASE.

Flags

and

Masks

Chapter

19.

Language

Processor

Environments

401

Note:

Each

field

name

in

the

following

table

must

include

the

prefix

MODNAMET_.

Table

54.

Format

of

the

Module

Name

Table

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

0

8

INDD

The

file

or

device

from

which

PARSE

EXTERNAL,

PULL,

PARSE

PULL,

and

interactive

debug

pause

read

input

data.

Note:

You

receive

an

error

if

you

do

not

provide

your

own

I/O

replaceable

routine

and

are

using

a

file

name

other

than:

v

SYSLOG

v

SYSIPT

v

SYSLST

v

SYSxxx

(where

xxx

is

numeric)

v

Any

other

7-character

name.

See

“Input/Output

Routine”

on

page

450

for

details

about

supplying

a

replaceable

routine.

You

need

to

open

a

SAM

file

(using

EXECIO...(OPEN)

before

reading

from

or

writing

to

the

file.

SYSIPT,

SYSLST,

and

SAM

files

you

have

opened

use

the

replaceable

routine

ARXINOUT.

8

8

OUTDD

The

file

or

device

to

which

data

is

written

for

either

a

SAY

instruction,

for

REXX

error

messages,

or

when

tracing

is

started.

Note:

You

receive

an

error

if

you

do

not

provide

your

own

I/O

replaceable

routine

and

are

using

a

file

name

other

than:

v

SYSLOG

v

SYSIPT

v

SYSLST

v

SYSxxx

(where

xxx

is

numeric)

v

Any

other

7-character

name.

See

“Input/Output

Routine”

on

page

450

for

details

about

supplying

a

replaceable

routine.

You

need

to

open

a

SAM

file

(using

EXECIO...(OPEN)

before

reading

from

or

writing

to

the

file.

SYSIPT,

SYSLST,

and

SAM

files

you

have

opened

use

the

replaceable

routine

ARXINOUT.

16

8

LOADDD

Reserved.

24

8

IOROUT

The

name

of

the

input/output

(I/O)

replaceable

routine.

32

8

EXROUT

The

name

of

the

exec

load

replaceable

routine.

40

8

GETFREER

The

name

of

the

storage

management

replaceable

routine.

48

8

EXECINIT

The

name

of

the

exec

initialization

exit

routine.

56

8

ATTNROUT

Reserved.

64

8

STACKRT

The

name

of

the

data

stack

replaceable

routine.

72

8

IRXEXECX

The

name

of

the

exit

routine

for

the

ARXEXEC

routine.

80

8

IDROUT

The

name

of

the

user

ID

replaceable

routine.

88

8

MSGIDRT

The

name

of

the

message

identifier

replaceable

routine.

96

8

EXECTERM

The

name

of

the

exec

termination

exit

routine.

Module

Name

Table

402

REXX/VSE

Reference

Table

54.

Format

of

the

Module

Name

Table

(continued)

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

104

8

RXHLT

Name

of

the

REXX

halt

exit.

112

8

—

The

end

of

the

module

name

table

must

be

indicated

by

X'FFFFFFFFFFFFFFFF'.

Each

field

in

the

module

name

table

is

described

in

the

following.

INDD

Specifies

the

name

of

the

file

or

device

from

which

PARSE

EXTERNAL,

PULL,

PARSE

PULL,

and

interactive

debug

pause

read

input

data.

ASSGN(STDIN)

returns

the

name

of

the

current

input

stream.

OUTDD

Specifies

the

name

of

the

file

or

device

to

which

data

is

written

for

a

SAY

instruction,

for

REXX

error

messages,

or

when

tracing

is

started.

ASSGN(STDOUT)

returns

the

name

of

the

current

output

stream.

LOADDD

This

field

is

reserved.

IOROUT

Specifies

the

name

of

the

routine

that

is

called

for

input

and

output

operations.

The

routine

is

called

for:

v

The

PARSE

EXTERNAL,

SAY,

and

TRACE

instructions

v

The

PULL

instruction

v

Requests

from

the

EXECIO

command

v

Issuing

REXX

error

messages

For

more

information,

see

“Input/Output

Routine”

on

page

450.

EXROUT

Specifies

the

name

of

the

routine

that

is

called

to

load

and

free

a

REXX

program.

The

routine

returns

the

structure

that

is

described

in

“The

In-Storage

Control

Block

(INSTBLK)”

on

page

343.

The

specified

routine

is

called

to

load

and

free

this

structure.

For

more

information,

see

“Exec

Load

Routine”

on

page

446.

GETFREER

Specifies

the

name

of

the

routine

that

is

called

when

storage

is

to

be

obtained

or

freed.

If

this

field

is

blank,

storage

routines

handle

storage

requests

and

use

the

GETVIS

and

FREEVIS

macros

when

larger

amounts

of

storage

must

be

handled.

For

more

information,

see

“Storage

Management

Routine”

on

page

466.

EXECINIT

Specifies

the

name

of

an

exit

routine

that

gets

control

after

REXX/VSE

initializes

the

REXX

variable

pool

for

a

REXX

program,

but

before

the

language

processor

processes

the

first

clause

in

the

program.

You

provide

the

exit

and

specify

the

routine’s

name

in

the

EXECINIT

field.

“REXX

Exit

Routines”

on

page

471

describes

the

exec

initialization

exit.

ATTNROUT

This

field

is

reserved.

STACKRT

Specifies

the

name

of

the

routine

that

REXX/VSE

calls

to

handle

all

data

stack

requests.

For

more

information,

see

“Data

Stack

Routine”

on

page

462.

IRXEXECX

Specifies

the

name

of

an

exit

routine

that

is

invoked

whenever

the

ARXEXEC

routine

is

called

to

run

a

Module

Name

Table

Chapter

19.

Language

Processor

Environments

403

program.

You

can

use

the

exit

to

check

the

parameters

specified

on

the

call

to

ARXEXEC,

change

the

parameters,

or

decide

whether

or

not

ARXEXEC

processing

should

continue.

You

provide

the

exit

and

specify

the

routine’s

name

in

the

IRXEXECX

field.

For

more

information,

see

“REXX

Exit

Routines”

on

page

471.

IDROUT

Specifies

the

name

of

a

replaceable

routine

that

REXX/VSE

calls

to

obtain

the

user

ID.

The

USERID

built-in

function

returns

the

result

that

the

replaceable

routine

obtains.

For

more

information,

see

“User

ID

Routine”

on

page

468.

MSGIDRT

Specifies

the

name

of

a

replaceable

routine

that

determines

whether

REXX/VSE

should

include

the

message

identifier

(message

ID)

with

a

REXX

error

message.

For

more

information,

see

“Message

Identifier

Routine”

on

page

470.

EXECTERM

Specifies

the

name

of

an

exit

routine

that

gets

control

after

the

language

processor

processes

a

REXX

program,

but

before

REXX/VSE

terminates

the

REXX

variable

pool.

You

provide

the

exit

and

specify

the

routine’s

name

in

the

EXECTERM

field.

“REXX

Exit

Routines”

on

page

471

describes

the

exit

in

more

detail.

RXHLT

Specifies

the

name

of

the

halt

exit.

See

“Halt

Exit”

on

page

474

for

more

information

about

the

halt

exit.

X'FFFFFFFFFFFFFFFF'

Indicate

the

end

of

the

module

name

table

with

X'FFFFFFFFFFFFFFFF'.

Host

Command

Environment

Table

The

host

command

environment

table

contains

the

names

of

environments

for

processing

commands.

The

table

contains

the

names

you

can

specify

on

the

ADDRESS

instruction.

In

the

parameter

block,

the

SUBCOMTB

field

points

to

the

host

command

environment

table

(see

page

395).

The

table

contains

the

environment

names

(for

example,

VSE,

POWER,

LINK,

LINKPGM,

JCL,

and

CONSOLE)

that

are

valid

for

programs

that

run

in

the

language

processor

environment.

The

table

also

contains

the

names

of

the

routines

that

REXX/VSE

calls

to

handle

“commands”

for

each

host

command

environment.

You

can

add,

delete,

update,

and

query

entries

in

the

host

command

environment

table

using

the

ARXSUBCM

routine.

For

more

information,

see

“Maintain

Entries

in

the

Host

Command

Environment

Table

–

ARXSUBCM”

on

page

362.

When

a

REXX

program

runs,

the

program

has

at

least

one

active

host

command

environment

that

processes

host

commands.

When

the

REXX

program

begins

processing,

a

default

environment

is

available.

The

default

is

specified

in

the

host

command

environment

table.

In

the

REXX

program,

you

can

use

the

ADDRESS

instruction

to

change

the

host

command

environment.

When

the

language

processor

processes

a

command,

the

language

processor

first

evaluates

the

expression

and

then

passes

the

command

to

the

host

command

environment

for

processing.

A

specific

routine

that

is

defined

for

that

host

command

environment

then

handles

the

command

processing.

“Commands

to

External

Environments”

on

page

22

describes

how

to

issue

commands

to

the

host.

In

the

PARMBLOCK,

the

SUBCOMTB

field

points

to

the

host

command

environment

table.

The

table

consists

of

two

parts;

the

table

header

and

the

individual

entries

in

the

table.

Table

55

on

page

405

shows

the

format

of

the

host

command

environment

table

header.

The

first

field

in

the

header

points

to

the

first

host

command

environment

entry

in

the

table.

One

row

in

the

table

defines

each

host

command

environment

entry.

Each

row

contains

the

environment

name,

corresponding

routine

to

handle

the

Module

Name

Table

404

REXX/VSE

Reference

commands,

and

a

user

token.

Table

56

illustrates

the

rows

of

entries

in

the

table.

A

mapping

macro

for

the

host

command

environment

table,

ARXSUBCT,

is

in

PRD1.BASE.

Note:

Each

field

name

in

the

following

table

must

include

the

prefix

SUBCOMTB_.

Table

55.

Format

of

the

Host

Command

Environment

Table

Header

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

0

4

FIRST

Specifies

the

address

of

the

first

entry

in

the

table.

The

address

is

a

fullword

binary

number.

Table

56

illustrates

each

row

of

entries

in

the

table.

Each

row

of

entries

in

the

table

has

an

8-byte

field

(NAME)

that

contains

the

name

of

the

environment,

another

8-byte

field

(ROUTINE)

that

contains

the

name

of

the

corresponding

routine,

followed

by

a

16-byte

field

(TOKEN)

that

is

a

user

token.

4

4

TOTAL

Specifies

the

total

number

of

entries

in

the

table.

This

number

is

the

total

of

the

used

and

unused

entries

in

the

table

and

is

a

fullword

binary

number.

8

4

USED

Specifies

the

number

of

used

entries

in

the

table.

The

number

is

a

fullword

binary

number.

All

valid

entries

begin

at

the

top

of

the

table.

Any

unused

entries

follow

these.

The

unused

entries

must

be

on

the

bottom

of

the

table.

12

4

LENGTH

Specifies

the

length

of

each

entry

in

the

table.

This

is

a

fullword

binary

number.

16

4

INITIAL

Specifies

the

name

of

the

initial

host

command

environment.

The

default

is

VSE.

This

is

the

default

environment

for

any

REXX

program

that

is

not

called

as

a

function

or

subroutine.

The

INITIAL

field

is

used

only

if

you

call

the

exec

processing

routine

ARXEXEC

to

run

a

REXX

program

and

you

do

not

pass

an

initial

host

command

environment

on

the

call.

“Calling

REXX”

on

page

333

describes

the

ARXEXEC

routine

and

its

parameters.

20

8

—

Reserved.

The

field

is

set

to

blanks.

28

8

—

Indicate

the

end

of

the

table

header

with

X'FFFFFFFFFFFFFFFF'.

Table

56

shows

three

rows

(three

entries)

in

the

host

command

environment

table.

The

NAME,

ROUTINE,

and

TOKEN

fields

are

described

in

more

detail

after

the

table.

Note:

Each

field

name

in

the

following

table

must

include

the

prefix

SUBCOMTB_.

Table

56.

Format

of

Entries

in

Host

Command

Environment

Table

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

0

8

NAME

The

name

of

the

first

environment

(entry)

in

the

table.

8

8

ROUTINE

The

name

of

the

routine

that

REXX/VSE

calls

to

handle

the

processing

of

host

commands

in

the

environment

specified

at

offset

+0.

16

16

TOKEN

A

user

token

that

is

passed

to

the

routine

(at

offset

+8)

when

the

routine

is

invoked.

Host

Command

Environment

Table

Chapter

19.

Language

Processor

Environments

405

Table

56.

Format

of

Entries

in

Host

Command

Environment

Table

(continued)

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

32

8

NAME

The

name

of

the

second

environment

(entry)

in

the

table.

40

8

ROUTINE

The

name

of

the

routine

that

REXX/VSE

calls

to

handle

the

processing

of

host

commands

in

the

environment

specified

at

offset

+32.

48

16

TOKEN

A

user

token

that

is

passed

to

the

routine

(at

offset

+40)

when

the

routine

is

invoked.

64

8

NAME

The

name

of

the

third

environment

(entry)

in

the

table.

72

8

ROUTINE

The

name

of

the

routine

that

REXX/VSE

calls

to

handle

the

processing

of

host

commands

in

the

environment

specified

at

offset

+64.

80

16

TOKEN

A

user

token

that

is

passed

to

the

routine

(at

offset

+72)

when

the

routine

is

invoked.

The

following

describes

each

entry

(row)

in

the

table.

NAME

An

8-byte

field

that

specifies

the

name

of

the

host

command

environment

this

row

in

the

table

defines.

The

string

is

8

characters

long,

left

justified,

and

padded

with

blanks.

If

the

REXX

program

uses

the

ADDRESS

name

instruction,

and

the

value

name

in

not

in

the

table,

no

error

is

detected.

However,

when

the

language

processor

tries

to

locate

the

entry

in

the

table

to

pass

a

command

and

no

corresponding

entry

is

found,

the

language

processor

returns

with

a

return

code

of

-3,

which

indicates

an

error

condition.

ROUTINE

An

8-byte

field

that

specifies

the

name

of

a

routine

for

the

entry

in

the

NAME

field

in

the

same

row

in

the

table.

This

is

the

routine

to

which

a

string

is

passed

for

this

environment.

The

field

is

8

characters

long,

left

justified,

and

padded

with

blanks.

If

the

language

processor

locates

the

entry

in

the

table,

but

finds

this

field

blank

or

cannot

locate

the

routine

specified,

the

language

processor

returns

with

a

return

code

of

-3.

This

is

equivalent

to

the

language

processor

being

unable

to

locate

the

host

command

environment

name

in

the

table.

TOKEN

A

16-byte

field

that

is

stored

in

the

table

for

the

user’s

use

(a

user

token).

The

value

in

the

field

is

passed

to

the

routine

specified

in

the

ROUTINE

field

when

REXX/VSE

calls

the

routine

to

process

a

command.

The

field

is

for

the

user’s

own

use.

The

language

processor

does

not

use

or

examine

this

token

field.

When

a

REXX

program

is

running

in

the

language

processor

environment

and

a

host

command

environment

must

be

located,

REXX/VSE

searches

the

entire

host

command

environment

table

from

bottom

to

top.

The

first

occurrence

of

the

host

command

environment

in

the

table

is

used.

If

the

name

of

the

host

command

environment

that

is

being

searched

for

matches

the

name

specified

in

the

table

(in

the

NAME

field),

REXX/VSE

calls

the

corresponding

routine

specified

in

the

ROUTINE

field

of

the

table.

Function

Package

Table

The

function

package

table

contains

information

about

the

function

packages

that

are

available

for

the

language

processor

environment.

Host

Command

Environment

Table

406

REXX/VSE

Reference

An

individual

user

or

an

installation

can

write

external

functions

and

subroutines.

For

faster

access

of

a

function

or

subroutine,

you

can

group

frequently

used

external

functions

and

subroutines

in

function

packages.

A

function

package

is

a

number

of

external

functions

and

subroutines

that

are

grouped

together.

Function

packages

are

searched

before

the

active

PHASE

chain

and

active

PROC

chain

(see

page

63).

There

are

three

types

of

function

packages:

v

User

function

packages

v

Local

function

packages

v

System

function

packages.

User

function

packages

are

searched

before

local

packages.

Local

function

packages

are

searched

before

any

system

packages.

To

provide

a

function

package,

there

are

several

steps

you

must

perform,

including

writing

the

code

for

the

external

function

or

subroutine,

providing

a

function

package

directory

for

each

function

package,

and

defining

the

function

package

directory

name

in

the

function

package

table.

“External

Functions

and

Subroutines

and

Function

Packages”

on

page

348

describes

function

packages

in

more

detail

and

how

you

can

provide

user,

local,

and

system

function

packages.

In

the

parameter

block,

the

PACKTB

field

points

to

the

function

package

table

(see

page

395).

The

table

contains

information

about

the

user,

local,

and

system

function

packages

that

are

available

for

the

language

processor

environment.

The

function

package

table

consists

of

two

parts;

the

table

header

and

table

entries.

Table

57

shows

the

format

of

the

function

package

table

header.

The

header

contains

the

total

number

of

user,

local,

and

system

packages,

the

number

of

user,

local,

and

system

packages

that

are

used,

and

the

length

of

each

function

package

name,

which

is

always

8.

The

header

also

contains

three

addresses

that

point

to

the

first

table

entry

for

user,

local,

and

system

function

packages.

The

table

entries

specify

the

individual

names

of

the

function

packages.

The

table

entries

are

a

series

of

8-character

fields

that

are

contiguous.

Each

8-character

field

contains

the

name

of

a

function

package,

which

is

the

name

of

a

phase

containing

the

directory

for

that

function

package.

The

function

package

directory

specifies

the

individual

external

functions

and

subroutines

that

make

up

one

function

package.

“Directory

for

Function

Packages”

on

page

352

describes

the

format

of

the

function

package

directory

in

detail.

Figure

20

on

page

409

illustrates

the

8-character

fields

that

contain

the

function

package

directory

names

for

user,

local,

and

system

function

packages.

REXX/VSE

provides

a

mapping

macro

for

the

function

package

table.

The

name

of

the

mapping

macro

is

ARXPACKT.

The

mapping

macro

is

in

PRD1.BASE.

Note:

Each

field

name

in

the

following

table

must

include

the

prefix

PACKTB_.

Table

57.

Function

Package

Table

Header

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

0

4

USER_FIRST

Specifies

the

address

of

the

first

user

function

package

entry.

The

address

points

to

the

first

field

in

a

series

of

8-character

fields

that

contain

the

names

of

the

function

package

directories

for

user

packages.

Figure

20

shows

the

series

of

directory

names.

Function

Package

Table

Chapter

19.

Language

Processor

Environments

407

Table

57.

Function

Package

Table

Header

(continued)

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

4

4

USER_TOTAL

Specifies

the

total

number

of

user

package

table

entries.

This

is

the

total

number

of

function

package

directory

names

that

are

pointed

to

by

the

address

at

offset

+0.

You

can

use

the

USER_TOTAL

field

to

specify

the

maximum

number

of

user

function

packages

that

can

be

defined

for

the

environment.

You

can

then

use

the

USER_USED

field

at

offset

+8

to

specify

the

actual

number

of

packages

that

are

available.

8

4

USER_USED

Specifies

the

total

number

of

user

package

table

entries

in

use.

You

can

specify

a

maximum

number

(total)

in

the

USER_TOTAL

field

at

offset

+4

and

specify

the

actual

number

of

user

function

packages

that

are

used

in

the

USER_USED

field.

12

4

LOCAL_FIRST

Specifies

the

address

of

the

first

local

function

package

entry.

The

address

points

to

the

first

field

in

a

series

of

8-character

fields

that

contain

the

names

of

the

function

package

directories

for

local

packages.

Figure

20

shows

the

series

of

directory

names.

16

4

LOCAL_TOTAL

Specifies

the

total

number

of

local

package

table

entries.

This

is

the

total

number

of

function

package

directory

names

that

are

pointed

to

by

the

address

at

offset

+12.

You

can

use

the

LOCAL_TOTAL

field

to

specify

the

maximum

number

of

local

function

packages

that

can

be

defined

for

the

environment.

You

can

then

use

the

LOCAL_USED

field

at

offset

+20

to

specify

the

actual

number

of

packages

that

are

available.

20

4

LOCAL_USED

Specifies

the

total

number

of

local

package

table

entries

that

are

used.

You

can

specify

a

maximum

number

(total)

in

the

LOCAL_TOTAL

field

at

offset

+16

and

specify

the

actual

number

of

local

function

packages

that

are

used

in

the

LOCAL_USED

field.

24

4

SYSTEM_FIRST

Specifies

the

address

of

the

first

system

function

package

entry.

The

address

points

to

the

first

field

in

a

series

of

8-character

fields

that

contain

the

names

of

the

function

package

directories

for

system

packages.

Figure

20

shows

the

series

of

directory

names.

28

4

SYSTEM_TOTAL

Specifies

the

total

number

of

system

package

table

entries.

This

is

the

total

number

of

function

package

directory

names

that

are

pointed

to

by

the

address

at

offset

+24.

You

can

use

the

SYSTEM_TOTAL

field

to

specify

the

maximum

number

of

system

function

packages

that

can

be

defined

for

the

environment.

You

can

then

use

the

SYSTEM_USED

field

at

offset

+32

to

specify

the

actual

number

of

packages

that

are

available.

32

4

SYSTEM_USED

Specifies

the

total

number

of

system

package

table

entries

that

are

used.

You

can

specify

a

maximum

number

(total)

in

the

SYSTEM_TOTAL

field

at

offset

+28

and

specify

the

actual

number

of

system

function

packages

that

are

used

in

the

SYSTEM_USED

field.

Function

Package

Table

408

REXX/VSE

Reference

Table

57.

Function

Package

Table

Header

(continued)

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

36

4

LENGTH

Specifies

the

length

of

each

table

entry,

that

is,

the

length

of

each

function

package

directory

name.

The

length

is

always

8.

40

8

—

Indicate

the

end

of

the

table

with

X'FFFFFFFFFFFFFFFF'.

Figure

20

shows

the

function

package

table

entries

that

are

the

names

of

the

directories

for

user,

local,

and

system

function

packages.

The

table

entries

are

a

series

of

8-character

fields.

Each

field

contains

the

name

of

a

function

package

directory.

The

directory

is

a

phase

that,

when

loaded,

contains

information

about

each

external

function

and

subroutine

in

the

function

package.

“Directory

for

Function

Packages”

on

page

352

describes

the

format

of

the

function

package

directory

in

detail.

The

function

package

directory

names

in

each

8-character

field

must

be

left

justified

and

padded

with

blanks.

Values

in

the

ARXPARMS

Default

Parameters

Module

Table

58

on

page

410

shows

the

default

values

in

ARXPARMS.

“Characteristics

of

a

Language

Processor

Environment”

on

page

394

describes

the

structure

of

the

parameters

module

in

detail.

In

the

figure,

the

LANGUAGE

field

contains

the

language

code

ENU

for

US

English

in

mixed

case

(upper

and

lowercase).

The

default

parameters

module

may

contain

a

different

language

code

depending

on

whether

one

of

the

language

features

has

been

installed.

See

page

396

for

information

about

the

different

language

codes.

Figure

20.

Function

Package

Table

Entries

–

Function

Package

Directories

Function

Package

Table

Chapter

19.

Language

Processor

Environments

409

In

the

figure,

the

value

of

each

flag

setting

is

followed

by

the

value

of

its

corresponding

mask

setting,

in

parentheses.

Note:

Table

58

shows

the

default

values

in

the

parameters

module.

It

is

not

a

mapping

of

a

parameters

module.

For

information

about

the

format

of

a

parameters

module,

see

“Characteristics

of

a

Language

Processor

Environment”

on

page

394.

The

ARXPARMB

mapping

macro

is

for

the

parameter

block

and

the

ARXMODNT,

ARXSUBCT,

and

ARXPACKT

mapping

macros

are

for

the

module

name

table,

host

command

environment

table,

and

function

package

table

respectively.

Table

58.

Values

in

ARXPARMS

Default

Parameters

Module

(1)

Field

Name

ARXPARMS

ID

ARXPARMS

VERSION

0001

LANGUAGE

ENU

PARSETOK

FLAGS

(MASKS)

TSOFL

0

(1)

(This

field

is

reserved.)

CMDSOFL

0

(1)

FUNCSOFL

0

(1)

NOSTKFL

0

(1)

NOREADFL

0

(1)

NOWRTFL

0

(1)

NEWSTKFL

0

(1)

USERPKFL

0

(1)

LOCPKFL

0

(1)

SYSPKFL

0

(1)

NEWSCFL

0

(1)

CLOSEXFL

0

(1)

NOESTAE

0

(1)

(This

field

is

reserved.)

RENTRANT

0

(1)

NOPMSGS

0

(1)

ALTMSGS

1

(1)

SPSHARE

0

(1)

(This

field

is

reserved.)

STORFL

0

(1)

NOLOADDD

0

(1)

(This

field

is

reserved.)

NOMSGWTO

0

(1)

NOMSGIO

0

(1)

SUBPOOL

0

(This

field

is

reserved.)

ADDRSPN

VSE

—

FFFFFFFFFFFFFFFF

Table

59.

Values

in

ARXPARMS

Default

Parameters

Module

(2)

Field

Name

in

Module

Name

Table

ARXPARMS

INDD

SYSIPT

OUTDD

SYSLST

LOADDD

Reserved

IOROUT

EXROUT

GETFREER

EXECINIT

ATTNROUT

Reserved

STACKRT

IRXEXECX

IDROUT

MSGIDRT

Default

Parameters

Module

410

REXX/VSE

Reference

Table

59.

Values

in

ARXPARMS

Default

Parameters

Module

(2)

(continued)

Field

Name

in

Module

Name

Table

ARXPARMS

EXECTERM

RXHLT

—

FFFFFFFFFFFFFFFF

Table

60.

Values

in

ARXPARMS

Default

Parameters

Module

(3)

Field

Name

in

Host

Command

Environment

Table

ARXPARMS

TOTAL

10

USED

6

LENGTH

32

INITIAL

VSE

—

FFFFFFFFFFFFFFFF

Entry

1

NAME

VSE

ROUTINE

ARXSTAM

TOKEN

Entry

2

NAME

POWER

ROUTINE

ARXSTAM

TOKEN

Entry

3

NAME

LINK

ROUTINE

ARXSTAM

TOKEN

Entry

4

NAME

LINKPGM

ROUTINE

ARXSTAM

TOKEN

Entry

5

NAME

JCL

ROUTINE

ARXJCLAD

TOKEN

Entry

6

NAME

CONSOLE

ROUTINE

ARXCONAD

TOKEN

How

ARXINIT

Determines

What

Values

to

Use

for

the

Environment

When

REXX/VSE

calls

ARXINIT

to

automatically

initialize

a

language

processor

environment,

ARXINIT

must

first

determine

what

values

to

use

for

the

environment.

The

following

topics

describe

how

ARXINIT

determines

the

values

for

a

new

environment.

“Chains

of

Environments

and

How

Environments

Are

Located”

on

page

412

describes

how

a

routine

locates

a

previous

environment.

Values

ARXINIT

Uses

to

Initialize

Environments

When

JCL

or

an

application

program

needs

to

call

a

REXX

program,

ARXINIT

automatically

initializes

an

environment

for

the

REXX

program.

(See

also

“Initialization

Routine

–

ARXINIT”

on

page

431.)

ARXINIT

determines

the

values

to

use

for

defining

the

environment

from:

1.

The

in-storage

parameter

list

specified

on

the

call

to

ARXINIT

(On

the

call

to

ARXINIT,

you

can

pass

parameters

that

define

the

values

for

the

environment.

ARXINIT

evaluates

these.)

2.

The

parameters

module

specified

on

the

call

to

ARXINIT

Default

Parameters

Module

Chapter

19.

Language

Processor

Environments

411

3.

The

previous

language

processing

environment

(“Chains

of

Environments

and

How

Environments

Are

Located”

describes

in

detail

how

ARXINIT

locates

a

previous

environment.)

4.

The

ARXPARMS

parameter

module.

ARXINIT

first

checks

the

values

in

the

in-storage

parameter

list

specified

on

the

call

to

ARXINIT.

If

the

value

is

not

null,

ARXINIT

uses

that

value.

ARXINIT

considers

the

following

types

of

parameter

values

to

be

null:

v

A

character

string

containing

only

blanks

or

of

length

0

v

An

address

of

0

v

A

binary

number

with

the

value

X'80000000'

v

A

bit

setting

with

a

corresponding

mask

of

0.

If

the

value

in

the

parameters

module

is

null,

ARXINIT

uses

the

value

from

the

parameter

module

specified

on

the

call

to

ARXINIT.

If

this

value

is

null,

ARXINIT

uses

the

value

from

the

previous

language

processor

environment.

If

an

environment

does

not

exist,

ARXINIT

uses

the

value

from

the

ARXPARMS

parameters

module.

ARXINIT

computes

each

individual

value

using

this

method

and

then

initializes

the

environment.

For

example,

if

the

in-storage

parameter

list

does

not

include

a

value

for

ADDRSPN,

ARXINIT

uses

the

value

from

the

parameter

module

specified

on

the

call

to

ARXINIT.

Suppose

the

parameter

module

is

not

ARXPARMS.

In

this

case,

the

value

can

be

null,

and

ARXINIT

would

check

the

previous

language

processor

environment.

If

there

is

no

previous

environment,

ARXINIT

checks

ARXPARMS,

finding

the

value

VSE.

After

ARXINIT

determines

all

of

the

values,

ARXINIT

initializes

the

new

environment.

Chains

of

Environments

and

How

Environments

Are

Located

As

described

in

previous

topics,

many

language

processor

environments

can

be

initialized

in

one

partition.

A

language

processor

environment

is

associated

with

a

task.

Several

language

processor

environments

can

be

associated

with

a

single

task.

This

topic

describes

how

non-reentrant

environments

are

chained

together

in

a

partition.

Language

processor

environments

are

chained

together

in

a

hierarchical

structure

to

form

a

chain

of

environments.

The

environments

on

one

chain

are

interrelated

and

share

system

resources.

For

example,

several

language

processor

environments

can

share

the

same

data

stack.

However,

separate

chains

within

a

single

partition

are

independent.

Figure

21

on

page

413

illustrates

three

language

processor

environments

that

form

one

chain.

Environment

Values

Used

412

REXX/VSE

Reference

The

first

environment

initialized

was

environment

1.

When

ARXINIT

initializes

the

second

environment,

the

first

environment

is

considered

to

be

the

previous

environment

(the

parent

environment).

Environment

2

is

chained

to

environment

1.

Similarly,

when

ARXINIT

initializes

the

third

environment,

environment

2

is

considered

to

be

the

previous

environment.

Environment

2

is

the

parent

environment

for

environment

3.

Different

chains

can

exist

in

one

partition.

Figure

22

illustrates

two

separate

tasks,

task

1

and

task

2.

Each

task

has

a

chain

of

environments.

For

task

1,

the

chain

consists

of

two

language

processor

environments.

For

task

2,

the

chain

has

only

one

language

processor

environment.

The

two

environments

on

task

1

are

interrelated

and

share

system

resources.

The

two

chains

are

completely

separate

and

independent.

As

discussed

previously,

language

processor

environments

are

associated

with

a

task.

Under

a

task,

ARXINIT

can

initialize

one

or

more

language

processor

environments.

The

task

can

then

attach

another

task.

ARXINIT

can

be

called

under

the

second

task

to

initialize

a

language

processor

environment.

The

new

environment

is

chained

to

the

last

environment

under

the

first

task.

Figure

23

on

page

414

illustrates

a

task

that

has

attached

another

task

and

how

the

language

processor

environments

are

chained

together.

Figure

21.

Three

Language

Processor

Environments

in

a

Chain

Figure

22.

Separate

Chains

on

Two

Different

Tasks

Chains

of

Environments

Chapter

19.

Language

Processor

Environments

413

As

shown

in

Figure

23,

task

1

is

started

and

ARXINIT

initializes

an

environment

(environment

1).

ARXINIT

is

called

again

to

initialize

a

second

language

processor

environment

under

task

1

(environment

2).

Environment

2

is

chained

to

environment

1.

If

you

invoke

a

REXX

program

within

task

1,

the

program

runs

in

environment

2.

Task

1

then

attaches

another

task,

task

2.

ARXINIT

is

called

to

initialize

an

environment.

ARXINIT

locates

the

previous

environment,

which

is

environment

2,

and

chains

the

new

environment

(environment

3)

to

its

parent

(environment

2).

When

ARXINIT

is

called

again,

ARXINIT

chains

the

fourth

environment

(environment

4)

to

its

parent

(environment

3).

At

this

point,

four

language

processor

environments

exist

on

the

chain.

Locating

a

Language

Processor

Environment

Whenever

you

invoke

a

REXX

program

or

routine,

the

program

or

routine

must

run

in

a

language

processor

environment.

The

one

exception

is

the

initialization

routine,

ARXINIT,

which

initializes

environments.

If

you

call

a

program

using

ARXEXEC

or

ARXJCL,

a

language

processor

environment

may

or

may

not

already

exist.

If

an

environment

does

not

exist

on

the

current

task,

REXX/VSE

calls

the

ARXINIT

routine

to

initialize

an

environment

before

the

program

runs.

Otherwise,

REXX/VSE

locates

the

current

non-reentrant

environment

and

the

program

runs

in

that

environment.

Figure

23.

One

Chain

of

Environments

for

Attached

Tasks

Chains

of

Environments

414

REXX/VSE

Reference

ARXINIT

always

tries

to

locate

a

previous

language

processor

environment.

If

an

environment

does

not

exist

on

the

current

task

or

on

a

parent

task,

ARXINIT

uses

the

values

in

the

ARXPARMS

parameters

module

as

the

previous

environment.

A

language

processor

environment

must

already

exist

if

you

call

any

of

the

programming

routines

or

replaceable

routines.

These

routines

do

not

invoke

ARXINIT

to

initialize

a

new

environment.

If

an

environment

does

not

already

exist

and

you

call

one

of

these

routines,

the

routine

completes

unsuccessfully

with

a

return

code.

See

Chapter

17,

“Programming

Services”

for

information

about

the

programming

routines

and

Chapter

21,

“Replaceable

Routines

and

Exits”

for

information

about

the

replaceable

routines.

When

ARXINIT

initializes

a

new

language

processor

environment,

ARXINIT

creates

a

number

of

control

blocks

that

contain

information

about

the

environment

and

any

REXX

program

currently

running

in

the

environment.

The

main

control

block

is

the

environment

block

(ENVBLOCK),

which

points

to

other

control

blocks,

such

as

the

parameter

block

(PARMBLOCK)

and

the

work

block

extension.

“Control

Blocks

Created

for

a

Language

Processor

Environment”

on

page

417

describes

the

control

blocks

that

ARXINIT

creates

for

each

language

processor

environment.

The

environment

block

represents

its

language

processor

environment

and

is

the

anchor

that

REXX/VSE

uses

on

calls

to

all

REXX

programming

service

routines.

Whenever

you

call

a

REXX

programming

service

routine,

you

can

pass

the

address

of

an

environment

block

in

register

0

on

the

call.

By

passing

the

address,

you

can

specify

the

language

processor

environment

in

which

you

want

the

routine

to

run.

For

example,

suppose

you

call

the

initialization

routine,

ARXINIT.

On

return,

ARXINIT

returns

the

address

of

the

environment

block

for

the

new

environment

in

register

0.

You

can

store

that

address

for

future

use.

Suppose

you

call

ARXINIT

several

times

to

initialize

a

total

of

four

environments

in

that

partition.

If

you

then

want

to

call

a

programming

service

routine

and

have

the

routine

run

in

the

first

environment

on

the

chain,

you

can

pass

the

address

of

the

first

environment’s

environment

block

on

the

call.

You

can

also

pass

the

address

of

the

environment

block

in

register

0

to

all

REXX

replaceable

routines

and

exit

routines.

When

a

programming

service

routine

is

called,

the

programming

service

routine

must

determine

in

which

environment

to

run.

The

routine

checks

register

0

to

determine

whether

the

address

of

an

environment

block

was

passed

on

the

call.

If

an

address

was

passed,

the

routine

determines

whether

the

address

points

to

a

valid

environment

block.

The

environment

block

is

valid

if

the

environment

is

either

a

reentrant

or

non-reentrant

environment

on

the

current

task.

If

register

0

does

not

contain

the

address

of

a

valid

environment

block,

the

routine

that

is

called

searches

for

a

non-reentrant

environment

on

the

current

task.

If

the

routine

could

not

find

an

environment

using

the

previous

steps,

the

next

step

depends

on

what

routine

was

called.

v

If

one

of

the

REXX

programming

routines

or

the

replaceable

routines

was

called,

a

language

processor

environment

is

required

in

order

for

the

routine

to

run.

The

routine

ends

in

error.

The

same

occurs

for

the

termination

routine,

ARXTERM.

v

If

ARXEXEC

or

ARXJCL

was

called,

the

routine

invokes

ARXINIT

to

initialize

a

new

environment.

v

If

ARXINIT

was

called,

ARXINIT

uses

the

ARXPARMS

parameters

module

as

the

previous

environment.

The

ARXINIT

routine

initializes

a

new

language

processor

environment.

Therefore,

ARXINIT

does

not

need

to

locate

an

environment

in

which

to

run.

However,

ARXINIT

does

locate

a

previous

environment

to

determine

what

values

to

use

when

defining

the

new

environment.

The

following

summarizes

the

steps

ARXINIT

takes

to

locate

the

previous

environment:

1.

If

register

0

contains

the

address

of

a

valid

environment

block,

ARXINIT

uses

that

environment

as

the

previous

environment.

2.

If

a

non-reentrant

environment

exists

on

the

current

task,

ARXINIT

uses

the

last

non-reentrant

environment

on

the

task

as

the

previous

environment.

Chains

of

Environments

Chapter

19.

Language

Processor

Environments

415

3.

Otherwise,

ARXINIT

locates

the

parent

task.

If

a

non-reentrant

environment

exists

on

any

of

the

parent

tasks,

ARXINIT

uses

the

last

non-reentrant

environment

on

the

task

as

the

previous

environment.

4.

If

ARXINIT

cannot

find

an

environment,

ARXINIT

uses

the

values

in

the

default

parameters

module

ARXPARMS

as

the

previous

environment.

“Initialization

Routine

–

ARXINIT”

on

page

431

describes

how

the

ARXINIT

routine

determines

what

values

to

use

when

you

explicitly

call

ARXINIT.

Changing

the

Default

Values

for

Initializing

an

Environment

The

parameters

module

(phase)

contains

default

values

for

initializing

language

processor

environments.

In

most

cases,

your

installation

probably

need

not

change

the

default

values.

However,

if

you

want

to

change

one

or

more

parameter

values,

you

can

provide

your

own

phase

that

contains

your

values.

Note:

You

can

also

call

the

initialization

routine,

ARXINIT,

to

initialize

a

new

environment.

On

the

call,

you

can

pass

the

parameters

whose

values

you

want

to

be

different

from

the

previous

environment.

If

you

do

not

specifically

pass

a

parameter,

ARXINIT

uses

the

value

from

the

previous

environment.

See

“Initialization

Routine

–

ARXINIT”

on

page

431

for

more

information.

This

topic

describes

how

to

create

a

phase

containing

parameter

values

for

initializing

an

environment.

You

should

also

refer

to

“Characteristics

of

a

Language

Processor

Environment”

on

page

394

for

information

about

the

format

of

the

parameters

module.

To

change

one

or

more

default

values

that

ARXINIT

uses

to

initialize

a

language

processor

environment,

you

can

provide

a

phase

containing

the

values

you

want.

You

must

first

write

the

code

for

a

parameters

module.

PRD1.BASE

contains

a

sample

that

is

assembler

code

for

the

default

parameters

module.

The

member

name

of

the

sample

is:

ARXPARMS.Z

(for

ARXPARMS).

When

you

write

the

code,

be

sure

to

include

the

correct

default

values

for

any

parameters

you

are

not

changing.

For

example,

suppose

you

are

adding

several

function

packages

to

the

ARXPARMS

module.

In

addition

to

coding

the

function

package

table,

you

must

also

provide

all

of

the

other

fields

in

the

parameters

module

and

their

default

values.

“Values

in

the

ARXPARMS

Default

Parameters

Module”

on

page

409

shows

the

default

parameter

values

for

ARXPARMS.

After

you

create

the

code,

you

must

assemble

the

code

and

then

link-edit

the

object

code.

The

output

is

a

member

of

a

sublibrary

with

a

member

type

of

PHASE.

You

must

then

place

the

member

in

the

active

PHASE

chain.

The

default

parameters

module

is

in

PRD1.BASE.

ARXPARMS.Z

suggests

putting

the

changed

parameters

module

into

PRD2.CONFIG.

However,

you

may

also

place

your

phase

somewhere

ahead

of

the

default

parameters

module

in

the

active

PHASE

chain

by

using

a

LIBDEF

statement.

The

new

values

you

specify

in

your

own

phase

are

not

available

until

the

current

language

processor

environment

is

terminated

and

a

new

environment

is

initialized.

For

example,

if

you

provide

a

phase

(ARXPARMS),

you

must

reinitialize

the

environment.

Providing

Your

Own

Parameters

Module

The

sample

ARXPARMS.Z

is

in

PRD1.BASE.

You

can

use

this

to

code

your

own

phases.

Changing

Values

If

you

want

to

change

a

default

parameter

value,

code

a

new

ARXPARMS

module.

In

the

code,

you

must

specify

the

new

values

you

want

for

the

parameters

you

are

changing

and

the

default

values

for

all

of

the

other

fields.

See

“Values

in

the

ARXPARMS

Default

Parameters

Module”

on

page

409

to

review

the

defaults

in

the

ARXPARMS

parameters

module.

When

you

assemble

the

code

and

link-edit

the

object

code,

you

must

name

the

output

member

ARXPARMS.

You

must

then

place

the

phase

with

ARXPARMS

in

PRD2.CONFIG

or

in

a

sublibrary

with

type

PHASE

that

precedes

PRD1.BASE

in

the

active

PHASE

chain.

You

can

do

this

using

JCL.

Chains

of

Environments

416

REXX/VSE

Reference

If

you

provide

your

own

ARXPARMS

module,

ARXINIT

locates

the

module

when

initializing

a

language

processor

environment.

The

values

for

the

replaceable

routines

in

the

default

parameters

module

are

null.

You

can

code

your

own

ARXPARMS

phase

and

specify

the

names

of

one

or

more

replaceable

routines.

For

more

information

about

the

parameters

you

can

use

in

different

language

processor

environments,

see

“Specifying

Values

for

Different

Environments.”

Specifying

Values

for

Different

Environments

You

can

also

call

the

initialization

routine,

ARXINIT,

to

initialize

a

new

environment.

When

you

call

ARXINIT,

you

can

pass

parameter

values

on

the

call.

Chapter

20,

“Initialization

and

Termination

Routines”

describes

ARXINIT

and

its

parameters

and

return

codes.

Whether

you

provide

your

own

phase

or

call

ARXINIT

directly

you

cannot

change

some

parameters.

There

are

also

some

restrictions

on

parameter

values

based

on

the

values

of

other

parameters

in

the

same

environment

and

parameters

in

the

previous

environment.

This

topic

describes

considerations

for

using

the

parameters.

For

more

information

about

the

parameters

and

their

descriptions,

see

“Characteristics

of

a

Language

Processor

Environment”

on

page

394.

Parameters

You

Cannot

Change

The

following

parameters

have

fixed

values

that

you

cannot

change.

ID

The

value

must

be

ARXPARMS.

If

you

provide

your

own

phase,

you

must

specify

ARXPARMS

for

the

ID.

If

you

call

ARXINIT,

ARXINIT

ignores

any

value

you

pass

and

uses

the

default

ARXPARMS.

VERSION

The

value

must

be

0001.

If

you

provide

your

own

phase

or

call

ARXINIT,

specify

0001

for

the

version.

The

following

parameters

are

reserved,

and

you

should

not

attempt

to

change

them:

v

TSOFL

v

NOLOADDD

v

SPSHARE

v

NOESTAE.

Control

Blocks

Created

for

a

Language

Processor

Environment

When

ARXINIT

initializes

a

new

language

processor

environment,

ARXINIT

creates

a

number

of

control

blocks

that

contain

information

about

the

environment.

The

main

control

block

is

the

environment

block

(ENVBLOCK).

The

environment

block

contains

pointers

to:

v

The

parameter

block

(PARMBLOCK),

which

is

a

control

block

containing

the

parameters

ARXINIT

used

to

define

the

environment.

The

parameter

block

ARXINIT

creates

has

the

same

format

as

the

parameters

module.

v

The

user

field

that

was

passed

on

the

call

to

ARXINIT

if

a

user

explicitly

called

ARXINIT

v

The

work

block

extension,

which

is

a

control

block

that

contains

information

about

the

REXX

program

that

is

currently

running

v

The

REXX

vector

of

external

entry

points,

which

contains

the

addresses

of

the

REXX

routines,

such

as

ARXINIT,

ARXTERM,

REXX

programming

routines,

and

replaceable

routines.

For

replaceable

routines,

the

vector

contains

the

addresses

of

both

the

routines

that

REXX/VSE

supplies

and

any

routines

that

users

provide.

v

The

routine

that

encountered

the

first

error

and

issued

the

first

error

message

in

the

environment.

v

The

compiler

programming

table,

which

identifies

compiler

runtime

processors

and

corresponding

compiler

interface

routines.

Changing

Default

Values

Chapter

19.

Language

Processor

Environments

417

Note

About

Changing

Any

Control

Blocks

You

can

obtain

information

from

the

control

blocks.

However,

you

must

not

change

any

of

the

control

blocks.

If

you

do,

unpredictable

results

may

occur.

Format

of

the

Environment

Block

(ENVBLOCK)

Table

61

shows

the

format

of

the

environment

block.

A

mapping

macro

for

the

environment

block,

ARXENVB,

is

in

PRD1.BASE.

When

ARXINIT

initializes

a

new

language

processor

environment,

ARXINIT

returns

the

address

of

the

new

environment

block

in

register

0

and

in

parameter

6

in

the

parameter

list.

You

can

use

the

environment

block

to

locate

information

about

a

specific

environment.

For

example,

the

environment

block

points

to

the

REXX

vector

of

external

entry

points

that

contains

the

addresses

of

routines

that

perform

system

services,

such

as

I/O,

data

stack,

and

exec

load.

Using

the

control

blocks

lets

you

easily

call

one

of

the

routines.

Note:

The

following

field

names

in

the

table

must

include

the

prefix

ENVBLOCK_:

ID,

VERSION,

LENGTH,

PARMBLOCK,

USERFIELD,

WORKBLOK_EXT,

IRXEXTE,

COMPGMTB,

ATTNROUT_PARMPTR,

ECPTR.

Table

61.

Format

of

the

Environment

Block

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

0

8

ID

An

8-character

field

that

identifies

the

environment

block.

The

field

contains

the

characters

’ENVBLOCK’.

8

4

VERSION

A

field

that

contains

the

character

representation

of

the

version

number

of

the

environment

block.

The

version

number

is

0001.

12

4

LENGTH

The

length

of

the

environment

block.

16

4

PARMBLOCK

The

address

of

the

parameter

block

(PARMBLOCK).

See

“Format

of

the

Parameter

Block

(PARMBLOCK)”

on

page

419

for

more

information.

20

4

USERFIELD

The

address

of

the

user

field

that

is

passed

to

ARXINIT

if

you

explicitly

call

ARXINIT.

You

pass

the

user

field

in

parameter

4

(see

“Initialization

Routine

–

ARXINIT”

on

page

431

for

information

about

the

parameters).

You

can

use

this

field

for

your

own

processing.

The

REXX/VSE

services

do

not

use

this

field.

24

4

WORKBLOK_EXT

The

address

of

the

current

work

block

extension.

If

a

program

is

not

currently

running

in

the

environment,

the

address

is

0.

See

“Format

of

the

Work

Block

Extension”

on

page

419

for

details

about

the

work

block

extension.

28

4

IRXEXTE

The

address

of

the

REXX

vector

of

external

entry

points.

See

“Format

of

the

REXX

Vector

of

External

Entry

Points”

on

page

421

for

details

about

the

vector.

Control

Blocks

418

REXX/VSE

Reference

Table

61.

Format

of

the

Environment

Block

(continued)

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

32

4

ERROR_CALL@

The

address

of

the

routine

that

encountered

the

first

error

in

the

language

processor

environment

and

that

issued

the

first

error

message.

The

error

could

have

occurred

while

a

program

was

running

or

when

a

particular

service

was

requested

in

the

environment.

36

4

—

Reserved.

40

8

ERROR_MSGID

An

8-character

field

that

contains

the

message

ID

of

the

first

error

message

REXX/VSE

issued

in

the

language

processor

environment.

The

message

relates

to

the

error

the

routine

encountered

and

to

which

offset

+32

points.

48

80

PRIMARY_ERROR_MESSAGE

An

80-character

field

that

contains

the

primary

error

message

(the

message

text)

for

the

message

ID

at

offset

+40.

128

160

ALTERNATE_ERROR_MESSAGE

A

160-character

field

that

contains

the

alternate

error

message

(the

message

text)

for

the

message

ID

at

offset

+40.

288

4

COMPGMTB

This

field

is

a

product-sensitive

programming

interface.

The

address

of

the

compiler

programming

table

for

the

language

processor

environment.

The

table

identifies

a

compiler

runtime

processor

and

corresponding

compiler

interface

routines.

If

a

compiler

programming

table

is

not

available

to

the

language

processor

environment,

this

field

is

0.

For

information

about

the

compiler

programming

table,

see

503.

292

4

ATTNROUT_PARMPTR

This

field

is

reserved.

296

4

ECTPTR

This

field

is

reserved.

300

4

—

A

fullword

of

bits

that

gives

status

of

this

environment

block.

Bit

0

is

the

only

bit

that

is

used.

Bits

1

through

31

are

reserved.

v

Bit

0

(TERMA_CLEANUP).

This

bit

is

on

if

the

environment

is

undergoing

abnormal

termination.

(See

Chapter

23,

“ARXTERMA

Routine,”

on

page

497

for

information

about

abnormal

termination.)

Format

of

the

Parameter

Block

(PARMBLOCK)

The

parameter

block

(PARMBLOCK)

contains

information

about

the

parameters

that

ARXINIT

uses

to

define

the

environment.

The

environment

block

points

to

the

parameter

block.

Table

51

on

page

395

shows

the

format

of

the

parameter

block.

Format

of

the

Work

Block

Extension

The

work

block

extension

contains

information

about

the

REXX

program

that

is

currently

running.

The

environment

block

points

to

the

work

block

extension.

Control

Blocks

Chapter

19.

Language

Processor

Environments

419

When

ARXINIT

first

initializes

a

new

environment

and

creates

the

environment

block,

the

address

of

the

work

block

extension

in

the

environment

block

is

0.

The

address

is

0

because

a

REXX

program

is

not

yet

running

in

the

environment.

At

this

point,

ARXINIT

is

only

initializing

the

environment.

When

a

program

starts

running

in

the

environment,

the

environment

block

is

updated

to

point

to

the

work

block

extension

describing

the

program.

If

a

program

is

running

and

calls

another

program,

the

environment

block

is

updated

to

point

to

the

work

block

extension

for

the

second

program.

The

work

block

extension

for

the

first

program

still

exists,

but

the

environment

block

does

not

point

to

it.

When

the

second

program

completes

and

returns

control

to

the

first

program,

the

environment

block

is

changed

again

to

point

to

the

work

block

extension

for

the

original

program.

The

work

block

extension

contains

the

parameters

that

are

passed

to

the

ARXEXEC

routine

to

invoke

the

program.

You

can

call

ARXEXEC

explicitly

to

invoke

a

program

and

pass

the

parameters

on

the

call.

If

you

use

ARXJCL

and

invoke

a

program,

the

ARXEXEC

routine

always

gets

control

to

run

the

program.

“The

ARXEXEC

Routine”

on

page

338

describes

the

ARXEXEC

routine

in

detail.

Table

62

shows

the

format

of

the

work

block

extension.

A

mapping

macro

for

the

work

block

extension,

ARXWORKB,

is

in

PRD1.BASE.

Note:

Each

field

name

in

the

following

table

must

include

the

prefix

WORKEXT_.

Table

62.

Format

of

the

Work

Block

Extension

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

0

4

EXECBLK

The

address

of

the

exec

block

(EXECBLK).

See

“The

Exec

Block

(EXECBLK)”

on

page

341

for

a

description

of

the

control

block.

4

4

ARGTABLE

The

address

of

the

arguments

for

the

program.

The

arguments

are

arranged

as

a

vector

of

address/length

pairs

followed

by

X'FFFFFFFFFFFFFFFF'.

See

“Format

of

Argument

List”

on

page

342

for

a

description

of

the

argument

list.

8

4

FLAGS

A

fullword

of

bits

that

ARXEXEC

uses

as

flags.

See

page

340

for

details.

12

4

INSTBLK

The

address

of

the

in-storage

control

block

(INSTBLK).

See

“The

In-Storage

Control

Block

(INSTBLK)”

on

page

343

for

a

description

of

the

control

block.

16

4

CPPLPTR

This

field

is

reserved.

20

4

EVALBLOCK

The

address

of

the

evaluation

block

(EVALBLOCK).

See

“The

Evaluation

Block

(EVALBLOCK)”

on

page

345

for

a

description

of

the

control

block.

24

4

WORKAREA

The

address

of

an

8-byte

field

that

defines

a

work

area

for

the

ARXEXEC

routine.

See

Table

14

on

page

339

for

more

information

about

the

work

area.

28

4

USERFIELD

The

address

of

the

user

field

that

is

passed

to

ARXEXEC

if

you

explicitly

called

ARXEXEC.

You

pass

the

address

of

the

user

field

in

parameter

8

(see

“The

ARXEXEC

Routine”

on

page

338

for

information

about

the

parameters).

You

can

use

this

field

for

your

own

processing.

None

of

the

REXX

services

use

this

field.

Control

Blocks

420

REXX/VSE

Reference

Table

62.

Format

of

the

Work

Block

Extension

(continued)

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

32

4

RTPROC

This

field

is

a

product-sensitive

programming

interface.

A

fullword

that

is

available

for

a

REXX

compiler

runtime

processor

to

use.

This

field

lets

a

compiler

runtime

processor

have

an

anchor

that

is

unique

for

each

compiled

REXX

program

that

runs

within

a

language

processor

environment.

A

compiler

runtime

processor

can

use

this

field

for

its

own

purpose.

The

language

processor

does

not

check

or

change

this

field.

36

4

SOURCE_ADDRESS

The

address

of

the

PARSE

SOURCE

string

for

the

program

currently

processing.

This

is

the

string

that

the

PARSE

SOURCE

instruction

would

return.

40

4

SOURCE_LENGTH

The

length

of

the

PARSE

SOURCE

string

to

which

the

SOURCE_ADDRESS

field

at

offset

+36

(decimal)

points.

44

4

--

This

field

is

reserved.

Format

of

the

REXX

Vector

of

External

Entry

Points

The

REXX

vector

of

external

entry

points

is

a

control

block

that

contains

the

addresses

of

REXX

programming

routines

and

replaceable

routines.

The

environment

block

points

to

the

vector.

Table

63

on

page

422

shows

the

format

of

the

vector

of

external

entry

points.

A

mapping

macro

for

the

vector,

ARXEXTE,

is

in

PRD1.BASE.

The

vector

allows

you

to

easily

access

the

address

of

a

particular

REXX/VSE

routine

to

call

the

routine.

The

table

contains

the

number

of

entries

in

the

table

followed

by

the

entry

points

(addresses)

of

the

routines.

Each

REXX

external

entry

point

has

an

alternate

entry

point

to

permit

FORTRAN

programs

to

call

the

entry

point.

The

external

entry

points

and

their

alternates

are:

Primary

Entry

Point

Name

Alternate

Entry

Point

Name

ARXINIT

ARXINT

ARXLOAD

ARXLD

ARXSUBCM

ARXSUB

ARXEXEC

ARXEX

ARXINOUT

ARXIO

ARXJCL

ARXJCL

(same)

ARXRLT

ARXRLT

(same)

ARXSTK

ARXSTK

(same)

ARXTERM

ARXTRM

ARXIC

ARXIC

(same)

ARXUID

ARXUID

(same)

ARXTERMA

ARXTMA

ARXMSGID

ARXMID

ARXEXCOM

ARXEXC

ARXSAY

ARXSAY

(same)

ARXERS

ARXERS

(same)

ARXHST

ARXHST

(same)

ARXHLT

ARXHLT

(same)

ARXTXT

ARXTXT

(same)

Control

Blocks

Chapter

19.

Language

Processor

Environments

421

Primary

Entry

Point

Name

Alternate

Entry

Point

Name

ARXLIN

ARXLIN

(same)

ARXRTE

ARXRTE

(same)

For

the

replaceable

routines,

the

vector

provides

two

addresses

for

each

routine.

The

first

address

is

the

address

of

the

replaceable

routine

the

user

provided

for

the

language

processor

environment.

If

a

user

did

not

provide

a

replaceable

routine,

the

address

points

to

the

default

routine

REXX/VSE

supplies.

The

second

address

points

to

the

default

REXX/VSE

routine.

Chapter

21,

“Replaceable

Routines

and

Exits,”

on

page

443

describes

replaceable

routines

in

detail.

Notes:

1.

For

compatibility

with

MVS,

you

can

use

IRX

instead

of

ARX

for

the

first

three

characters

of

field

names

in

the

following

table

that

begin

with

ARX.

2.

The

ENTRY_COUNT

field

must

include

the

prefix

IRXEXTE_.

Table

63.

Format

of

REXX

Vector

of

External

Entry

Points

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

0

4

ENTRY_COUNT

The

total

number

of

entry

points

included

in

the

vector.

The

number

is

26.

4

4

ARXINIT

The

address

of

the

initialization

routine,

ARXINIT.

8

4

LOAD_ROUTINE

The

address

of

the

user-supplied

exec

load

replaceable

routine

for

the

language

processor

environment.

This

is

the

routine

that

the

EXROUT

field

of

the

module

name

table

specifies.

If

EXROUT

does

not

specify

a

replaceable

routine,

the

address

points

to

the

exec

load

routine

that

REXX/VSE

supplies,

ARXLOAD.

12

4

ARXLOAD

The

address

of

the

exec

load

routine

REXX/VSE

supplies,

ARXLOAD.

16

4

ARXEXCOM

The

address

of

the

variable

pool

access

interface,

ARXEXCOM.

20

4

ARXEXEC

The

address

of

the

exec

processing

routine,

ARXEXEC.

24

4

IO_ROUTINE

The

address

of

the

user-supplied

I/O

replaceable

routine

for

the

language

processor

environment.

This

is

the

routine

that

is

specified

in

the

IOROUT

field

of

the

module

name

table.

If

IO_ROUTINE

does

not

specify

a

replaceable

routine,

the

address

points

to

the

I/O

routine

REXX/VSE

supplies,

ARXINOUT.

28

4

ARXINOUT

The

address

of

the

I/O

routine

REXX/VSE

supplies,

ARXINOUT.

32

4

ARXJCL

The

address

of

the

ARXJCL

routine.

36

4

ARXRLT

The

address

of

the

ARXRLT

(get

result)

routine.

40

4

STACK_ROUTINE

The

address

of

the

user-supplied

data

stack

replaceable

routine

for

the

language

processor

environment.

This

is

the

routine

that

the

STACKRT

field

of

the

module

name

table

specifies.

If

STACKRT

does

not

specify

a

replaceable

routine,

the

address

points

to

the

data

stack

routine

REXX/VSE

supplies,

ARXSTK.

Control

Blocks

422

REXX/VSE

Reference

Table

63.

Format

of

REXX

Vector

of

External

Entry

Points

(continued)

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

44

4

ARXSTK

The

address

of

the

data

stack

handling

routine

REXX/VSE

supplies,

ARXSTK.

48

4

ARXSUBCM

The

address

of

the

host

command

environment

routine,

ARXSUBCM.

52

4

ARXTERM

The

address

of

the

termination

routine,

ARXTERM.

56

4

ARXIC

The

address

of

the

trace

and

execution

control

routine,

ARXIC.

60

4

MSGID_ROUTINE

The

address

of

the

user-supplied

message

ID

replaceable

routine

for

the

language

processor

environment.

This

is

the

routine

that

the

MSGIDRT

field

of

the

module

name

table

specifies.

If

MSGID_ROUTINE

does

not

specify

a

replaceable

routine,

the

address

points

to

the

message

ID

routine

REXX/VSE

supplies,

ARXMSGID.

64

4

ARXMSGID

The

address

of

the

message

ID

routine

REXX/VSE

supplies,

ARXMSGID.

68

4

USERID_ROUTINE

The

address

of

the

user-supplied

user

ID

replaceable

routine

for

the

language

processor

environment.

This

is

the

routine

that

the

IDROUT

field

of

the

module

name

table

specifies.

If

USERID_ROUTINE

does

not

specify

a

replaceable

routine,

the

address

points

to

the

user

ID

routine

REXX/VSE

supplies,

ARXUID.

72

4

ARXUID

The

address

of

the

user

ID

routine

REXX/VSE

supplies,

ARXUID.

76

4

ARXTERMA

The

address

of

the

termination

routine,

ARXTERMA.

80

4

ARXSAY

The

address

of

the

SAY

instruction

routine,

ARXSAY.

84

4

ARXERS

This

field

is

a

product-sensitive

programming

interface.

The

address

of

the

external

routine

search

routine,

ARXERS.

The

ARXERS

routine

is

a

REXX

compiler

programming

routine.

See

“External

Routine

Search

Routine

(ARXERS)”

on

page

517

for

a

description.

88

4

ARXHST

This

field

is

a

product-sensitive

programming

interface.

The

address

of

the

host

command

search

routine,

ARXHST.

ARXHST

is

a

REXX

compiler

programming

routine.

See

“Host

Command

Search

Routine

(ARXHST)”

on

page

519

for

a

description.

92

4

ARXHLT

The

address

of

the

halt

condition

routine,

ARXHLT.

96

4

ARXTXT

The

address

of

the

text

retrieval

routine,

ARXTXT.

100

4

ARXLIN

The

address

of

the

LINESIZE

built-in

function

routine,

ARXLIN.

Control

Blocks

Chapter

19.

Language

Processor

Environments

423

Table

63.

Format

of

REXX

Vector

of

External

Entry

Points

(continued)

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

104

4

ARXRTE

This

field

is

a

product-sensitive

programming

interface.

The

address

of

the

exit

routing

routine,

ARXRTE.

ARXRTE

is

a

REXX

compiler

programming

routine.

See

“Exit

Routing

Routine

(ARXRTE)”

on

page

522

for

a

description.

Changing

the

Maximum

Number

of

Environments

in

a

Partition

Within

a

partition,

language

processor

environments

are

chained

together

to

form

a

chain

of

environments.

There

can

be

many

environments

on

a

single

chain.

You

can

also

have

more

than

one

chain

of

environments

in

a

single

partition.

There

is

a

maximum

number

of

environments

that

can

be

initialized

at

one

time

in

a

partition.

The

maximum

is

not

a

set

number

of

environments.

It

depends

on

the

number

of

chains

of

environments

and

the

number

of

environments

on

each

chain.

The

default

maximum

should

be

sufficient

for

any

partition.

However,

if

ARXINIT

is

initializing

a

new

environment

and

this

exceeds

the

maximum,

ARXINIT

completes

unsuccessfully

and

returns

with

a

return

code

of

20

and

a

reason

code

of

24.

If

this

error

occurs,

you

can

change

the

maximum.

The

maximum

number

of

environments

REXX/VSE

can

initialize

in

a

partition

is

defined

in

an

environment

table

known

as

ARXANCHR.

To

change

the

number

of

environment

table

entries,

you

can

use

the

ARXANCHR.Z

sample

in

PRD1.BASE

or

you

can

create

your

own

ARXANCHR

phase.

If

you

create

your

own

ARXANCHR

phase,

you

must

assemble

the

code

and

then

link-edit

the

module

as

non-SVA

eligible.

You

can

place

the

phase

in

PRD2.CONFIG

or

in

a

sublibrary

with

type

PHASE

that

precedes

PRD1.BASE

in

the

active

PHASE

chain.

The

phase

cannot

be

in

the

SVA.

Table

64

describes

the

environment

table.

A

mapping

macro

for

the

environment

table,

ARXENVT,

is

in

PRD1.BASE.

The

environment

table

consists

of

a

table

header

followed

by

table

entries.

The

header

contains

the

ID,

version,

total

number

of

entries,

number

of

used

entries,

and

the

length

of

each

entry.

Following

the

header,

each

entry

is

40

bytes

long.

Note:

Each

field

name

in

the

following

table

must

include

the

prefix

ENVTABLE_.

Table

64.

Format

of

the

Environment

Table

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

0

8

ID

An

8-character

field

that

identifies

the

environment

table.

The

field

contains

the

characters

’ARXANCHR’.

8

4

VERSION

The

version

of

the

environment

table.

The

value

must

be

0001

in

EBCDIC.

12

4

TOTAL

Specifies

the

total

number

of

entries

in

the

environment

table.

16

4

USED

Specifies

the

total

number

of

entries

in

the

environment

table

that

are

used.

20

4

LENGTH

Specifies

the

length

of

each

entry

in

the

environment

table.

The

length

of

each

entry

is

40

bytes.

24

8

—

Reserved.

Control

Blocks

424

REXX/VSE

Reference

Table

64.

Format

of

the

Environment

Table

(continued)

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

32

40

FIRST

The

first

environment

table

entry.

Each

entry

is

40

bytes

long.

The

remaining

entries

follow.

Using

the

Data

Stack

The

data

stack

is

a

repository

for

storing

data

for

use

by

a

REXX

program.

You

can

place

elements

on

the

data

stack

using

the

PUSH

and

QUEUE

instructions,

and

take

elements

off

of

the

data

stack

using

the

PULL

instruction.

You

can

also

use

REXX/VSE

commands

to

manipulate

the

data

stack.

For

example,

you

can

use

the

MAKEBUF

command

to

create

a

buffer

on

the

data

stack

and

then

add

elements

to

the

data

stack.

You

can

use

the

QELEM

command

to

query

how

many

elements

are

currently

on

the

data

stack

above

the

most

recently

created

buffer.

Chapter

10,

“REXX/VSE

Commands,”

on

page

143

describes

the

REXX

commands

for

manipulating

the

data

stack.

REXX/VSE

User’s

Guide,

SC33-6641,

describes

how

to

use

the

data

stack

and

associated

commands.

The

data

stack

is

associated

with

one

or

more

language

processor

environments.

The

data

stack

is

shared

among

all

REXX

programs

that

run

within

a

specific

language

processor

environment.

A

data

stack

may

or

may

not

be

available

to

REXX

programs

that

run

in

a

particular

language

processor

environment.

Whether

or

not

a

data

stack

is

available

depends

on

the

setting

of

the

NOSTKFL

flag

(see

page

398).

When

ARXINIT

initializes

an

environment

and

the

NOSTKFL

flag

is

on,

ARXINIT

does

not

create

a

data

stack

or

make

a

data

stack

available

to

the

language

processor

environment.

Programs

that

run

in

the

environment

cannot

use

a

data

stack.

If

the

NOSTKFL

flag

is

off,

either

ARXINIT

initializes

a

new

data

stack

for

the

new

environment

or

the

new

environment

shares

a

data

stack

that

was

initialized

for

a

previous

environment.

Whether

ARXINIT

initializes

a

new

data

stack

for

the

new

environment

depends

on:

v

The

setting

of

the

NEWSTKFL

(new

data

stack)

flag,

and

v

Whether

the

environment

is

the

first

environment

that

ARXINIT

is

initializing

on

a

chain.

Note:

The

NOSTKFL

flag

takes

precedence

over

the

NEWSTKFL

flag.

If

the

NOSTKFL

flag

is

on,

ARXINIT

does

not

create

a

data

stack

or

make

a

data

stack

available

to

the

new

environment

regardless

of

the

setting

of

the

NEWSTKFL

flag.

If

the

environment

is

the

first

environment

on

a

chain,

ARXINIT

automatically

initializes

a

new

data

stack,

regardless

of

the

setting

of

the

NEWSTKFL

flag.

If

the

environment

is

not

the

first

one

on

the

chain,

ARXINIT

determines

the

setting

of

the

NEWSTKFL

flag.

If

the

NEWSTKFL

flag

is

off,

ARXINIT

does

not

create

a

new

data

stack

for

the

new

environment.

The

language

processor

environment

shares

the

data

stack

that

was

most

recently

created

for

one

of

the

parent

environments.

If

the

NEWSTKFL

flag

is

on,

ARXINIT

creates

a

new

data

stack

for

the

language

processor

environment.

Any

REXX

programs

that

run

in

the

new

environment

can

access

only

the

new

data

stack

for

this

environment.

Programs

cannot

access

any

data

stacks

that

ARXINIT

created

for

any

parent

environment

on

the

chain.

Environments

can

share

only

data

stacks

that

environments

higher

on

the

chain

initialized.

If

ARXJCL

calls

ARXINIT

to

create

a

data

stack

when

initializing

an

environment,

REXX/VSE

deletes

the

data

stack

when

that

environment

is

terminated.

This

occurs

regardless

of

whether

any

elements

are

on

the

data

stack.

All

elements

on

the

data

stack

are

lost.

Maximum

Number

of

Environments

Chapter

19.

Language

Processor

Environments

425

Note:

If

you

use

the

JCL

EXEC

command

to

call

a

REXX

program,

and

the

exit

return

code

of

the

REXX

program

is

zero

when

it

is

done,

the

language

processor

passes

the

data

stack

to

Job

Control

before

terminating

the

environment.

Figure

24

shows

three

environments

that

are

initialized

on

one

chain.

Each

environment

has

its

own

data

stack,

that

is,

the

environments

do

not

share

a

data

stack.

Environment

1

was

the

first

environment

on

the

chain.

Therefore,

REXX/VSE

automatically

created

a

data

stack

for

environment

1.

Any

REXX

programs

that

run

in

environment

1

access

the

data

stack

associated

with

environment

1.

When

environment

2

and

environment

3

were

initialized,

the

NEWSTKFL

flag

was

set

on,

indicating

that

a

data

stack

was

to

be

created

for

the

new

environment.

The

data

stack

associated

with

each

environment

is

a

different

stack

than

for

any

of

the

other

environments.

A

program

runs

in

the

most

current

environment

(environment

3)

and

has

access

only

to

the

data

stack

for

environment

3.

Figure

25

on

page

427

shows

two

environments

that

are

initialized

on

one

chain.

The

two

environments

share

one

data

stack.

Figure

24.

Separate

Data

Stacks

for

Each

Environment

Using

the

Data

Stack

426

REXX/VSE

Reference

Environment

1

was

the

first

environment

on

the

chain.

Therefore,

REXX/VSE

automatically

created

a

data

stack.

The

NEWSTKFL

flag

was

off

for

initialization

of

environment

2.

This

indicates

that

a

new

data

stack

should

not

be

created.

Environment

2

shares

the

data

stack

that

was

created

for

environment

1.

Any

REXX

programs

that

execute

in

either

environment

use

the

same

data

stack.

Suppose

a

third

language

processor

environment

was

initialized

and

chained

to

environment

2.

If

the

NEWSTKFL

flag

is

off

for

the

third

environment,

it

would

use

the

data

stack

that

was

most

recently

created

on

the

chain.

That

is,

it

would

use

the

data

stack

that

was

created

when

environment

1

was

initialized.

All

three

environments

would

share

the

same

data

stack.

As

described,

several

language

processor

environments

can

share

one

data

stack.

On

a

single

chain

of

environments,

one

environment

can

have

its

own

data

stack

and

other

environments

can

share

a

data

stack.

Figure

26

on

page

428

shows

three

environments

on

one

chain.

When

environment

1

was

initialized,

a

data

stack

was

automatically

created

because

it

is

the

first

environment

on

the

chain.

Environment

2

was

initialized

with

the

NEWSTKFL

flag

on,

which

means

a

new

data

stack

was

created

for

environment

2.

Environment

3

was

initialized

with

the

NEWSTKFL

flag

off,

so

it

uses

the

data

stack

that

was

created

for

environment

2.

Figure

25.

Sharing

of

the

Data

Stack

between

Environments

Using

the

Data

Stack

Chapter

19.

Language

Processor

Environments

427

Environments

can

be

created

without

having

a

data

stack,

that

is,

the

NOSTKFL

flag

is

on.

Referring

to

Figure

26,

suppose

environment

2

was

initialized

with

the

NOSTKFL

flag

on,

which

means

a

new

data

stack

was

not

created

and

the

environment

does

not

share

the

first

environment’s

(environment

1)

data

stack.

If

environment

3

is

initialized

with

the

NOSTKFL

flag

off

(meaning

a

data

stack

should

be

available

to

the

environment),

and

the

NEWSTKFL

flag

is

off

(meaning

a

new

data

stack

is

not

created

for

the

new

environment),

environment

3

shares

the

data

stack

created

for

environment

1.

When

a

data

stack

is

shared

between

multiple

language

processor

environments,

any

REXX

programs

that

execute

in

any

of

the

environments

use

the

same

data

stack.

This

sharing

can

be

useful

for

applications

where

a

parent

environment

needs

to

share

information

with

another

environment

that

is

lower

on

the

environment

chain.

At

other

times,

a

particular

program

may

need

to

use

a

data

stack

that

is

not

shared

with

any

other

programs

that

are

executing

in

different

language

processor

environments.

The

NEWSTACK

command

creates

a

new

data

stack

and

basically

hides

or

isolates

the

original

data

stack.

Suppose

two

language

processor

environments

are

initialized

on

one

chain

and

the

second

environment

shares

the

data

stack

with

the

first

environment.

If

a

REXX

exec

executes

in

the

second

environment,

it

shares

the

data

stack

with

any

programs

that

are

running

in

the

first

environment.

The

program

in

environment

2

may

need

to

access

its

own

data

stack

that

is

private.

In

the

program,

you

can

use

the

NEWSTACK

command

to

create

a

new

data

stack.

The

NEWSTACK

command

creates

a

new

data

stack

and

hides

all

previous

data

stacks

that

were

originally

accessible

and

all

data

that

is

on

the

original

stacks.

The

original

data

stack

is

referred

to

as

the

primary

stack.

The

new

data

stack

that

NEWSTACK

created

is

known

as

the

secondary

stack.

Secondary

data

stacks

are

private

to

the

language

processor

environment

in

which

they

were

created.

That

is,

they

are

not

shared

between

two

different

environments.

Figure

27

on

page

429

shows

two

language

processor

environments

that

share

one

primary

data

stack.

When

environment

2

was

initialized,

the

NEWSTKFL

flag

was

off

indicating

that

it

shares

the

data

stack

created

for

environment

1.

When

a

program

was

executing

in

environment

2,

it

issued

the

NEWSTACK

command

to

create

a

secondary

data

stack.

After

NEWSTACK

is

issued,

any

data

stack

requests

are

only

performed

against

the

new

secondary

data

stack.

The

primary

stack

is

isolated

from

any

programs

executing

in

environment

2.

Figure

26.

Separate

Data

Stack

and

Sharing

of

a

Data

Stack

Using

the

Data

Stack

428

REXX/VSE

Reference

If

a

program

executing

in

environment

1

issues

the

NEWSTACK

command

to

create

a

secondary

data

stack,

the

secondary

data

stack

is

available

only

to

REXX

programs

that

execute

in

environment

1.

Any

programs

that

execute

in

environment

2

cannot

access

the

new

data

stack

created

for

environment

1.

You

can

use

the

DELSTACK

command

to

delete

any

secondary

data

stacks

that

NEWSTACK

created.

When

the

secondary

data

stack

is

no

longer

required,

the

program

can

issue

DELSTACK

to

delete

the

secondary

stack.

At

this

point,

the

primary

data

stack

that

is

shared

with

environment

1

is

accessible.

Several

other

commands

perform

data

stack

functions.

For

example,

the

QSTACK

command

finds

out

the

number

of

data

stacks

that

exist

for

the

language

processor

environment.

Chapter

10,

“REXX/VSE

Commands,”

on

page

143

describes

stack-oriented

commands,

such

as

NEWSTACK

and

DELSTACK.

Figure

27.

Creating

a

New

Data

Stack

with

the

NEWSTACK

Command

Using

the

Data

Stack

Chapter

19.

Language

Processor

Environments

429

430

REXX/VSE

Reference

Chapter

20.

Initialization

and

Termination

Routines

This

chapter

provides

information

about

how

to

use

the

initialization

routine,

ARXINIT,

and

the

termination

routine,

ARXTERM.

ARXINIT,

the

initialization

routine,

initializes

a

language

processor

environment

or

obtains

the

address

of

the

environment

block

for

the

current

non-reentrant

environment.

ARXTERM,

the

termination

routine,

terminates

a

language

processor

environment.

Chapter

8,

“Using

REXX,”

on

page

137

provides

general

information

about

how

the

initialization

and

termination

of

environments

relates

to

REXX

processing.

Chapter

19,

“Language

Processor

Environments,”

on

page

391

describes

the

concept

of

a

language

processor

environment

in

detail.

This

includes

the

various

characteristics

you

can

specify

when

initializing

an

environment,

the

default

parameters

module,

and

information

about

the

environment

block

and

its

format.

Language

processor

environments

are

created

when

they

are

needed.

They

are

terminated

when

they

are

no

longer

needed,

that

is,

when

the

job

step

is

done.

Initialization

Routine

–

ARXINIT

Use

ARXINIT

to

initialize

a

new

language

processor

environment

or

to

obtain

the

address

of

the

environment

block

for

the

current

non-reentrant

environment.

Note:

To

permit

FORTRAN

programs

to

call

ARXINIT,

there

is

an

alternate

entry

point

for

the

ARXINIT

routine.

The

alternate

entry

point

name

is

ARXINT.

If

you

use

ARXINIT

to

obtain

the

address

of

the

current

environment

block,

ARXINIT

returns

the

address

in

register

0

and

also

in

the

sixth

parameter.

If

you

use

ARXINIT

to

initialize

a

language

processor

environment,

the

characteristics

for

the

new

environment

are

based

on

parameters

that

you

pass

on

the

call

and

values

that

are

defined

for

the

previous

environment.

Generally,

if

you

do

not

pass

a

specific

parameter

on

the

call,

ARXINIT

uses

the

value

from

the

previous

environment.

ARXINIT

always

locates

a

previous

environment

as

follows.

On

the

call

to

ARXINIT,

you

can

pass

the

address

of

an

environment

block

in

register

0.

ARXINIT

then

uses

this

environment

as

the

previous

environment

if

the

environment

is

valid.

If

register

0

does

not

contain

the

address

of

an

environment

block,

ARXINIT

locates

the

previous

environment.

If

ARXINIT

locates

a

previous

environment,

ARXINIT

uses

that

environment

as

the

previous

environment.

If

ARXINIT

cannot

locate

an

environment,

ARXINIT

uses

the

phase

ARXPARMS

as

the

previous

environment.

(“Values

ARXINIT

Uses

to

Initialize

Environments”

on

page

411

describes

in

detail

how

ARXINIT

locates

a

previous

environment.)

A

previous

environment

is

always

identified

regardless

of

the

parameters

you

specify

on

the

call

to

ARXINIT.

Using

ARXINIT,

you

can

initialize

a

reentrant

or

a

non-reentrant

environment,

as

determined

by

the

setting

of

the

RENTRANT

flag

bit.

If

you

use

ARXINIT

to

initialize

a

reentrant

environment

and

you

want

to

chain

the

new

environment

to

a

previous

reentrant

environment,

you

must

pass

the

address

of

the

environment

block

for

the

previous

reentrant

environment

in

register

0.

If

you

use

ARXINIT

to

locate

a

previous

environment,

you

can

locate

only

the

current

non-reentrant

environment.

ARXINIT

does

not

locate

a

reentrant

environment.

Entry

Specifications

For

the

ARXINIT

initialization

routine,

the

contents

of

the

registers

on

entry

are:

Register

0

Address

of

the

current

environment

block

(optional)

©

Copyright

IBM

Corp.

1988,

2004

431

Register

1

Address

of

the

parameter

list

the

caller

passes

Registers

2-12

Unpredictable

Register

13

Address

of

a

register

save

area

Register

14

Return

address

Register

15

Entry

point

address

Parameters

You

can

pass

the

address

of

an

environment

block

in

register

0.

In

register

1,

you

pass

the

address

of

a

parameter

list,

which

consists

of

a

list

of

addresses.

Each

address

in

the

parameter

list

points

to

a

parameter.

The

first

seven

parameters

are

required.

Parameter

8

and

parameter

9

are

optional.

To

indicate

the

end

of

the

parameter

list,

set

the

high-order

bit

of

the

last

address

to

1.

If

ARXINIT

does

not

find

the

high-order

bit

set

on

in

either

the

address

for

parameter

7

or

the

address

for

parameter

8

or

9,

ARXINIT

does

not

initialize

the

environment

but

returns

with

a

return

code

of

20

and

a

reason

code

of

27.

See

“″Output

Parameters″”

on

page

438

for

more

information.

Table

65

describes

the

parameters

for

ARXINIT.

For

general

information

about

passing

parameters,

see

“Parameter

Lists

for

REXX/VSE

Routines”

on

page

329.

Table

65.

Parameters

for

ARXINIT

Parameter

Number

of

Bytes

Description

Parameter

1

8

The

function

ARXINIT

is

to

perform,

which

can

be:

INITENVB

To

initialize

a

new

environment.

FINDENVB

To

obtain

the

address

of

the

environment

block

for

the

current

non-reentrant

environment.

ARXINIT

does

not

initialize

a

new

environment.

ARXINIT

returns

the

address

of

the

environment

block

in

register

0

and

in

parameter

6.

Parameter

2

8

The

name

of

a

parameters

module

that

contains

the

values

for

initializing

the

new

environment.

(“Parameters

Module

and

In-Storage

Parameter

List”

on

page

436

describes

the

module.)

If

the

name

of

the

parameters

module

is

blank,

ARXINIT

assumes

that

all

fields

in

the

parameters

module

are

null.

ARXINIT

provides

two

ways

to

pass

parameter

values:

the

parameters

module

and

the

address

of

an

in-storage

parameter

list,

which

is

parameter

3.

“How

ARXINIT

Determines

What

Values

to

Use

for

the

Environment”

on

page

435

describes

how

ARXINIT

computes

each

parameter

value

and

the

flexibility

of

passing

parameters.

Initialization

Routine

432

REXX/VSE

Reference

Table

65.

Parameters

for

ARXINIT

(continued)

Parameter

Number

of

Bytes

Description

Parameter

3

4

The

address

of

the

in-storage

parameter

list,

which

is

an

area

in

storage

containing

parameters

equivalent

to

those

in

the

parameters

module.

The

format

of

the

in-storage

list

is

identical

to

the

format

of

the

parameters

module.

“Parameters

Module

and

In-Storage

Parameter

List”

on

page

436

describes

the

parameters

module

and

in-storage

parameter

list.

For

parameter

3,

you

can

specify

an

address

of

0

for

the

address

of

the

in-storage

parameter

list.

However,

the

address

in

the

address

list

that

points

to

this

parameter

cannot

be

0.

If

the

address

of

parameter

3

is

0,

ARXINIT

assumes

that

all

fields

in

the

in-storage

parameter

list

are

null.

Parameter

4

4

The

address

of

a

user

field.

ARXINIT

does

not

use

or

check

this

pointer

or

the

field.

You

can

use

this

field

for

your

own

processing.

Parameter

5

4

Reserved.

This

parameter

must

be

set

to

0,

but

the

address

that

points

to

this

parameter

cannot

be

0.

Parameter

6

4

The

address

of

the

environment

block.

ARXINIT

uses

this

parameter

for

output

only.

If

you

use

the

FINDENVB

function

(parameter

1)

to

locate

an

environment,

parameter

6

contains

the

address

of

the

environment

block

for

the

current

non-reentrant

environment.

If

you

use

the

INITENVB

function

(parameter

1)

to

initialize

a

new

environment,

ARXINIT

returns

the

address

of

the

environment

block

for

the

newly

created

environment

in

parameter

6.

For

either

FINDENVB

or

INITENVB,

ARXINIT

also

returns

the

address

of

the

environment

block

in

register

0.

Parameter

6

lets

high-level

languages

obtain

the

environment

block

address

to

examine

information

in

the

environment

block.

Parameter

7

4

ARXINIT

uses

this

parameter

for

output

only.

ARXINIT

returns

a

reason

code

that

indicates

why

processing

was

unsuccessful.

Table

67

on

page

438

describes

the

reason

codes

that

ARXINIT

returns.

Parameter

8

4

This

parameter

is

optional.

It

lets

you

specify

how

REXX

obtains

storage

in

the

language

processor

environment.

Specify

0

if

you

want

REXX/VSE

to

reserve

a

default

amount

of

storage

work

area.

If

you

want

to

pass

a

storage

work

area

to

ARXINIT,

specify

the

address

of

an

extended

parameter

list.

The

extended

parameter

list

consists

of

the

address

(a

fullword)

of

the

storage

work

area

and

the

length

(a

fullword)

of

the

work

area,

followed

by

X'FFFFFFFFFFFFFFFF'.

For

more

information

about

parameter

8

and

storage,

see

“Specifying

How

REXX

Obtains

Storage

in

the

Environment.”

Although

parameter

8

is

optional,

it

is

recommended

that

you

specify

an

address

of

0

if

you

do

not

want

to

pass

a

storage

work

area

to

ARXINIT.

Parameter

9

4

This

parameter

is

for

output

only,

and

it

is

optional.

ARXINIT

uses

this

for

the

return

code.

If

you

use

this

parameter,

ARXINIT

places

the

return

code

in

the

parameter

and

also

in

register

15.

Otherwise,

ARXINIT

uses

register

15

only.

If

the

parameter

list

is

incorrect,

the

return

code

is

only

in

register

15.

“″Return

Codes″”

on

page

439

describes

the

return

codes.

Specifying

How

REXX

Obtains

Storage

in

the

Environment

On

the

call

to

ARXINIT,

parameter

8

is

optional.

You

can

use

it

to

specify

how

REXX

obtains

storage

in

the

language

processor

environment

for

the

processing

of

REXX

programs.

If

you

specify

0

for

parameter

8,

during

the

initialization

of

the

environment,

REXX/VSE

reserves

a

default

amount

of

storage

for

the

Initialization

Routine

Chapter

20.

Initialization

and

Termination

Routines

433

storage

work

area.

If

you

have

provided

your

own

storage

management

replaceable

routine,

REXX/VSE

calls

your

routine

to

obtain

this

storage

work

area.

Otherwise,

REXX/VSE

obtains

storage

using

GETVIS.

When

the

environment

that

ARXINIT

is

initializing

is

terminated,

REXX/VSE

automatically

frees

the

storage.

REXX/VSE

frees

the

storage

by

either

calling

your

storage

management

replaceable

routine

or

using

FREEVIS,

depending

on

how

the

storage

was

obtained.

You

can

also

pass

a

storage

work

area

to

ARXINIT.

For

parameter

8,

specify

an

address

that

points

to

an

extended

parameter

list.

The

extended

parameter

list

is

an

address/length

pair

that

contains

the

address

(a

fullword)

of

the

storage

work

area

and

the

length

(a

fullword)

of

the

storage

area,

in

bytes.

The

address/length

pair

must

be

followed

by

X'FFFFFFFFFFFFFFFF'

to

indicate

the

end

of

the

extended

parameter

list.

Figure

28

shows

the

extended

parameter

list.

The

storage

work

area

you

pass

to

ARXINIT

is

then

available

for

REXX

processing

in

the

environment

that

you

are

initializing.

The

storage

work

area

must

remain

available

to

the

environment

until

the

environment

is

terminated.

After

you

terminate

the

language

processor

environment,

you

must

also

free

the

storage

work

area.

REXX/VSE

does

not

free

the

storage

you

pass

to

ARXINIT

when

you

terminate

the

environment.

You

can

also

specify

that

a

reserved

storage

work

area

should

not

be

initialized

for

the

environment.

REXX/VSE

then

obtains

and

frees

storage

whenever

storage

is

required.

To

specify

that

a

storage

work

area

should

not

be

initialized,

for

parameter

8,

specify

the

address

of

the

extended

parameter

list

as

previously

described.

In

the

extended

parameter

list,

specify

0

for

the

address

of

the

storage

work

area

and

0

for

the

length

of

the

storage

work

area.

Again,

X'FFFFFFFFFFFFFFFF'

must

follow

the

address/length

pair

to

indicate

the

end

of

the

extended

parameter

list.

Specifying

that

REXX

should

run

without

a

reserved

storage

work

area

is

not

recommended

because

of

possible

performance

degradation.

However,

this

option

may

be

useful

if

available

storage

is

low

and

you

want

to

initialize

a

language

processor

environment

with

a

minimal

amount

of

storage

at

initialization

time.

Figure

28.

Extended

Parameter

List

–

Parameter

8

Initialization

Routine

434

REXX/VSE

Reference

In

the

extended

parameter

list,

you

can

also

specify

0

for

the

address

of

the

storage

work

area

and

-1

for

the

length

of

the

work

area.

This

is

considered

a

null

entry

and

ARXINIT

ignores

the

extended

parameter

list

entry.

This

is

equivalent

to

specifying

an

address

of

0

for

parameter

8,

and

REXX/VSE

reserves

a

default

amount

of

work

area

storage.

In

general,

3

pages

(12K)

of

storage

are

needed

for

the

storage

work

area

for

regular

program

processing,

for

each

level

of

program

nesting.

If

there

is

insufficient

storage

available

in

the

storage

work

area,

REXX

calls

the

storage

management

routine

to

obtain

additional

storage

if

you

provided

a

storage

management

replaceable

routine.

Otherwise,

REXX/VSE

uses

GETVIS

and

FREEVIS

to

obtain

and

free

storage.

For

more

information

about

the

replaceable

routine,

see

“Storage

Management

Routine”

on

page

466.

How

ARXINIT

Determines

What

Values

to

Use

for

the

Environment

ARXINIT

first

determines

the

values

to

use

to

initialize

the

environment.

After

all

of

the

values

are

determined,

ARXINIT

initializes

the

new

environment

using

the

values.

On

the

call

to

ARXINIT,

you

can

pass

parameters

that

define

the

environment

in

two

ways.

You

can

specify

the

name

of

a

parameters

module

(a

phase)

that

contains

the

values

ARXINIT

uses

to

initialize

the

environment.

In

addition

to

the

parameters

module,

you

can

also

pass

an

address

of

an

area

in

storage

that

contains

the

parameters.

This

area

in

storage

is

called

an

in-storage

parameter

list

and

the

parameters

it

contains

are

equivalent

to

the

parameters

in

the

parameters

module.

The

two

methods

of

passing

parameter

values

give

you

flexibility

when

calling

ARXINIT.

You

can

store

the

values

on

disk

or

build

the

parameter

structure

in

storage

dynamically.

The

format

of

the

parameters

module

and

the

in-storage

parameter

list

is

the

same.

You

can

pass

a

value

for

the

same

parameter

in

both

the

parameters

module

and

the

in-storage

parameter

list.

When

ARXINIT

computes

the

values

to

use

to

initialize

the

environment,

ARXINIT

takes

values

from

four

sources

using

the

following

hierarchical

search

order:

1.

The

in-storage

list

of

parameters

that

you

pass

on

the

call

to

ARXINIT.

If

you

pass

an

in-storage

parameter

list

and

the

value

in

the

list

is

not

null,

ARXINIT

uses

this

value.

Otherwise,

ARXINIT

continues.

2.

The

parameters

module

whose

name

you

pass

on

the

call

to

ARXINIT.

If

you

pass

a

parameters

module

and

the

value

in

the

module

is

not

null,

ARXINIT

uses

this

value.

Otherwise,

ARXINIT

continues.

3.

The

previous

language

processor

environment.

ARXINIT

copies

the

value

from

the

previous

environment.

4.

The

ARXPARMS

parameters

module

if

a

previous

environment

does

not

exist.

If

a

parameter

has

a

null

value,

ARXINIT

continues

to

search

until

it

finds

a

non-null

value.

The

following

types

of

parameters

are

defined

to

be

null:

v

A

character

string

containing

only

blanks

or

having

a

length

of

0

v

An

address

if

its

value

is

0

v

A

binary

number

with

the

value

X'80000000'

v

A

bit

setting

with

a

corresponding

mask

of

0.

On

the

call

to

ARXINIT,

if

the

address

of

the

in-storage

parameter

list

is

0,

all

values

in

the

list

are

defined

as

null.

Similarly,

if

the

name

of

the

parameters

module

is

blank,

all

values

in

the

parameters

module

are

defined

as

null.

You

need

not

specify

a

value

for

every

parameter

in

the

parameters

module

or

the

in-storage

parameter

list.

If

you

do

not

specify

a

value,

ARXINIT

uses

the

value

defined

for

the

previous

environment.

You

need

only

specify

the

parameters

whose

values

you

want

to

be

different

from

the

previous

environment.

Initialization

Routine

Chapter

20.

Initialization

and

Termination

Routines

435

Parameters

Module

and

In-Storage

Parameter

List

The

parameters

module

is

a

phase

that

contains

the

values

you

want

ARXINIT

to

use

to

initialize

a

new

language

processor

environment.

The

default

parameters

module

for

initializing

environments

is

ARXPARMS.

“Characteristics

of

a

Language

Processor

Environment”

on

page

394

describes

the

parameters

module.

On

the

call

to

the

ARXINIT,

you

can

optionally

pass

the

name

of

a

parameters

module

that

you

have

created.

The

parameters

module

contains

the

values

you

want

ARXINIT

to

use

to

initialize

the

new

language

processor

environment.

On

the

call,

you

can

also

optionally

pass

the

address

of

an

in-storage

parameter

list.

The

format

of

the

parameters

module

and

the

in-storage

parameter

list

is

identical.

Table

66

shows

the

format

of

a

parameters

module

and

in-storage

list.

The

format

of

the

parameters

module

is

identical

to

the

default

module.

“Characteristics

of

a

Language

Processor

Environment”

on

page

394

describes

the

parameters

module

and

each

field

in

detail.

Indicate

the

end

of

the

table

with

X'FFFFFFFFFFFFFFFF'.

Table

66.

Parameters

Module

and

In-Storage

Parameter

List

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

0

8

ID

Identifies

the

parameter

block

(PARMBLOCK).

8

4

VERSION

Identifies

the

version

of

the

parameter

block.

The

value

must

be

0001.

12

3

LANGUAGE

Language

code

for

REXX

messages.

15

1

RESERVED

Reserved.

16

4

MODNAMET

Address

of

module

name

table.

The

module

name

table

contains

the

names

of

files

or

devices

for

reading

and

writing

data,

the

names

of

the

replaceable

routines,

and

the

names

of

several

exit

routines.

20

4

SUBCOMTB

Address

of

host

command

environment

table.

The

table

contains

the

names

of

the

host

command

environments

that

are

available

and

the

names

of

the

routines

that

process

commands

for

each

host

command

environment.

24

4

PACKTB

Address

of

function

package

table.

The

table

defines

the

user,

local,

and

system

function

packages

that

are

available

to

REXX

programs

running

in

the

environment.

28

8

PARSETOK

Token

for

PARSE

SOURCE

instruction.

36

4

FLAGS

A

fullword

of

bits

used

as

flags

to

define

characteristics

for

the

environment.

40

4

MASKS

A

fullword

of

bits

used

as

a

mask

for

the

setting

of

the

flag

bits.

44

4

SUBPOOL

This

field

is

reserved.

48

8

ADDRSPN

Name

of

the

partition

(VSE).

56

8

—

The

end

of

the

parameter

block

must

be

X'FFFFFFFFFFFFFFFF'.

Specifying

Values

for

the

New

Environment

For

more

information

about

parameters,

see

“Specifying

Values

for

Different

Environments”

on

page

417.

When

you

call

ARXINIT,

you

cannot

specify

the

ID

and

VERSION.

If

you

pass

values

for

the

ID

or

VERSION

parameters,

ARXINIT

ignores

the

value

and

uses

the

default.

Initialization

Routine

436

REXX/VSE

Reference

At

offset

+36

in

the

parameters

module,

the

field

is

a

fullword

of

bits

that

ARXINIT

uses

as

flags.

The

flags

define

certain

characteristics

for

the

new

language

processor

environment

and

how

the

environment

and

programs

running

in

the

environment

operate.

The

parameter

following

the

flags

is

a

mask

field

that

works

with

the

flags.

The

mask

field

is

a

string

that

has

the

same

length

as

the

flags

field.

Each

bit

position

in

the

mask

field

corresponds

to

a

bit

in

the

same

position

in

the

flags

field.

ARXINIT

uses

the

mask

field

to

determine

whether

it

should

use

or

ignore

the

corresponding

flag

bit.

See

page

397

for

details

about

the

bit

settings

for

the

mask

field.

Table

52

on

page

397

summarizes

each

flag.

“Flags

and

Corresponding

Masks”

on

page

397

describes

each

of

the

flags

in

more

detail

and

the

bit

settings

for

each

flag.

For

a

given

bit

position,

if

the

value

in

the

mask

field

is:

v

0

—

ARXINIT

ignores

the

corresponding

bit

in

the

flags

field

(that

is,

ARXINIT

considers

the

bit

to

be

null)

v

1

–

ARXINIT

uses

the

corresponding

bit

in

the

flags

field.

When

you

call

ARXINIT,

the

flag

settings

that

ARXINIT

uses

depend

on

the:

v

Bit

settings

in

the

flag

and

mask

fields

you

pass

in

the

in-storage

parameter

list

v

Bit

settings

in

the

flag

and

mask

fields

you

pass

in

the

parameters

module

v

Flags

defined

for

the

previous

environment

v

Flags

defined

in

ARXPARMS

if

a

previous

environment

does

not

exist.

ARXINIT

uses

the

following

order

to

determine

what

value

to

use

for

each

flag

bit:

v

ARXINIT

first

checks

the

mask

setting

in

the

in-storage

parameter

list.

If

the

mask

is

1,

ARXINIT

uses

the

flag

value

from

the

in-storage

parameter

list.

v

If

the

mask

in

the

in-storage

parameter

list

is

0,

ARXINIT

then

checks

the

mask

setting

in

the

parameters

module.

If

the

mask

in

the

parameters

module

is

1,

ARXINIT

uses

the

flag

value

from

the

parameters

module.

v

If

the

mask

in

the

parameters

module

is

0,

ARXINIT

uses

the

flag

value

defined

for

the

previous

environment.

v

If

a

previous

environment

does

not

exist,

ARXINIT

uses

the

flag

setting

from

ARXPARMS.

For

detailed

information

about

the

parameters

you

can

specify

for

initializing

a

language

processor

environment,

see

“Specifying

Values

for

Different

Environments”

on

page

417.

Indicate

the

end

of

the

parameter

block

with

X'FFFFFFFFFFFFFFFF'.

Return

Specifications:

For

the

ARXINIT

initialization

routine,

the

contents

of

the

registers

on

return

are:

Register

0

Contains

the

address

of

the

new

environment

block

if

ARXINIT

initialized

a

new

environment,

or

the

address

of

the

environment

block

for

the

current

non-reentrant

environment

that

ARXINIT

located.

If

you

call

ARXINIT

to

initialize

a

new

REXX

environment

and

this

is

successful,

register

0

and

Parameter

6

contain

the

address

of

the

new

environment

block

(ENVBLOCK).

Otherwise,

register

0

is

restored,

and

Parameter

6

contains

0.

If

you

call

ARXINIT

to

find

the

current

non-reentrant

REXX

environment

and

this

is

successful,

then

register

0

and

Parameter

6

contain

the

address

of

the

current,

non-reentrant

environment

block

(ENVBLOCK).

Otherwise,

register

0

and

Parameter

6

contain

0.

Register

1

Address

of

the

parameter

list.

ARXINIT

uses

three

parameters

(parameters

6,

7,

and

9)

for

output

only

(see

Table

65

on

page

432).

“″Output

Parameters″”

on

page

438

describes

the

three

output

parameters.

Initialization

Routine

Chapter

20.

Initialization

and

Termination

Routines

437

Registers

2-14

Same

as

on

entry

Register

15

Return

code

Output

Parameters:

The

parameter

list

for

ARXINIT

contains

three

parameters

that

ARXINIT

uses

for

output

only

(parameters

6,

7,

and

9).

Parameter

6

contains

the

address

of

the

environment

block.

If

you

called

ARXINIT

to

locate

an

environment,

parameter

6

contains

the

address

of

the

environment

block

for

the

current

non-reentrant

environment.

If

you

called

ARXINIT

to

initialize

an

environment,

parameter

6

contains

the

address

of

the

environment

block

for

the

new

environment.

Parameter

6

lets

high-level

programming

languages

obtain

the

address

of

the

environment

block

to

examine

information

in

the

environment

block.

Parameter

9

is

an

optional

parameter

you

can

use

to

obtain

the

return

code.

If

you

specify

parameter

9,

ARXINIT

returns

the

return

code

in

parameter

9

and

also

in

register

15.

Parameter

7

contains

a

reason

code

for

ARXINIT

processing.

The

reason

code

indicates

whether

or

not

ARXINIT

completed

successfully.

If

ARXINIT

processing

was

not

successful,

the

reason

code

indicates

the

error.

Table

67

describes

the

reason

codes

ARXINIT

returns.

Table

67.

Reason

Codes

for

ARXINIT

Processing

Reason

Code

Description

0

Successful

processing.

1

Unsuccessful

processing.

The

type

of

function

(Parameter

1)

was

not

valid.

Valid

functions

are

INITENVB

and

FINDENVB.

2

Unsuccessful

processing.

Attempted

to

use

TSOFL

flag.

3

Reserved

4

Reserved

5

Unsuccessful

processing.

The

value

specified

in

the

MODNAMET_GETFREER

field

in

the

module

name

table

does

not

match

the

MODNAMET_GETFREER

value

in

the

current

REXX

environment

under

the

current

task.

If

more

than

one

environment

is

initialized

on

the

same

task

and

the

environments

specify

a

storage

management

replaceable

routine

(GETFREER

field),

the

name

of

the

routine

must

be

the

same

for

the

environments.

6

Unsuccessful

processing.

The

value

specified

for

the

length

of

each

entry

in

the

host

command

environment

table

is

incorrect.

This

is

the

value

specified

in

the

SUBCOMTB

entry

length

field

in

the

table.

See

“Host

Command

Environment

Table”

on

page

404

for

information

about

the

table.

7

Reserved

8

Reserved

9

Reserved

10

Unsuccessful

processing.

The

ARXINITX

exit

routine

returned

a

nonzero

return

code.

ARXINIT

stops

initialization.

11

Reserved

12

Unsuccessful

processing.

REXX/VSE

initialization

was

unsuccessful.

The

ARXITMV

exit

routine

returned

a

nonzero

return

code.

ARXINIT

stops

initialization.

13

Unsuccessful

processing.

The

REXX

I/O

routine

or

the

replaceable

I/O

routine

is

called

to

initialize

I/O

when

ARXINIT

is

initializing

a

new

language

processor

environment.

The

I/O

routine

returned

a

nonzero

return

code.

14

Unsuccessful

processing.

The

REXX

data

stack

routine

or

the

replaceable

data

stack

routine

is

called

to

initialize

the

data

stack

when

ARXINIT

is

initializing

a

new

language

processor

environment.

The

data

stack

routine

returned

a

nonzero

return

code.

Initialization

Routine

438

REXX/VSE

Reference

Table

67.

Reason

Codes

for

ARXINIT

Processing

(continued)

Reason

Code

Description

15

Unsuccessful

processing.

The

REXX

exec

load

routine

or

the

replaceable

exec

load

routine

is

called

to

initialize

exec

loading

when

ARXINIT

is

initializing

a

new

language

processor

environment.

The

exec

load

routine

returned

a

nonzero

return

code.

16

Reserved

17

Reserved

20

Unsuccessful

processing.

Storage

could

not

be

obtained.

21

Unsuccessful

processing.

A

module

could

not

be

loaded

into

storage.

22

Unsuccessful

processing.

A

lock

could

not

be

obtained.

23

Reserved

24

Unsuccessful

processing.

The

environment

table

(ENVTABLE)

is

full.

The

maximum

number

of

environments

has

already

been

initialized.

See

“Changing

the

Maximum

Number

of

Environments

in

a

Partition”

on

page

424

for

more

information

about

the

environment

table.

25

Unsuccessful

processing.

The

extended

parameter

list

(parameter

8)

passed

to

ARXINIT

is

incorrect.

The

end

of

the

extended

parameter

list

must

be

indicated

with

X'FFFFFFFFFFFFFFFF'.

26

Unsuccessful

processing.

The

values

specified

in

the

extended

parameter

list

(parameter

8)

are

incorrect.

Either

the

address

or

the

length

of

the

storage

work

area

(but

not

both)

was

0,

or

the

length

was

negative.

Reason

code

26

is

not

returned

if:

v

Both

the

address

and

length

of

the

storage

work

area

are

0,

which

are

valid

values.

v

The

address

of

the

storage

work

area

is

0

and

the

length

is

-1,

which

is

considered

a

valid

null

entry.

27

Unsuccessful

processing.

An

incorrect

number

of

parameters

was

passed

to

ARXINIT.

Setting

on

the

high-order

bit

in

parameter

7

or

in

optional

parameters

8

or

9

marks

the

end

of

the

parameter

list.

ARXINIT

returns

reason

code

27

if

it

cannot

find

the

high-order

bit

on

in

the

last

address

of

the

parameter

list.

ARXINIT

does

not

return

reason

code

27

if

the

caller

passes

fewer

than

seven

parameters

(that

is,

sets

on

the

high-order

bit

in

a

parameter

prior

to

parameter

7).

If

ARXINIT

detects

the

end

of

the

parameter

list

before

parameter

7,

it

cannot

return

a

reason

code

because

parameter

7

is

the

reason

code

parameter.

In

this

case,

ARXINIT

returns

only

a

return

code

of

20

in

register

15

to

indicate

an

error.

28

Unsuccessful

processing.

Attempted

use

of

SPSHARE

flag.

29

Unsuccessful

processing.

Attempted

use

of

NOLOADDD

flag.

30

Unsuccessful

processing.

REXX

is

not

installed

in

the

SVA.

31

Reserved

Return

Codes:

ARXINIT

returns

different

return

codes

for

finding

an

environment

and

for

initializing

an

environment.

ARXINIT

returns

the

return

code

in

register

15.

If

you

specify

the

return

code

parameter

(parameter

9),

ARXINIT

also

returns

the

return

code

in

the

parameter.

Table

68

shows

the

return

codes

if

you

call

ARXINIT

to

find

an

environment

(FINDENVB

function).

Table

68.

ARXINIT

Return

Codes

for

Finding

an

Environment

(FINDENVB)

Return

Code

Description

0

Processing

was

successful.

ARXINIT

located

and

initialized

the

current

non-reentrant

REXX

environment

under

the

current

task.

4

Processing

was

successful.

ARXINIT

located

and

initialized

the

current

non-reentrant

REXX

environment

under

a

previous

task.

Initialization

Routine

Chapter

20.

Initialization

and

Termination

Routines

439

Table

68.

ARXINIT

Return

Codes

for

Finding

an

Environment

(FINDENVB)

(continued)

Return

Code

Description

20

Processing

was

not

successful.

An

error

occurred.

Check

the

reason

code

that

ARXINIT

returns

in

parameter

7.

28

Processing

was

successful.

There

is

no

current

non-reentrant

REXX

environment.

Table

69

shows

the

return

codes

if

you

call

ARXINIT

to

initialize

an

environment

(INITENVB

function).

Table

69.

ARXINIT

Return

Codes

for

Initializing

an

Environment

(INITENVB)

Return

Code

Description

0

Processing

was

successful.

ARXINIT

initialized

a

new

language

processor

environment.

The

new

environment

is

not

the

first

REXX

environment

under

the

current

task.

4

Processing

was

successful.

ARXINIT

initialized

a

new

REXX

language

processor

environment,

which

is

the

first

environment

under

the

current

task.

20

Processing

was

not

successful.

An

error

occurred.

Check

the

reason

code

that

ARXINIT

returns

in

the

parameter

list.

Termination

Routine

–

ARXTERM

When

an

application

is

done

with

a

language

processor

environment,

the

application

is

responsible

for

terminating

the

language

processor

environment.

Only

the

application

that

called

ARXINIT

to

create

the

language

processor

environment

should

terminate

the

language

processor

environment.

The

ARXTERM

routine

terminates

a

language

processor

environment.

Note:

To

permit

FORTRAN

programs

to

call

ARXTERM,

there

is

an

alternate

entry

point

for

the

ARXTERM

routine.

The

alternate

entry

point

name

is

ARXTRM.

Note:

Another

way

to

terminate

a

language

processor

environment

is

calling

ARXTERMA,

which

is

for

abnormal

terminations

but

works

in

the

general

case

as

well.

ARXTERMA

terminates

language

processor

environments

that

still

contain

active

programs;

ARXTERM

does

not

do

this.

In

register

0,

you

can

optionally

pass

the

address

of

the

environment

block

(ENVBLOCK)

for

the

environment

you

want

to

terminate.

ARXTERM

then

terminates

the

language

processor

environment

register

0

points

to.

The

environment

must

have

been

initialized

on

the

current

task.

If

you

do

not

specify

an

environment

block

address

in

register

0,

ARXTERM

locates

the

last

environment

that

was

created

under

the

current

task

and

terminates

that

environment.

When

ARXTERM

terminates

the

environment,

ARXTERM

closes

all

open

members

and

files

that

were

opened

under

that

environment.

ARXTERM

also

deletes

any

data

stacks

that

you

created

under

the

environment

using

the

NEWSTACK

command.

ARXTERM

does

not

terminate

an

environment

under

any

one

of

the

following

conditions:

v

The

environment

was

not

initialized

under

the

current

task

v

An

active

program

is

currently

running

in

the

environment

v

The

environment

was

the

first

environment

initialized

under

the

task

and

other

environments

are

still

initialized

under

the

task.

The

first

environment

initialized

on

a

task

must

be

the

last

environment

terminated

on

that

task.

The

first

environment

is

the

anchor

environment

because

all

subsequent

environments

that

are

initialized

on

the

same

task

share

information

from

the

first

environment.

Therefore,

all

other

environments

on

a

task

must

Initialization

Routine

440

REXX/VSE

Reference

be

terminated

before

you

terminate

the

first

environment.

If

you

use

ARXTERM

to

terminate

the

first

environment

and

other

environments

on

the

task

still

exist,

ARXTERM

does

not

terminate

the

environment

and

returns

with

a

return

code

of

20.

Entry

Specifications:

For

the

ARXTERM

termination

routine,

the

contents

of

the

registers

on

entry

are:

Register

0

Address

of

an

environment

block

(ENVBLOCK).

(optional)

Registers

1-12

Unpredictable

Register

13

Address

of

a

register

save

area

Register

14

Return

address

Register

15

Entry

point

address

Parameters:

You

can

optionally

pass

the

address

of

the

environment

block

for

the

language

processor

environment

you

want

to

terminate

in

register

0.

There

is

no

parameter

list

for

ARXTERM.

Return

Specifications:

For

the

ARXTERM

termination

routine,

the

contents

of

the

registers

on

return

are:

Register

0

If

you

pass

the

address

of

an

environment

block

and

ARXTERM

terminates

the

environment,

ARXTERM

returns

the

address

of

the

environment

block

for

the

previous

environment

or

0

if

there

is

no

previous

environment.

If

you

do

not

pass

an

address,

register

0

contains

the

same

value

as

on

entry.

Registers

1-14

Same

as

on

entry

Register

15

Return

code

Return

Codes:

Table

70

shows

the

return

codes

for

the

ARXTERM

routine.

Table

70.

Return

Codes

for

ARXTERM

Return

Code

Description

0

ARXTERM

successfully

terminated

the

environment.

The

terminated

environment

was

not

the

last

REXX

environment

on

the

task.

4

ARXTERM

successfully

terminated

the

environment.

The

terminated

environment

was

the

last

REXX

environment

on

the

task.

20

ARXTERM

could

not

terminate

the

environment.

28

The

environment

could

not

be

found.

Termination

Routine

Chapter

20.

Initialization

and

Termination

Routines

441

Termination

Routine

442

REXX/VSE

Reference

Chapter

21.

Replaceable

Routines

and

Exits

When

a

REXX

program

runs,

various

system

services

obtain

and

free

storage,

handle

data

stack

requests,

load

and

free

the

program,

and

perform

I/O.

REXX/VSE

provides

routines

for

these

system

services.

The

routines

are

called

replaceable

routines

because

you

can

provide

your

own

routines

that

replace

the

REXX/VSE

routines.

Besides

defining

your

own

replaceable

routines

to

replace

the

routines

that

REXX/VSE

provides,

you

can

use

the

interfaces

as

described

in

this

chapter

to

call

any

of

the

supplied

routines

to

perform

system

services.

You

can

also

write

your

own

routine

to

perform

a

system

service

using

the

interfaces

described

for

the

routine.

A

program

can

then

call

your

own

routine

to

perform

that

particular

service.

REXX/VSE

also

provides

several

exits

you

can

use

to

customize

REXX

processing.

The

exits

let

you

customize

the

initialization

and

termination

of

language

processor

environments

and

exec

processing

itself.

This

chapter

describes

each

of

the

replaceable

routines

and

the

exits.

Replaceable

Routines:

If

you

replace

the

REXX/VSE-supplied

routine,

your

routine

can

perform

some

pre-processing

and

then

call

the

REXX/VSE

routine

to

actually

perform

the

service

request.

If

the

replaceable

routine

you

provide

calls

the

REXX/VSE

routine,

your

replaceable

routine

must

act

as

a

filter

between

the

call

to

your

routine

and

its

call

to

the

REXX/VSE

routine.

Pre-processing

can

include

checking

the

request

for

the

specific

service,

changing

the

request,

or

terminating

the

request.

Your

routine

can

also

perform

the

requested

service

itself

without

calling

the

REXX/VSE

routine.

The

following

summarizes

the

routines

you

can

replace

and

the

functions

your

routine

must

perform,

if

you

replace

the

REXX/VSE

routine.

“Replaceable

Routines”

on

page

444

describes

each

routine

in

more

detail.

Exec

Load

Called

to

load

a

program

into

storage

and

free

a

program

when

the

program

completes

processing.

The

exec

load

routine

is

also

called

to

determine

whether

a

program

is

currently

loaded

and

to

close

a

specified

member.

I/O

Called

to

read

a

record

from

or

write

a

record

to

a

specified

file.

The

I/O

routine

is

also

called

to

open

or

close

a

specified

file.

For

example,

the

routine

is

called

for

the

SAY

and

PULL

instructions

and

for

the

EXECIO

command.

Host

Command

Environment

Called

to

process

all

host

commands

for

a

specific

host

command

environment.

Data

Stack

Called

to

handle

any

requests

for

data

stack

services.

Storage

Management

Called

to

obtain

and

free

storage.

User

ID

Called

to

obtain

the

user

ID.

The

USERID

built-in

function

returns

the

result

that

the

user

ID

routine

obtains.

Message

Identifier

Called

to

determine

whether

the

message

identifier

(message

ID)

accompanies

a

REXX

error

message.

Replaceable

routines

are

defined

on

a

language

processor

environment

basis.

You

define

the

names

of

the

routines

in

the

module

name

table.

To

define

your

own

replaceable

routine

to

replace

the

REXX/VSE

routine,

you

must

do

the

following:

©

Copyright

IBM

Corp.

1988,

2004

443

v

Write

the

code

for

the

routine.

The

individual

topics

in

this

chapter

describe

the

interfaces

to

each

replaceable

routine.

v

Define

the

routine

name

to

a

language

processor

environment.

You

can

provide

your

own

ARXPARMS

parameters

module

that

ARXINIT

uses

instead

of

the

default

ARXPARMS

module.

In

your

module,

specify

the

names

of

your

replaceable

routines.

You

can

also

call

ARXINIT

to

initialize

an

environment

and

pass

the

name

of

your

module

name

table

that

includes

the

names

of

your

replaceable

routines.

“Changing

the

Default

Values

for

Initializing

an

Environment”

on

page

416

describes

how

to

provide

your

own

parameters

module.

“Initialization

Routine

–

ARXINIT”

on

page

431

describes

ARXINIT.

You

can

also

call

any

of

the

REXX/VSE

replaceable

routines

from

a

program

to

perform

a

system

service.

You

can

also

write

your

own

routine

to

perform

a

service.

This

chapter

describes

the

interfaces

to

the

REXX/VSE

routines.

Exit

Routines:

You

can

use

several

exits

to

customize

REXX

processing.

Some

exits

have

fixed

names.

Others

do

not

have

fixed

names.

You

name

the

exit

yourself

and

then

specify

the

name

in

the

module

name

table.

The

following

briefly

describes

exits.

“REXX

Exit

Routines”

on

page

471

describes

each

exit

in

more

detail.

v

Pre-environment

initialization

–

customizes

processing

before

the

ARXINIT

initialization

routine

initializes

a

language

processor

environment.

v

Post-environment

initialization

–

customizes

processing

after

the

ARXINIT

initialization

routine

has

initialized

an

environment,

but

before

ARXINIT

completes

processing.

v

Environment

termination

–

customizes

processing

when

a

language

processor

environment

is

terminated.

v

Exec

Initialization—customizes

processing

after

the

variable

pool

has

been

created

and

before

the

program

begins

processing.

v

Exec

Termination—customizes

processing

after

a

program

completes

processing

and

before

the

variable

pool

is

deleted.

v

Exec

Processing—

customizes

exec

processing

before

a

program

is

loaded

and

runs.

v

RXHLT

–

raises

the

halt

condition

(see

“REXX

Exit

Data

Areas

and

Parameters”

on

page

475).

See

“REXX

Exit

Routines”

on

page

471

for

more

information

about

the

exits.

Replaceable

Routines

The

following

topics

describe

each

of

the

REXX/VSE

replaceable

routines.

The

documentation

describes

how

the

REXX/VSE

routines

work,

the

input

they

receive,

and

the

output

they

return.

If

you

provide

your

own

routine

that

replaces

the

REXX/VSE

routine,

your

routine

must

handle

all

of

the

functions

that

the

REXX/VSE

routine

handles.

The

replaceable

routines

are

programming

routines

that

you

can

call

from

a

program.

The

only

requirement

for

calling

one

of

the

REXX/VSE

routines

is

that

a

language

processor

environment

must

exist

in

which

the

routine

runs.

You

can

also

write

your

own

routines

to

handle

different

system

services.

For

example,

if

you

write

your

own

exec

load

routine,

a

program

can

call

your

routine

to

load

a

program

before

calling

ARXEXEC

to

call

the

REXX

program.

Similarly,

if

you

write

your

own

routine,

an

application

program

can

call

your

routine

as

long

as

a

language

processor

environment

exists

in

which

the

routine

can

run.

You

could

also

write

your

own

routine

that

application

programs

can

call

to

perform

a

system

service

and

have

your

routine

call

the

REXX/VSE

routine.

Your

routine

could

act

as

a

filter

between

the

call

to

your

routine

and

its

call

to

the

REXX/VSE

routine.

For

example,

you

could

write

your

own

exec

load

routine

that

verifies

a

request

and

then

calls

the

REXX/VSE

exec

load

routine

to

actually

load

the

program.

Replaceable

Routines

and

Exits

444

REXX/VSE

Reference

General

Considerations

This

topic

provides

general

information

about

the

replaceable

routines.

v

If

you

provide

your

own

replaceable

routine,

your

routine

is

called

in

31

bit

addressing

mode.

Your

routine

may

perform

the

requested

service

itself

and

not

call

the

REXX/VSE

routine.

Your

routine

can

perform

pre-processing,

such

as

checking

or

changing

the

request

or

parameters,

and

then

call

the

corresponding

REXX/VSE

routine.

If

your

routine

calls

the

REXX/VSE

routine

to

actually

perform

the

request,

your

routine

must

call

the

system

routine

in

31

bit

addressing

mode

also.

v

When

REXX/VSE

calls

your

replaceable

routine,

your

routine

can

use

any

of

the

REXX/VSE

replaceable

routines

to

request

system

services.

v

The

addresses

of

the

REXX/VSE-supplied

replaceable

routines

and

any

replaceable

routines

you

provide

are

stored

in

the

REXX

vector

of

external

entry

points

(see

page

421).

This

allows

a

caller

external

to

REXX

to

call

any

of

the

replaceable

routines,

either

your

routines

or

the

supplied

ones.

For

example,

if

you

want

to

preload

a

REXX

program

in

storage

before

using

the

ARXEXEC

routine

to

call

the

program,

you

can

call

the

ARXLOAD

routine

to

load

the

program.

ARXLOAD

is

the

supplied

exec

load

routine.

If

you

provide

your

own

exec

load

routine,

you

can

also

use

your

routine

to

preload

the

program.

v

When

REXX/VSE

or

an

application

program

calls

a

replaceable

routine,

the

contents

of

register

0

may

or

may

not

contain

the

address

of

the

environment

block.

For

more

information,

see

“Using

the

Environment

Block

Address.”

Using

the

Environment

Block

Address

If

you

provide

your

own

routine

to

replace

a

supplied

one,

when

REXX/VSE

calls

your

routine,

it

passes

the

address

of

the

environment

block

for

the

current

environment

in

register

0.

If

your

routine

then

calls

the

supplied

one,

it

is

recommended

that

you

pass

the

environment

block

address

you

received

to

the

supplied

one.

When

you

call

the

supplied

routine,

you

can

pass

the

environment

block

address

in

register

0.

Some

replaceable

routines

also

have

an

optional

environment

block

address

parameter

that

you

can

use.

If

your

routine

passes

the

environment

block

address

in

the

parameter

list,

the

supplied

routine

uses

the

address

you

specify

and

ignores

register

0.

The

supplied

routine

does

not

validate

the

address

you

pass.

Ensure

that

your

routine

passes

the

same

address

it

received

in

register

0

when

it

got

control.

If

your

routine

does

not

specify

an

address

in

the

environment

block

address

parameter

or

the

replaceable

routine

does

not

support

the

parameter,

the

supplied

routine

checks

register

0

for

the

environment

block

address.

If

register

0

contains

the

address

of

a

valid

environment

block,

the

supplied

routine

runs

in

that

environment.

If

the

address

in

register

0

is

not

valid,

the

supplied

routine

locates

and

runs

in

the

current

non-reentrant

environment.

If

your

routine

does

not

pass

the

environment

block

address

it

received

to

the

supplied

routine,

the

supplied

routine

locates

the

current

non-reentrant

environment

and

runs

in

that

environment.

This

may

or

may

not

be

the

environment

in

which

you

want

the

routine

to

run.

Therefore,

it

is

recommended

that

you

pass

the

environment

block

address

when

your

routine

calls

the

supplied

routine.

An

application

program

can

call

a

supplied

replaceable

routine

or

one

that

you

provide

to

perform

a

specific

service.

On

the

call,

the

application

program

can

optionally

pass

the

address

of

an

environment

block

that

represents

the

environment

in

which

the

routine

runs.

The

application

program

can

pass

the

environment

block

address

in

register

0

or

in

the

environment

block

address

parameter

if

the

replaceable

routine

supports

the

parameter.

Note

the

following

for

application

programs

that

call

replaceable

routines:

v

If

an

application

program

calls

a

supplied

replaceable

routine

and

does

not

pass

an

environment

block

address,

the

supplied

routine

locates

the

current

non-reentrant

environment

and

runs

in

that

environment.

v

If

an

application

program

calls

a

routine

you

provide,

either

the

application

program

must

provide

the

environment

block

address

or

your

routine

must

locate

the

current

environment

in

which

to

run.

Replaceable

Routines

and

Exits

Chapter

21.

Replaceable

Routines

and

Exits

445

Installing

Replaceable

Routines

If

you

write

your

own

replaceable

routine,

you

must

link-edit

the

routine

as

a

separate

phase.

You

can

link-edit

all

your

replaceable

routines

in

a

separate

sublibrary

or

in

an

existing

library

that

contains

other

routines.

The

routines

can

reside

in

a

phase

in

a

sublibrary

in

the

active

PHASE

chain.

The

replaceable

routines

must

be

reentrant,

refreshable,

and

reusable.

The

characteristics

for

the

routines

are:

v

State:

Problem

program

v

Not

authorized

v

AMODE(31),

RMODE(ANY)

Exec

Load

Routine

REXX/VSE

calls

the

exec

load

routine

to

load

and

free

REXX

programs

and:

v

To

close

any

input

files

from

which

programs

are

loaded

v

To

check

whether

a

program

is

currently

loaded

in

storage

v

When

a

language

processor

environment

is

initialized

and

terminated.

The

name

of

the

supplied

exec

load

routine

is

ARXLOAD.

Note:

To

permit

FORTRAN

programs

to

call

ARXLOAD,

REXX/VSE

provides

an

alternate

entry

point

for

the

ARXLOAD

routine.

The

alternate

entry

point

name

is

ARXLD.

When

the

exec

load

routine

is

called

to

load

a

program,

the

routine

reads

the

program

from

the

member

of

a

sublibrary

in

the

active

PROC

chain

and

then

places

the

program

into

a

data

structure

called

the

in-storage

control

block

(INSTBLK).

“The

In-Storage

Control

Block”

on

page

449

describes

the

format

of

the

in-storage

control

block.

When

the

exec

load

routine

is

called

to

free

a

program,

the

program

frees

the

storage

that

the

previously

loaded

program

occupied.

The

name

of

the

exec

load

routine

is

specified

in

the

EXROUT

field

in

the

module

name

table

for

a

language

processor

environment.

“Module

Name

Table”

on

page

401

describes

the

format

of

the

module

name

table.

REXX/VSE

calls

the

exec

load

routine

when:

v

A

language

processor

environment

is

initialized.

During

environment

initialization,

the

exec

load

routine

initializes

the

REXX

program

load

environment.

v

The

ARXEXEC

routine

is

called

and

the

program

is

not

preloaded.

See

“The

ARXEXEC

Routine”

on

page

338

for

information

about

using

ARXEXEC.

v

The

program

that

is

currently

running

calls

an

external

function

or

subroutine

and

the

function

or

subroutine

is

a

REXX

program.

(This

is

an

internal

call

to

the

ARXEXEC

routine.)

v

A

program

that

was

loaded

needs

to

be

freed.

v

The

language

processor

environment

that

originally

opened

the

member

of

the

sublibrary

from

which

programs

are

loaded

is

terminating

and

all

files

associated

with

the

environment

must

be

closed.

v

You

use

the

EXEC

command

(page

145)

to

run

a

REXX

program.

The

supplied

load

routine,

ARXLOAD,

tests

for

numbered

records

in

the

file.

If

the

records

of

a

file

are

numbered,

the

routine

removes

the

numbers

when

it

loads

the

program.

A

record

is

considered

to

be

numbered

if

the

last

8

characters

of

the

first

record

are

numeric.

If

the

first

record

of

the

file

is

not

numbered,

the

routine

loads

the

program

without

making

any

changes.

Any

user-written

program

can

call

ARXLOAD

to

perform

the

functions

that

ARXLOAD

supports.

You

can

also

write

your

own

exec

load

routine

and

call

the

routine

from

an

application

program.

For

example,

if

you

have

an

application

program

that

calls

the

ARXEXEC

routine

to

run

a

REXX

program,

you

may

want

to

Replaceable

Routines

and

Exits

446

REXX/VSE

Reference

preload

the

program

into

storage

before

calling

ARXEXEC.

To

preload

the

program,

your

application

program

can

call

ARXLOAD.

The

program

can

also

call

your

own

exec

load

routine.

If

you

are

writing

an

exec

load

routine

that

will

be

used

in

environments

in

which

compiled

REXX

programs

run,

note

that

your

exec

load

routine

may

want

to

call

a

compiler

interface

load

routine.

For

information

about

the

compiler

interface

load

routine

and

when

it

can

be

called,

see

Chapter

24,

“Support

for

the

Library

for

REXX/370

in

REXX/VSE,”

on

page

501.

Entry

Specifications:

For

the

exec

load

replaceable

routine,

the

contents

of

the

registers

on

entry

are

described

in

the

following.

You

can

specify

the

address

of

the

environment

block

in

either

register

0

or

in

the

environment

block

address

parameter

in

the

parameter

list.

For

more

information,

see

“Using

the

Environment

Block

Address”

on

page

445.

Register

0

Address

of

the

current

environment

block

Register

1

Address

of

the

parameter

list

Registers

2-12

Unpredictable

Register

13

Address

of

a

register

save

area

Register

14

Return

address

Register

15

Entry

point

address

Parameters:

Register

1

contains

the

address

of

a

5-word

parameter

list,

which

consists

of

a

list

of

addresses.

Each

address

in

the

parameter

list

points

to

a

parameter.

To

indicate

the

end

of

the

parameter

list,

set

the

high-order

bit

of

the

last

address

to

1.

For

more

information

about

passing

parameters,

see

“Parameter

Lists

for

REXX/VSE

Routines”

on

page

329.

Table

71

describes

the

parameters

for

the

exec

load

routine.

Table

71.

Parameters

for

the

Exec

Load

Routine

Parameter

Number

of

Bytes

Description

Parameter

1

8

The

function

to

be

performed.

The

function

name

is

left

justified,

in

uppercase,

and

padded

to

the

end

of

the

field

with

blanks.

The

valid

functions

are:

v

INIT

v

LOAD

v

FREE

v

STATUS

v

CLOSEDD

v

TERM.

The

functions

are

described

in

“″Functions

You

Can

Specify...″”

on

page

448.

Parameter

2

4

Specifies

the

address

of

the

exec

block

(EXECBLK).

The

exec

block

is

a

control

block

that

describes

the

program

to

load

(LOAD)

or

check

(STATUS)

or

the

member

to

close

(CLOSEDD).

“The

Exec

Block”

on

page

449

describes

the

exec

block.

For

the

LOAD,

STATUS,

and

CLOSEDD

functions,

this

parameter

must

contain

a

valid

exec

block

address.

For

the

other

functions,

this

parameter

is

ignored.

Exec

Load

Routine

Chapter

21.

Replaceable

Routines

and

Exits

447

Table

71.

Parameters

for

the

Exec

Load

Routine

(continued)

Parameter

Number

of

Bytes

Description

Parameter

3

4

Specifies

the

address

of

the

in-storage

control

block

(INSTBLK),

which

defines

the

structure

of

a

REXX

program

in

storage.

The

in-storage

control

block

contains

pointers

to

each

record

in

the

program

and

the

length

of

each

record.

“The

In-Storage

Control

Block”

on

page

449

describes

the

control

block.

The

exec

load

routine

uses

this

parameter

as

an

input

parameter

for

the

FREE

function

only.

The

routine

uses

the

parameter

as

an

output

parameter

for

the

LOAD,

STATUS,

and

FREE

functions.

The

parameter

is

ignored

for

the

INIT,

TERM,

and

CLOSEDD

functions.

As

an

input

parameter

for

the

FREE

function,

the

parameter

contains

the

address

of

the

in-storage

control

block

that

represents

the

program

to

be

freed.

As

an

output

parameter

for

the

FREE

function,

the

parameter

contains

a

0

indicating

the

program

was

freed.

If

the

program

could

not

be

freed,

the

return

code

in

register

15

or

the

return

code

parameter

(parameter

5)

or

both

indicate

the

error

condition.

“″Return

Codes″”

on

page

449

describes

the

return

codes.

As

an

output

parameter

for

the

LOAD

or

STATUS

functions,

the

parameter

returns

the

address

of

the

in-storage

control

block

that

represents

the

program

that

was:

v

Just

loaded

(LOAD

function)

v

Previously

loaded

(STATUS

function).

For

the

LOAD

and

STATUS

functions,

the

routine

returns

a

value

of

0

if

the

program

is

not

loaded.

Parameter

4

4

This

parameter

is

optional.

It

is

the

address

of

the

environment

block

that

represents

the

environment

in

which

you

want

the

exec

load

replaceable

routine

to

run.

If

you

specify

a

nonzero

value,

the

exec

load

routine

uses

the

value

you

specify

and

ignores

register

0.

However,

the

routine

does

not

check

whether

the

address

is

valid.

Therefore,

ensure

the

address

you

specify

is

correct

or

unpredictable

results

can

occur.

For

more

information,

see

“Using

the

Environment

Block

Address”

on

page

445.

Parameter

5

4

This

parameter

is

optional.

It

is

a

field

that

the

exec

load

replaceable

routine

uses

to

return

the

return

code.

If

you

use

this

parameter,

the

exec

load

routine

returns

the

return

code

in

the

parameter

and

also

in

register

15.

Otherwise,

the

routine

uses

register

15

only.

If

the

parameter

list

is

incorrect,

the

return

code

is

returned

in

register

15

only.

“″Return

Codes″”

on

page

449

describes

the

return

codes.

Functions

You

Can

Specify

for

Parameter

1:

The

functions

you

can

specify

in

parameter

1

are:

INIT

The

routine

performs

any

initialization

that

is

required.

During

the

initialization

of

a

language

processor

environment,

REXX/VSE

calls

the

exec

load

routine

to

initialize

load

processing.

LOAD

The

routine

loads

the

specified

program

in

the

exec

block

from

the

member

of

a

sublibrary

specified

in

the

exec

block.

“The

Exec

Block”

on

page

449

describes

the

exec

block.

The

routine

returns

the

address

of

the

in-storage

control

block

(parameter

3)

that

represents

the

loaded

program.

“The

In-Storage

Control

Block”

on

page

449

shows

the

format

of

the

in-storage

control

block.

Note:

The

ARXLOAD

routine

reuses

an

existing

copy

of

a

previously

loaded

program

if

it

appears

that

the

program

has

not

changed.

However,

if

the

CLOSEXFL

flag

is

on,

indicating

the

Exec

Load

Routine

448

REXX/VSE

Reference

member

should

be

closed

after

each

program

is

loaded,

ARXLOAD

does

not

reuse

a

previously

loaded

program.

Instead,

a

new

copy

of

the

program

is

read

into

storage

for

each

load

request.

For

more

information

about

the

CLOSEXFL

flag,

see

page

400.

FREE

The

routine

frees

the

program

represented

by

the

in-storage

control

block

to

which

parameter

3

points.

Note:

If

a

user-written

load

routine

calls

ARXLOAD

to

load

a

program,

the

user-written

load

routine

must

also

call

ARXLOAD

to

free

the

program.

STATUS

The

routine

determines

whether

the

program

specified

in

the

exec

block

is

currently

loaded

in

storage

from

the

member

of

a

sublibrary

specified

in

the

exec

block.

If

the

program

is

loaded,

the

routine

returns

the

address

of

the

in-storage

control

block

in

parameter

3.

The

address

that

the

routine

returns

is

the

same

address

that

was

returned

for

the

LOAD

function

when

the

routine

originally

loaded

the

program

into

storage.

TERM

The

routine

performs

any

cleanup

prior

to

termination

of

the

language

processor

environment.

When

the

last

language

processor

environment

under

the

task

that

originally

opened

the

member

terminates,

all

files

associated

with

the

environment

are

closed.

When

ARXLOAD

is

terminating

the

last

language

processor

environment

under

a

task,

it

frees

any

programs

that

were

loaded

by

any

language

processor

environment

under

the

task

but

were

not

yet

freed.

CLOSEDD

The

routine

closes

the

member

specified

in

the

exec

block.

It

does

not

free

any

programs

that

have

been

loaded.

The

Exec

Block

The

exec

block

(EXECBLK)

is

a

control

block

that

describes

the:

v

Member

to

load

(LOAD

function)

v

Member

to

check

(STATUS

function)

v

Member

to

close

(CLOSEDD

function).

If

a

user-written

program

calls

ARXLOAD

or

your

own

exec

load

routine,

the

program

must

build

the

exec

block

and

pass

the

address

of

the

exec

block

on

the

call.

REXX/VSE

provides

a

mapping

macro,

ARXEXECB,

for

the

exec

block.

The

mapping

macro

is

in

PRD1.BASE.

See

Table

15

on

page

342

for

the

format

of

the

exec

block.

The

In-Storage

Control

Block

The

in-storage

control

block

defines

the

structure

of

a

program

in

storage.

It

contains

pointers

to

each

record

in

the

program

and

the

length

of

each

record.

Table

17

on

page

343

shows

the

format

of

the

in-storage

control

block.

Table

18

on

page

344

shows

the

format

of

the

vector

of

records.

Return

Specifications:

For

the

exec

load

routine,

the

contents

of

the

registers

on

return

are:

Registers

0-14

Same

as

on

entry

Register

15

Return

code

Return

Codes:

Table

72

on

page

450

shows

the

return

codes

for

the

exec

load

routine.

The

routine

returns

the

return

code

in

register

15.

If

you

specify

the

return

code

parameter

(parameter

5),

the

exec

load

routine

also

returns

the

return

code

in

the

parameter.

Exec

Load

Routine

Chapter

21.

Replaceable

Routines

and

Exits

449

Table

72.

Return

Codes

for

the

Exec

Load

Replaceable

Routine

Return

Code

Description

-3

The

program

could

not

be

located.

The

program

is

not

loaded.

0

Processing

was

successful.

The

requested

function

completed.

4

The

specified

program

is

not

currently

loaded.

A

return

code

of

4

is

used

for

the

STATUS

function

only.

20

Processing

was

not

successful.

The

requested

function

is

not

performed.

A

return

code

of

20

occurs

if:

v

A

MEMBER

was

required

but

not

specified

(LOAD,

STATUS,

and

CLOSEDD

functions).

v

The

MEMBER

was

specified,

but

a

LIBDEF

specifying

the

sublibrary

did

not

precede

the

attempt

to

load

the

member.

v

An

error

occurred

during

processing.

REXX/VSE

also

issues

an

error

message

that

describes

the

error.

28

Processing

was

not

successful.

A

language

processor

environment

could

not

be

located.

32

Processing

was

not

successful.

The

parameter

list

is

incorrect.

It

contains

too

few

or

too

many

parameters,

or

the

high-order

bit

of

the

last

address

is

not

1

to

indicate

the

end

of

the

parameter

list.

Input/Output

Routine

REXX/VSE

has

two

kinds

of

input

and

output:

v

REXX/VSE

runs

in

batch

only,

so

console

input

and

output

consists

of

line

mode

input

from

and

output

to

the

default

input

and

output

streams.

v

EXECIO

commands

read

and

write

data

on

disk.

ARXINOUT,

the

input/output

(I/O)

replaceable

routine,

is

also

called

the

read

input/write

output

data

routine.

The

input/output

replaceable

routine

operates

on

the

following

types

of

files:

v

Sublibrary

members

of

any

type

(use

the

fully-qualified

name)

v

SYSIPT

or

SYSLST

v

SAM

files.

(Only

SAM

files

on

disk

are

supported.

You

need

to

use

DLBL

to

associate

a

SAM

file

with

a

file

name.)

The

default

input/output

routine

operates

only

on:

v

SYSIPT

v

SYSLST

v

SYSxxx

(where

xxx

is

numeric)

v

Any

other

7-character

name.

REXX/VSE

calls

the

I/O

routine

to:

v

Read

a

record

v

Write

a

record

v

Open

a

file

v

Close

a

file.

(You

can

open

a

file

in

a

user

routine

and

change

the

DSIB_LRECL

field.)

Note:

To

permit

FORTRAN

programs

to

call

ARXINOUT,

REXX/VSE

provides

an

alternate

entry

point

for

the

ARXINOUT

routine.

The

alternate

entry

point

name

is

ARXIO.

If

a

read

is

requested,

the

routine

returns

a

pointer

to

the

record

that

was

read

and

the

length

of

the

record.

If

a

write

is

requested,

the

caller

provides

a

pointer

to

the

record

to

be

written

and

the

length

of

the

record.

If

an

open

is

requested,

the

routine

opens

the

file

if

the

file

is

not

yet

open.

The

routine

also

Exec

Load

Routine

450

REXX/VSE

Reference

returns

a

pointer

to

an

area

in

storage

containing

information

about

the

file.

You

can

use

the

ARXDSIB

mapping

macro

to

map

this

area.

The

mapping

macro

is

in

PRD1.BASE.

Specify

the

name

of

the

I/O

routine

in

the

IOROUT

field

in

the

module

name

table.

“Module

Name

Table”

on

page

401

describes

the

format

of

the

module

name

table.

I/O

processing

is

based

on

the

Librarian

and

SAM

access

methods.

The

I/O

routine

is

called

for:

v

Initialization.

When

ARXINIT

initializes

a

language

processor

environment,

REXX/VSE

calls

the

I/O

replaceable

routine

to

initialize

I/O

processing.

v

Open:

–

When

you

use

the

LINESIZE

built-in

function

in

a

program

–

Before

the

language

processor

does

any

input

or

output.

v

For

input,

when:

–

A

PULL

or

a

PARSE

PULL

instruction

is

processed,

and

the

data

stack

is

empty

–

A

PARSE

EXTERNAL

instruction

is

processed

–

Input

during

pauses

in

interactive

debug

is

processed

–

The

EXECIO

command

reads

data

on

disk

–

A

program

outside

of

REXX

calls

the

I/O

replaceable

routine

for

input

of

a

record.

v

For

output,

when:

–

A

SAY

instruction

is

processed

–

Error

messages

must

be

written

–

Trace

(interactive

debug

facility)

messages

must

be

written

–

The

EXECIO

command

writes

data

to

disk

–

A

program

outside

of

REXX

calls

the

I/O

replaceable

routine

for

output

of

a

record.

v

Termination.

When

REXX/VSE

terminates

a

language

processor

environment,

the

I/O

replaceable

routine

is

called

to

clean

up

I/O.

Entry

Specifications:

This

section

describes

the

contents

of

the

registers

on

entry

for

the

I/O

replaceable

routine.

You

can

specify

the

address

of

the

environment

block

either

in

register

0

or

in

the

environment

block

address

parameter

in

the

parameter

list.

For

more

information,

see

“Using

the

Environment

Block

Address”

on

page

445.

Register

0

Address

of

the

current

environment

block

Register

1

Address

of

the

parameter

list

Registers

2-12

Unpredictable

Register

13

Address

of

a

register

save

area

Register

14

Return

address

Register

15

Entry

point

address

Parameters:

Register

1

contains

the

address

of

a

parameter

list,

which

consists

of

a

list

of

addresses.

Each

address

in

the

parameter

list

points

to

a

parameter.

Set

the

high-order

bit

of

the

last

address

to

1

to

indicate

the

end

of

the

parameter

list.

For

more

information

about

passing

parameters,

see

“Parameter

Lists

for

REXX/VSE

Routines”

on

page

329.

I/O

Routine

Chapter

21.

Replaceable

Routines

and

Exits

451

Table

73

describes

the

parameters

for

the

I/O

routine.

Table

73.

Input

Parameters

for

the

I/O

Replaceable

Routine

Parameter

Number

of

Bytes

Description

Parameter

1

8

The

function

to

perform.

The

function

name

is

left

justified,

in

uppercase,

and

padded

to

the

right

with

blanks.

Valid

functions

are:

v

CLOSE

v

INIT

v

OPENR

v

OPENW

v

OPENX

v

READ

v

READX

v

TERM

v

WRITE.

“Functions

Supported

for

the

I/O

Routine”

on

page

453

describes

these

functions.

Parameter

2

4

Specifies

the

address

of

the

record

read,

the

record

to

be

written,

or

the

data

set

information

block,

which

is

an

area

in

storage

that

contains

information

about

the

file

(see

page

457).

This

field

is

not

used

as

an

input

parameter

for

the

CLOSE,

INIT,

READ,

READX,

or

TERM

functions.

Parameter

3

4

Specifies

the

length

of

the

data

in

the

buffer

to

which

parameter

2

points.

On

output

for

an

open

request,

parameter

3

may

contain

the

length

of

the

data

set

information

block.

“Buffer

and

Buffer

Length

Parameters”

on

page

455

describes

the

buffer

and

buffer

length

in

more

detail.

Parameter

4

8

This

is

the

name

of

a

SAM

file

or

SYSIPT

or

SYSLST.

(If

you

are

using

a

sublibrary

member,

this

parameter

must

be

blank;

see

Parameter

8.

The

name

must

be:

v

SYSIPT

v

SYSLST

v

SYSxxx

(where

xxx

is

numeric)

v

Any

other

7-character

name.

Otherwise,

you

receive

an

error.)

The

name

is

uppercase,

left

justified,

and

padded

with

blanks

on

the

right.

For

READ,

READX,

and

WRITE,

it

is

the

name

of

file

from

which

to

read

or

to

which

to

write

the

data.

For

CLOSE,

it

is

the

name

of

the

file

to

close.

For

OPEN,

OPENX,

and

OPENW,

it

is

the

name

of

the

file

to

open.

INIT

and

TERM

functions

do

not

use

this

field.

If

the

input

or

output

file

is

not

a

SAM

file

or

SYSIPT

or

SYSLST,

and

if

parameter

8

is

also

blank,

the

return

code

from

the

I/O

routine

is

20.

Parameter

5

4

For

a

read

operation,

this

parameter

is

used

on

output

and

specifies

the

absolute

record

number

of

the

last

logical

record

read.

For

a

write

to

a

file

that

is

opened

for

update,

it

provides

a

record

number

to

verify

the

number

of

the

record

to

update.

Specify

0

to

bypass

verification

of

the

record

number.

This

parameter

is

not

used

for

the

CLOSE,

INIT,

OPENR,

OPENW,

OPENX,

or

TERM

functions.

See

“Line

Number

Parameter”

on

page

456

for

more

information.

I/O

Routine

452

REXX/VSE

Reference

Table

73.

Input

Parameters

for

the

I/O

Replaceable

Routine

(continued)

Parameter

Number

of

Bytes

Description

Parameter

6

4

This

parameter

is

optional.

It

is

the

address

of

the

environment

block

that

represents

the

environment

in

which

you

want

the

I/O

replaceable

routine

to

run.

If

you

specify

a

nonzero

value

for

the

environment

block

address

parameter,

the

I/O

routine

uses

the

value

you

specify

and

ignores

register

0.

However,

the

routine

does

not

check

whether

the

address

is

valid.

Therefore,

ensure

the

address

you

specify

is

correct

or

unpredictable

results

can

occur.

For

more

information,

see

“Using

the

Environment

Block

Address”

on

page

445.

Parameter

7

4

This

parameter

is

optional.

It

is

a

field

that

the

I/O

replaceable

routine

uses

for

the

return

code.

If

you

use

this

parameter,

the

I/O

routine

puts

the

return

code

in

the

parameter

and

also

in

register

15.

Otherwise,

the

routine

uses

register

15

only.

If

the

parameter

list

is

incorrect,

the

return

code

is

returned

in

register

15

only.

“″Return

Codes″”

on

page

458

describes

the

return

codes.

Parameter

8

34

This

parameter

is

optional.

It

is

a

fully

qualified

sublibrary

name

(7

characters

for

the

library

name,

8

for

the

sublibrary,

8

for

the

member

name,

8

for

the

type).

The

name

is

uppercase,

left

justified,

and

padded

with

blanks

on

the

right.

For

READ,

READX,

and

WRITE,

it

is

the

name

of

file

from

which

to

read

or

to

which

to

write

the

data.

For

CLOSE,

it

is

the

name

of

the

file

to

close.

For

OPEN,

OPENX,

and

OPENW,

it

is

the

name

of

the

file

to

open.

INIT

and

TERM

functions

do

not

use

this

field.

If

this

parameter

and

parameter

4

are

both

blank,

the

return

code

form

the

I/O

routine

is

20.

Parameter

9

4

This

parameter

is

optional.

It

specifies

the

address

of

the

control

block

for

ARXINOUT.

(Table

74

on

page

456

shows

the

control

block.)

To

explicitly

or

implicitly

open

a

SAM

file,

you

must

specify

Parameter

9.

For

other

types

of

files,

if

you

do

not

specify

this

parameter,

the

language

processor

uses

default

information.

The

control

block

is

used

for

input

and

output

with

all

types

of

files.

For

a

member

of

a

sublibrary,

the

control

block

is

needed

only

for

writing

information.

It

contains

an

indication

of

whether

the

sublibrary

member

contains

SYSIPT

data.

The

default

for

a

new

file

indicates

no

SYSIPT

data.

For

an

old

file,

the

default

is

the

same

as

specified

on

opening

the

original

file.

For

SYSLST

and

SYSIPT,

the

control

block

is

for

reading

or

writing

information.

It

contains

information

about

block

size,

record

format,

and

record

size.

It

also

contains

carriage

control

information

for

SYSLST.

The

defaults

for

SYSLST

are:

block

size

of

120,

record

format

of

FIXUNB,

record

size

of

121,

and

no

carriage

control

data.

The

defaults

for

SYSIPT

are:

block

size

of

80,

record

format

of

FIXUNB,

record

size

of

80.

Functions

Supported

for

the

I/O

Routine

Parameter

1

specifies

the

function

the

I/O

routine

performs.

Valid

functions

are:

INIT

The

routine

performs

any

initialization

that

is

required.

During

the

initialization

of

a

language

processor

environment,

the

I/O

routine

is

called

to

initialize

I/O

processing.

I/O

Routine

Chapter

21.

Replaceable

Routines

and

Exits

453

OPENR

The

routine

opens

the

specified

file

for

a

read

operation

if

it

is

not

already

open.

Parameter

4

or

parameter

8

specifies

the

file

name.

The

I/O

routine

returns

the

address

of

the

data

set

information

block

in

parameter

2.

“Data

Set

Information

Block

(DSIB)”

on

page

457

describes

the

block

in

more

detail.

OPENW

The

routine

opens

the

specified

file

for

a

write

operation

if

it

is

not

already

open.

Parameter

4

or

parameter

8

specifies

the

file

name.

The

I/O

routine

returns

the

address

of

the

data

set

information

block

in

parameter

2.

“Data

Set

Information

Block

(DSIB)”

on

page

457

describes

the

block

in

more

detail.

OPENX

The

routine

opens

the

specified

file

for

update

if

it

is

not

already

open.

Parameter

4

or

parameter

8

specifies

the

file

name.

The

I/O

routine

returns

the

address

of

the

data

set

information

block

in

parameter

2.

“Data

Set

Information

Block

(DSIB)”

on

page

457

describes

the

block

in

more

detail.

READ

The

routine

reads

data

from

the

file

that

parameter

4

or

parameter

8

specifies.

It

returns

the

data

in

the

buffer

to

which

the

address

in

parameter

2

points.

It

also

returns

the

number

of

the

record

that

was

read

in

the

line

number

parameter

(parameter

5).

READ

and

READX

are

equivalent,

except

that

the

file

is

opened

differently.

You

can

do

subsequent

read

operations

to

the

same

file

using

either

READ

or

READX

because

they

do

not

reopen

the

file.

If

the

file

to

read

from

is

closed,

the

routine

opens

it

for

input

and

then

performs

the

read.

READX

The

routine

reads

data

from

the

file

that

parameter

4

or

parameter

8

specifies.

It

returns

the

data

in

the

buffer

to

which

the

address

in

parameter

2

points.

It

also

returns

the

number

of

the

record

that

was

read

in

the

line

number

parameter

(parameter

5).

If

the

file

to

read

from

is

closed,

the

routine

opens

it

for

update

and

then

performs

the

read.

READ

and

READX

are

equivalent,

except

that

the

file

is

opened

differently.

You

can

do

subsequent

read

operations

to

the

same

file

using

either

READ

or

READX

because

they

do

not

reopen

the

file.

WRITE

The

routine

writes

data

from

the

specified

buffer

to

the

specified

file.

The

address

in

parameter

2

points

to

the

buffer.

Parameter

4

or

parameter

8

specifies

the

file

name.

If

the

file

is

closed,

the

routine

first

opens

it

for

output

and

then

writes

the

record.

For

a

member

of

a

sublibrary,

the

record

is

written

at

the

end

of

the

file.

For

SAM

files

residing

in

VSAM-managed

space,

a

disposition

of

NEW

indicates

writing

the

first

record,

and

a

disposition

of

OLD

indicates

writing

at

the

end

of

the

file.

When

a

file

is

opened

for

update,

the

WRITE

function

rewrites

the

last

record

that

READ

or

READX

retrieved.

You

can

optionally

use

the

line

number

parameter

(parameter

5)

to

ensure

that

the

number

of

the

record

being

updated

agrees

with

the

number

of

the

last

record

that

was

read.

TERM

The

routine

performs

cleanup

and

closes

any

open

files.

CLOSE

The

routine

closes

the

file

that

parameter

4

or

parameter

8

specifies.

The

CLOSE

function

permits

files

to

be

freed.

CLOSE

is

allowed

only

from

the

task

under

which

the

file

was

opened.

If

CLOSE

is

requested

from

a

different

task,

the

request

is

ignored

and

a

return

code

of

20

is

returned.

I/O

Routine

454

REXX/VSE

Reference

Buffer

and

Buffer

Length

Parameters

Parameter

2

specifies

the

address

of

a

buffer

and

parameter

3

specifies

the

buffer

length.

Only

the

WRITE

function

uses

these

parameters

for

input.

(CLOSE,

INIT,

OPENR,

OPENX,

OPENW,

READ,

READX,

and

TERM

do

not

use

these

parameters

for

input.)

READ,

READX,

OPENR,

OPENX,

and

OPENW

use

parameter

2

for

output,

and

the

same

functions

plus

WRITE

use

parameter

3

for

output.

(CLOSE,

INIT,

TERM,

and

WRITE

do

not

use

parameter

2

for

output,

and

CLOSE,

INIT,

and

TERM

do

not

use

parameter

3

for

output.)

On

input

for

a

WRITE

function,

the

buffer

address

points

to

a

buffer

that

contains

the

record

to

be

written.

The

buffer

length

parameter

specifies

the

length

of

the

data

to

be

written

from

the

buffer.

The

caller

must

provide

the

buffer

address

and

length.

For

the

WRITE

function,

if

data

is

truncated

during

the

write

operation,

the

I/O

routine

returns

the

length

of

the

data

that

was

actually

written

in

the

buffer

length

parameter.

A

return

code

of

16

is

also

returned.

On

output

for

a

READ

or

READX

function,

the

buffer

address

points

to

a

buffer

that

contains

the

record

that

was

read.

The

buffer

length

parameter

specifies

the

length

of

the

data

being

returned

in

the

buffer.

For

a

READ

or

READX

function,

the

I/O

routine

obtains

the

buffer

needed

to

store

the

record.

The

caller

must

copy

the

data

that

is

returned

into

its

own

storage

before

calling

the

I/O

routine

again

for

another

request.

The

buffers

are

reused

for

subsequent

I/O

requests.

On

output

for

an

OPENR,

OPENW,

or

OPENX

function,

the

buffer

address

points

to

the

data

set

information

block,

which

is

an

area

in

storage

that

contains

information

about

the

file.

“Data

Set

Information

Block

(DSIB)”

on

page

457

describes

the

format

of

this

area.

REXX/VSE

provides

a

mapping

macro,

ARXDSIB,

that

you

can

use

to

map

the

buffer

area

returned

for

an

open

request.

For

an

OPENR,

OPENW,

or

OPENX

function,

all

of

the

information

in

the

data

set

information

block

does

not

have

to

be

returned.

The

buffer

length

must

be

large

enough

for

all

of

the

information

being

returned

about

the

file

or

unpredictable

results

can

occur.

The

data

set

information

block

buffer

must

be

large

enough

to

contain

the

flags

field

and

any

fields

that

have

been

set,

as

the

flags

field

indicates

(see

page

457).

REXX

does

not

check

the

content

of

the

buffer

for

valid

or

printable

characters.

Any

hexadecimal

characters

may

be

passed.

The

buffers

that

the

I/O

routine

returns

are

reserved

for

use

by

the

environment

block

(ENVBLOCK)

under

which

the

original

I/O

request

was

made.

The

buffer

should

not

be

used

again

until:

v

A

subsequent

I/O

request

is

made

for

the

same

environment

block,

or

v

The

I/O

routine

is

called

to

terminate

the

environment

represented

by

the

environment

block

(TERM

function).

In

this

case,

the

I/O

buffers

are

freed

and

the

storage

is

made

available

to

REXX/VSE.

Any

replaceable

I/O

routine

must

conform

to

this

procedure

to

ensure

that

the

program

that

is

currently

running

accesses

valid

data.

If

you

provide

your

own

replaceable

I/O

routines,

your

routine

must

support

all

of

the

functions

that

the

supplied

I/O

routine

performs.

All

open

requests

must

open

the

specified

file.

However,

for

an

open

request,

your

replaceable

I/O

routine

need

only

fill

in

the

data

set

information

block

fields

for

the

logical

record

length

(LRECL)

and

its

corresponding

flag

bit.

These

fields

are

DSIB_LRECL

and

DSIB_LRECL_FLAG.

The

language

processor

needs

these

two

fields

to

determine

the

line

length

being

used

for

its

write

operations.

The

language

processor

formats

all

of

its

output

lines

to

the

width

the

LRECL

field

specifies.

If

your

routine

specifies

a

LRECL

(DSIB_LRECL

field)

of

0,

the

language

processor

formats

its

output

using

a

width

of

80

characters,

the

default.

When

the

I/O

routine

is

called

with

the

TERM

function,

all

buffers

are

freed.

I/O

Routine

Chapter

21.

Replaceable

Routines

and

Exits

455

Line

Number

Parameter

Parameter

5,

the

line

number

parameter,

is

an

input

parameter

for

the

WRITE

function

and

an

output

parameter

for

the

READ

and

READX

functions.

(It

is

not

used

for

input

for

the

CLOSE,

INIT,

OPENR,

OPENW,

OPENX,

READ,

READX,

or

TERM

functions.

It

is

not

used

for

output

for

CLOSE,

INIT,

OPENR,

OPENX,

OPENW,

or

TERM.)

If

you

are

writing

to

a

file

that

is

opened

for

update,

you

can

use

this

parameter

to

verify

the

record

being

updated.

The

parameter

must

be

either:

v

A

nonzero

number

that

is

checked

against

the

record

number

of

the

last

record

that

was

read

for

update.

This

ensures

that

the

correct

record

is

updated.

If

the

record

numbers

are

identical,

the

record

is

updated.

If

not,

the

record

is

not

written

and

a

return

code

of

20

is

returned.

v

0

--

No

record

verification

is

done.

The

last

record

that

was

read

is

unconditionally

updated.

If

you

are

writing

to

a

file

that

is

opened

for

output,

the

line

number

parameter

is

ignored.

On

output

for

the

READ

or

READX

functions,

the

parameter

returns

the

absolute

record

number

of

the

last

logical

record

that

was

read.

I/O

Control

Block

You

can

use

the

I/O

control

block

to

identify

the

file

you

want

to

read

or

to

which

you

want

to

write.

You

can

use

this

control

block

only

in

the

I/O

replaceable

routine

(ARXINOUT).

A

mapping

macro

for

the

I/O

control

block,

ARXIOPTS,

is

in

PRD1.BASE.

The

following

table

shows

the

I/O

control

block.

Note:

Each

field

name

in

the

table

must

include

the

prefix

IOPTS_.

Table

74.

I/O

Control

Block

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

0

8

ID

An

8-character

string

that

identifies

the

information

block.

It

contains

the

characters

ARXIOPTS.

8

2

LENGTH

Length

of

the

control

block.

10

2

LIB_OPTS

Library

option

flags.

Only

the

first

4

bits

are

used.

The

flag

bits

are:

v

LIB_DATA

-

SYSIPT

data

v

LIB_NODATA

-

no

SYSIPT

data

v

LIB_FORMAT_F

-

fixed

record

format

v

LIB_FORMAT_S

-

string

record

format

12

4

DTF_BLKSIZE

The

block

size

of

the

file.

16

4

DTF_RECSIZE

The

record

size

of

the

file.

24

8

DTF_RECFORM

The

record

format

of

the

file.

This

is

one

of

the

following:

v

’FIXUNB

’

-

fixed

unblocked

v

’FIXBLK

’

-

fixed

blocked

v

’VARUNB

’

-

variable

unblocked

v

’VARBLK

’

-

variable

blocked.

32

2

DTF_FLAGS

SAM

options

flag.

Only

the

first

4

bits

are

used.

The

flag

bits

are:

v

DTF_BLKSIZE_FLAG

block

size

passed

v

DTF_RECSIZE_FLAG

record

size

passed

v

DTF_RECFORM_FLAG

record

format

passed

v

DTF_CC_FLAG

carriage

control

v

DTF_ASA_FLAG

carriage

control

v

DTF_MCC_FLAG

carriage

control

34

2

(reserved)

none

I/O

Routine

456

REXX/VSE

Reference

Table

74.

I/O

Control

Block

(continued)

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

36

4

LIB_BYTES

Part

length

if

library

members

in

string

record

format

are

to

be

read

or

written

in

smaller

pieces.

Data

Set

Information

Block

(DSIB)

The

data

set

information

block

is

a

control

block

that

contains

information

about

a

file

that

the

I/O

replaceable

routine

opens.

For

an

OPENR,

OPENW,

or

OPENX

function

request,

the

I/O

routine

returns

the

address

of

the

data

set

information

block

in

parameter

2.

REXX/VSE

provides

a

mapping

macro

ARXDSIB

you

can

use

to

map

the

block.

The

mapping

macro

is

in

PRD1.BASE.

Table

75

shows

the

format

of

the

control

block.

Note:

Each

field

name

in

the

following

table

must

include

the

prefix

DSIB_.

Table

75.

Format

of

the

Data

Set

Information

Block

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

0

8

ID

An

8-character

string

that

identifies

the

information

block.

It

contains

the

characters

ARXDSIB.

8

2

LENGTH

The

length

of

the

data

set

information

block.

10

2

Reserved.

12

8

DDNAME

An

8-character

string

that

specifies

the

name

of

the

file

for

which

REXX/VSE

returns

information.

This

is

the

file

that

the

I/O

routine

opened.

This

is

blank

for

a

member

of

a

sublibrary.

20

4

FLAGS

A

fullword

of

bits

that

are

used

as

flags.

Only

the

first

8

bits

are

used.

The

remaining

bits

are

reserved.

The

flag

bits

indicate

whether

or

not

information

is

returned

in

the

fields

at

offset

+26

through

offset

+56.

Each

flag

bit

corresponds

to

one

of

the

remaining

fields

in

the

control

block.

Information

about

how

to

use

the

flag

bits

and

their

corresponding

fields

follows

the

table.

24

2

Reserved.

26

2

BLKSZ

The

block

size

(BLKSIZE)

of

the

file.

28

2

DSORG

The

organization

of

the

file:

v

’0800’

-

This

is

a

Librarian

file.

v

’4000’

-

This

is

a

SAM

file.

30

2

RECFM

The

record

format

(RECFM)

of

the

file.

v

’F

’

-

Fixed

v

’FB’

-

Fixed

blocked

v

’V

’

-

Variable

v

’VB’

-

Variable

blocked.

32

4

GET_CNT

The

total

number

of

records

read.

36

4

PUT_CNT

The

total

number

of

records

written.

40

1

IO_MODE

The

mode

in

which

the

file

was

opened.

v

’R’

-

open

for

READ

v

’X’

-

open

for

READX

v

’W’

-

open

for

WRITE

v

’L’

-

open

for

exec

load.

I/O

Routine

Chapter

21.

Replaceable

Routines

and

Exits

457

Table

75.

Format

of

the

Data

Set

Information

Block

(continued)

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

41

1

CC

Carriage

control

information.

v

’A’

-

ANSI

carriage

control

v

’M’

-

machine

carriage

control

v

’

’

-

no

carriage

control.

42

1

TRC

Reserved.

43

1

Reserved.

44

12

Reserved.

56

4

LRECL

The

logical

record

length

(LRECL)

of

the

file.

This

field

is

required.

Note:

The

LRECL

field

and

its

corresponding

flag

bit

(at

offset

+20)

are

the

last

required

fields

to

be

returned

in

the

data

set

information

block.

The

remaining

fields

are

not

required.

60

20

Reserved.

80

34

LIBRNAME

A

string

that

specifies

the

name

of

sublibrary

member

for

which

REXX/VSE

returns

information.

This

is

the

member

that

the

I/O

routine

opened.

This

is

blank

for

a

SAM

file,

SYSIPT,

or

SYSLST.

At

offset

+20

in

the

data

set

information

block,

there

is

a

fullword

of

bits

that

are

used

as

flags.

Only

the

first

eight

bits

are

used.

The

remaining

bits

are

reserved.

The

bits

indicate

whether

information

is

returned

in

each

field

in

the

control

block

starting

at

offset

+26.

A

bit

must

be

on

if

its

corresponding

field

is

returning

a

value.

If

the

bit

is

off,

its

corresponding

field

is

ignored.

The

flag

bits

are:

v

The

LRECL

flag.

This

bit

must

be

on

and

the

logical

record

length

must

be

returned

at

offset

+56.

The

logical

record

length

is

the

only

file

attribute

that

is

required.

The

remaining

attributes

starting

at

offset

+26

in

the

control

block

are

optional.

v

The

BLKSIZE

flag.

This

bit

must

be

set

on

if

you

are

returning

the

block

size

at

offset

+26.

v

The

DSORG

flag.

This

bit

must

be

set

on

if

you

are

returning

the

file

organization

at

offset

+28.

v

The

RECFM

flag.

This

bit

must

be

set

on

if

you

are

returning

the

record

format

at

offset

+30.

v

The

GET

flag.

This

bit

must

be

set

on

if

you

are

returning

the

total

number

of

records

read

at

offset

+32.

v

The

PUT

flag.

This

bit

must

be

set

on

if

you

are

returning

the

total

number

of

records

written

at

offset

+36.

v

The

MODE

flag.

This

bit

must

be

set

on

if

you

are

returning

the

mode

in

which

the

file

was

opened

at

offset

+40.

v

The

CC

flag.

This

bit

must

be

set

on

if

you

are

returning

carriage

control

information

at

offset

+41.

Return

Specifications:

For

the

I/O

routine,

the

contents

of

the

registers

on

return

are:

Registers

0-14

Same

as

on

entry

Register

15

Return

code

Return

Codes:

Table

76

on

page

459

shows

the

return

codes

for

the

I/O

routine.

The

routine

returns

the

return

code

in

register

15.

If

you

specify

the

return

code

parameter

(parameter

7),

the

I/O

routine

also

returns

the

return

code

in

the

parameter.

I/O

Routine

458

REXX/VSE

Reference

Table

76.

Return

Codes

for

the

I/O

Replaceable

Routine

Return

Code

Description

0

Processing

was

successful.

The

requested

function

completed.

For

an

OPENR,

OPENW,

or

OPENX

request,

the

file

was

successfully

opened.

The

I/O

routine

returns

the

address

of

an

area

of

storage

that

contains

information

about

the

file.

The

address

is

returned

in

the

buffer

address

parameter

(parameter

2).

You

can

use

the

ARXDSIB

mapping

macro

to

map

this

area.

4

Processing

was

successful.

For

a

READ,

READX,

or

WRITE,

the

file

was

opened.

For

an

OPENR,

OPENW,

or

OPENX,

the

file

was

already

open

in

the

requested

mode.

The

I/O

routine

returns

the

address

of

an

area

of

storage

that

contains

information

about

the

file.

The

address

is

returned

in

the

buffer

address

parameter

(parameter

2).

You

can

use

the

ARXDSIB

mapping

macro

to

map

this

area.

8

This

return

code

is

used

only

for

a

READ

or

READX

function.

Processing

was

successful.

However,

no

record

was

read

because

the

end-of-file

(EOF)

was

reached.

12

An

OPENR,

OPENW,

or

OPENX

request

was

issued

and

the

file

was

already

open,

but

not

in

the

requested

mode.

The

I/O

routine

returns

the

address

of

an

area

of

storage

that

contains

information

about

the

file.

The

address

is

returned

in

the

buffer

address

parameter

(parameter

2).

You

can

use

the

ARXDSIB

mapping

macro

to

map

this

area.

16

Output

data

was

truncated

for

a

write

or

update

operation

(WRITE

function).

The

I/O

routine

returns

the

length

of

the

data

that

was

actually

written

in

parameter

3.

20

Processing

was

not

successful.

The

requested

function

is

not

performed.

One

possibility

is

that

you

did

not

specify

a

file

name.

An

error

message

that

describes

the

error

is

also

issued.

24

Processing

was

not

successful.

The

file

was

not

successfully

opened.

The

requested

function

is

not

performed.

28

Processing

was

not

successful.

A

language

processor

environment

could

not

be

located.

32

Processing

was

not

successful.

The

parameter

list

is

not

valid.

It

contains

too

few

or

too

many

parameters,

or

the

high-order

bit

of

the

last

address

is

not

1

to

indicate

the

end

of

the

parameter

list.

Host

Command

Environment

Routine

The

host

command

environment

replaceable

routine

is

called

to

process

all

host

commands

for

a

specific

host

command

environment

(see

page

25

for

the

definition

of

host

commands).

A

REXX

program

may

contain

host

commands

to

be

processed.

When

the

language

processor

processes

an

expression

that

it

does

not

recognize

as

a

keyword

instruction

or

function,

it

evaluates

the

expression

and

then

passes

the

string

to

the

active

host

command

environment.

A

specific

environment

is

in

effect

when

the

command

is

processed.

The

host

command

environment

table

(SUBCOMTB

table)

is

searched

for

the

name

of

the

active

host

command

environment.

The

corresponding

routine

specified

in

the

table

is

then

called

to

process

the

string.

For

each

valid

host

command

environment,

there

is

a

corresponding

routine

that

processes

the

command.

In

a

program,

you

can

use

the

ADDRESS

instruction

to

route

a

command

string

to

a

specific

host

command

environment

and,

therefore,

to

a

specific

host

command

environment

replaceable

routine.

The

ROUTINE

field

of

the

host

command

environment

table

specifies

the

names

of

the

routines

that

are

called

for

each

host

command

environment.

(“Host

Command

Environment

Table”

on

page

404

describes

the

table.)

You

can

provide

your

own

replaceable

routine

for

any

one

of

the

default

environments

provided.

You

can

also

define

your

own

host

command

environment

that

handles

certain

types

of

host

commands

and

you

can

provide

a

routine

that

processes

the

commands

for

that

environment.

“Host

Command

Environment

Table”

on

page

404

describes

the

table.

I/O

Routine

Chapter

21.

Replaceable

Routines

and

Exits

459

Entry

Specifications:

For

a

host

command

environment

routine,

the

contents

of

the

registers

on

entry

are

described

in

the

following.

For

more

information

about

register

0,

see

“Using

the

Environment

Block

Address”

on

page

445.

Register

0

Address

of

the

current

environment

block

Register

1

Address

of

the

parameter

list

Registers

2-12

Unpredictable

Register

13

Address

of

a

register

save

area

Register

14

Return

address

Register

15

Entry

point

address

Parameters:

Register

1

contains

the

address

of

a

parameter

list,

which

consists

of

a

list

of

addresses.

Each

address

in

the

parameter

list

points

to

a

parameter.

All

parameters

are

passed

on

the

call.

Set

the

high-order

bit

of

the

last

address

to

1

to

indicate

the

end

of

the

parameter

list.

(Table

77

describes

the

parameters

for

a

host

command

environment

replaceable

routine.)

Table

77.

Parameters

for

a

Host

Command

Environment

Routine

Parameter

Number

of

Bytes

Description

Parameter

1

8

The

name

of

the

host

command

environment

that

is

to

process

the

string.

The

name

is

left

justified,

in

uppercase,

and

padded

to

the

right

with

blanks.

Parameter

2

4

Specifies

the

address

of

the

string

to

be

processed.

REXX

does

not

check

the

contents

of

the

string

for

valid

or

printable

characters.

Any

characters

can

be

passed

to

the

routine.

REXX

obtains

and

frees

the

storage

required

to

contain

the

string.

Parameter

3

4

Specifies

the

length

of

the

string

to

be

processed.

Parameter

4

4

Specifies

the

address

of

the

user

token.

The

user

token

is

a

16-byte

field

in

the

SUBCOMTB

table

for

the

specific

host

command

environment.

“Host

Command

Environment

Table”

on

page

404

describes

the

user

token

field.

Host

Command

Environment

Routine

460

REXX/VSE

Reference

Table

77.

Parameters

for

a

Host

Command

Environment

Routine

(continued)

Parameter

Number

of

Bytes

Description

Parameter

5

4

Contains

the

return

code

of

the

host

command

that

was

processed.

This

parameter

is

used

only

on

output.

The

value

is

a

signed

binary

number.

After

the

host

command

environment

replaceable

routine

returns

the

value,

REXX

converts

it

into

a

character

representation

of

its

equivalent

decimal

number.

The

result

of

this

conversion

is

placed

into

the

REXX

special

variable

RC

and

is

available

to

the

program

that

called

the

command.

Positive

binary

numbers

are

represented

as

unsigned

decimal

numbers.

Negative

binary

numbers

are

represented

as

signed

decimal

numbers.

For

example:

v

If

the

command’s

return

code

is

X'FFFFFF3F',

the

special

variable

RC

contains

-193.

v

If

the

command’s

return

code

is

X'0000000C',

the

special

variable

RC

contains

12.

If

you

provide

your

own

host

command

environment

routines,

you

should

establish

a

standard

for

the

return

codes

that

your

routine

issues

and

the

contents

of

this

parameter.

If

a

standard

is

used,

programs

that

issue

commands

to

a

particular

host

command

environment

can

check

for

errors

in

command

processing

using

consistent

REXX

instructions.

With

the

host

command

environments

that

REXX/VSE

provides,

a

return

code

of

-3

in

the

REXX

special

variable

RC

indicates

the

environment

could

not

locate

the

host

command.

The

-3

return

code

is

a

standard

return

code

for

host

commands

that

could

not

be

processed.

If

your

routine

processes

a

command

that

is

not

valid,

it

is

recommended

that

you

return

X'FFFFFFFD'

as

the

return

code.

This

means

the

REXX

special

variable

RC

contains

-3.

Note:

If

a

host

command

processor

abnormally

terminates,

the

entire

batch

job

abends.

For

information

about

what

happened

to

your

job,

see

the

description

of

$ABEND

in

the

VSE/ESA

System

Control

Statements,

SC33-6713.

Return

Specifications:

For

a

host

command

environment

routine,

the

contents

of

the

registers

on

return

are:

Registers

0-14

Same

as

on

entry

Register

15

Return

code.

(The

return

code

is

also

contained

in

parameter

5.)

Return

Codes:

Table

78

shows

the

return

codes

for

the

host

command

environment

routine.

These

are

the

return

codes

from

the

replaceable

routine

itself,

not

from

the

command

that

the

routine

processed.

The

command’s

return

code

is

passed

back

in

parameter

5.

See

Chapter

7,

“Conditions

and

Condition

Traps”

for

information

about

ERROR

and

FAILURE

conditions

and

condition

traps.

Table

78.

Return

Codes

for

the

Host

Command

Environment

Routine

Return

Code

Description

≤-13

If

the

value

of

the

return

code

is

-13

or

less

than

-13,

the

routine

requested

turning

on

the

HOSTFAIL

flag.

This

is

a

TRACE

NEGATIVE

condition

and

a

FAILURE

condition

is

trapped

in

the

program.

-1

—

-12

If

the

value

of

the

return

code

is

from

-1

to

-12

inclusive,

the

routine

requested

turning

on

the

HOSTERR

flag.

This

is

a

TRACE

ERROR

condition

and

an

ERROR

condition

is

trapped

in

the

program.

0

No

error

condition

was

indicated

by

the

routine.

No

error

conditions

are

trapped

(for

example,

to

indicate

a

TRACE

condition).

Host

Command

Environment

Routine

Chapter

21.

Replaceable

Routines

and

Exits

461

Table

78.

Return

Codes

for

the

Host

Command

Environment

Routine

(continued)

Return

Code

Description

1

—

12

If

the

value

of

the

return

code

is

1

-

12

inclusive,

the

routine

requested

turning

on

the

HOSTERR

flag.

This

is

a

TRACE

ERROR

condition

and

an

ERROR

condition

is

trapped

in

the

program.

≥13

If

the

value

of

the

return

code

is

13

or

greater

than

13,

the

routine

requested

turning

on

the

HOSTFAIL

flag.

This

is

a

TRACE

NEGATIVE

condition

and

a

FAILURE

condition

is

trapped

in

the

program.

Data

Stack

Routine

The

data

stack

routine

is

called

to

handle

any

requests

for

data

stack

services.

The

routine

is

called

when

a

program

wants

to

perform

a

data

stack

operation

or

when

a

program

needs

to

process

data

stack-related

operations.

The

routine

is

called

for

the

following:

v

PUSH

v

PULL

v

QUEUE

v

QUEUED()

v

MAKEBUF

v

DROPBUF

v

NEWSTACK

v

DELSTACK

v

QSTACK

v

QBUF

v

QELEM.

The

name

of

the

data

stack

routine

that

REXX/VSE

supplies

is

ARXSTK.

If

you

provide

your

own

data

stack

routine,

your

routine

can

handle

all

of

the

data

stack

requests

or

your

routine

can

perform

pre-processing

and

then

call

the

routine

REXX/VSE

supplies,

ARXSTK.

If

your

routine

handles

the

data

stack

requests

without

calling

the

routine

REXX/VSE

supplies,

your

routine

must

manipulate

its

own

data

stack.

If

your

data

stack

routine

performs

pre-processing

and

then

calls

ARXSTK,

your

routine

must

pass

the

address

of

the

environment

block

for

the

language

processor

environment

to

ARXSTK.

An

application

can

call

ARXSTK

to

operate

on

the

data

stack.

The

only

requirement

is

that

a

language

processor

environment

has

been

initialized.

Parameter

1

indicates

the

type

of

function

to

be

performed

against

the

data

stack.

If

the

data

stack

routine

is

called

to

pull

an

element

off

the

data

stack

(PULL

function)

and

the

data

stack

is

empty,

a

return

code

of

4

indicates

an

empty

data

stack.

However,

you

can

use

the

PULLEXTR

function

to

bypass

the

data

stack

and

read

from

the

input

stream.

If

the

data

stack

routine

is

called

and

a

data

stack

is

not

available,

all

services

operate

as

if

the

data

stack

were

empty.

A

PUSH

or

QUEUE

will

seem

to

work,

but

the

pushed

or

queued

data

is

lost.

QSTACK

returns

a

0.

NEWSTACK

will

seem

to

work,

but

a

new

data

stack

is

not

created

and

any

subsequent

data

stack

functions

operate

as

if

the

data

stack

is

permanently

empty.

The

maximum

string

that

can

be

placed

on

the

data

stack

is

1

byte

less

than

16

megabytes.

REXX

does

not

check

the

content

of

the

string,

so

the

string

can

contain

any

hexadecimal

characters.

If

multiple

data

stacks

are

associated

with

a

single

language

processor

environment,

all

data

stack

operations

are

performed

on

the

last

data

stack

that

was

created

under

the

environment.

If

a

language

processor

environment

is

initialized

with

the

NOSTKFL

flag

off,

a

data

stack

is

always

available

to

programs

that

run

in

that

environment.

The

language

processor

environment

might

not

have

its

own

data

Host

Command

Environment

Routine

462

REXX/VSE

Reference

stack.

The

environment

might

share

the

data

stack

with

its

parent

environment

depending

on

the

setting

of

the

NEWSTKFL

flag

when

the

environment

is

initialized.

If

the

NEWSTKFL

flag

is

on,

a

new

data

stack

is

initialized

for

the

new

environment.

If

the

NEWSTKFL

flag

is

off

and

a

previous

environment

on

the

chain

of

environments

was

initialized

with

a

data

stack,

the

new

environment

shares

the

data

stack

with

the

previous

environment

on

the

chain.

“Using

the

Data

Stack”

on

page

425

describes

how

the

data

stack

is

shared

between

language

processor

environments.

The

name

of

the

data

stack

replaceable

routine

is

specified

in

the

STACKRT

field

in

the

module

name

table.

“Module

Name

Table”

on

page

401

describes

the

format

of

the

module

name

table.

Entry

Specifications:

For

the

data

stack

replaceable

routine,

the

contents

of

the

registers

on

entry

are

described

in

the

following.

You

can

specify

the

address

of

the

environment

block

in

either

register

0

or

in

the

environment

block

address

parameter

in

the

parameter

list.

For

more

information,

see

“Using

the

Environment

Block

Address”

on

page

445.

Register

0

Address

of

the

current

environment

block

Register

1

Address

of

the

parameter

list

Registers

2-12

Unpredictable

Register

13

Address

of

a

register

save

area

Register

14

Return

address

Register

15

Entry

point

address

Parameters:

Register

1

contains

the

address

of

a

parameter

list,

which

consists

of

a

list

of

addresses.

Each

address

in

the

parameter

list

points

to

a

parameter.

To

indicate

the

end

of

the

parameter

list,

set

the

high-order

bit

of

the

last

address

to

1.

For

more

information

about

passing

parameters,

see

“Parameter

Lists

for

REXX/VSE

Routines”

on

page

329.

Table

79

describes

the

parameters

for

the

data

stack

routine.

Table

79.

Parameters

for

the

Data

Stack

Routine

Parameter

Number

of

Bytes

Description

Parameter

1

8

The

function

to

be

performed.

The

function

name

is

left

justified,

in

uppercase,

and

padded

to

the

right

with

blanks.

Valid

functions

are:

PUSH

PULL

QUEUE

PULLEXTR

MAKEBUF

QUEUED

NEWSTACK

DROPBUF

QSTACK

DELSTACK

QELEM

QBUF

“Functions

Supported

for

the

Data

Stack

Routine”

on

page

464

describes

the

functions

in

more

detail.

Data

Stack

Routine

Chapter

21.

Replaceable

Routines

and

Exits

463

Table

79.

Parameters

for

the

Data

Stack

Routine

(continued)

Parameter

Number

of

Bytes

Description

Parameter

2

4

The

address

of

a

fullword

in

storage

that

points

to

a

data

stack

element,

a

parameter

string,

or

a

fullword

of

zeros.

The

use

of

this

parameter

depends

on

the

function

requested.

If

the

function

is

DROPBUF,

the

parameter

points

to

a

character

string

containing

the

number

of

the

data

stack

buffer

from

which

to

start

deleting

data

stack

elements.

If

the

function

is

a

function

that

places

an

element

on

the

data

stack

(for

example,

PUSH),

the

address

points

to

a

string

of

bytes

that

the

caller

wants

to

place

on

the

data

stack.

There

are

no

restrictions

on

the

string.

The

string

can

contain

any

combination

of

hexadecimal

characters.

For

PULL

and

PULLEXTR,

this

parameter

is

not

used

on

input.

On

output,

it

specifies

the

address

of

the

string

that

was

returned.

For

PULL,

the

string

was

pulled

from

the

data

stack.

For

PULLEXTR,

the

string

was

read

from

the

current

input

stream.

It

is

recommended

that

you

do

not

change

the

original

string

and

that

you

copy

the

original

string

into

your

own

dynamic

storage.

Also,

the

original

string

may

no

longer

be

valid

when

another

data

stack

operation

is

performed.

Parameter

3

4

The

length

of

the

string

to

which

the

address

in

parameter

2

points.

This

is

0

if

there

is

no

string

or

element.

The

maximum

length

is

16

million.

A

string

longer

than

16

million

characters

is

truncated

to

16

million

with

no

error

indication.

Parameter

4

4

A

fullword

binary

number

into

which

the

result

from

the

call

is

stored.

The

value

is

the

result

of

the

function

performed

and

is

valid

only

when

the

return

code

from

the

routine

is

0.

For

more

information

about

the

results

that

can

be

returned

in

parameter

4,

see

the

descriptions

of

the

supported

functions

that

follow

and

the

individual

descriptions

of

the

data

stack

commands

in

this

book.

Parameter

5

4

This

parameter

is

optional.

It

is

the

address

of

the

environment

block

that

represents

the

environment

in

which

you

want

the

data

stack

replaceable

routine

to

run.

If

you

specify

a

nonzero

value

for

the

environment

block

address

parameter,

the

data

stack

routine

uses

the

value

you

specify

and

ignores

register

0.

However,

the

routine

does

not

check

whether

the

address

is

valid.

Therefore,

ensure

the

address

you

specify

is

correct

or

unpredictable

results

can

occur.

For

more

information,

see

“Using

the

Environment

Block

Address”

on

page

445.

Parameter

6

4

This

parameter

is

optional.

It

is

a

field

that

the

data

stack

replaceable

routine

uses

to

return

the

return

code.

If

you

use

this

parameter,

the

data

stack

routine

returns

the

return

code

in

the

parameter

and

also

in

register

15.

Otherwise,

the

routine

uses

register

15

only.

If

the

parameter

list

is

incorrect,

the

return

code

is

returned

in

register

15

only.

“″Return

Codes″”

on

page

465

describes

the

return

codes.

Functions

Supported

for

the

Data

Stack

Routine

Parameter

1

contains

the

name

of

the

function

that

the

data

stack

routine

is

to

perform.

The

functions

operate

on

the

currently

active

data

stack.

Valid

functions

are:

PUSH

Adds

an

element

to

the

top

of

the

data

stack.

PULL

Retrieves

an

element

off

the

top

of

the

data

stack.

PULLEXTR

Bypasses

the

data

stack

and

reads

a

string

from

the

current

input

stream.

ASSGN(STDIN)

returns

the

name

of

the

current

input

stream.

Data

Stack

Routine

464

REXX/VSE

Reference

PULLEXTR

is

useful

if

the

data

stack

is

empty

or

you

want

to

bypass

the

data

stack

entirely.

For

example,

suppose

you

use

the

PULL

function

and

the

data

stack

routine

returns

with

a

return

code

of

4,

which

indicates

that

the

data

stack

is

empty.

You

can

then

use

the

PULLEXTR

function

to

read

a

string

from

the

input

stream.

(For

more

information,

see

PARSE

EXTERNAL

on

page

47.)

QUEUE

Adds

an

element

at

the

logical

bottom

of

the

data

stack.

If

there

is

a

buffer

on

the

data

stack,

the

element

is

placed

immediately

above

the

buffer.

QUEUED

Returns

the

number

of

elements

on

the

data

stack,

not

including

buffers.

MAKEBUF

Places

a

buffer

on

the

top

of

the

data

stack.

The

return

code

from

the

data

stack

routine

is

the

number

of

the

new

buffer.

The

data

stack

initially

contains

one

buffer

(buffer

0),

but

you

can

use

MAKEBUF

to

create

additional

buffers

on

the

data

stack.

The

first

time

MAKEBUF

is

issued

for

a

data

stack,

the

value

1

is

returned.

DROPBUF

n

Removes

all

elements

from

the

data

stack

starting

from

the

nth

buffer.

All

elements

that

are

removed

are

lost.

If

you

do

not

specify

n,

the

last

buffer

that

was

created

and

all

subsequently

added

elements

are

deleted.

For

example,

if

MAKEBUF

is

issued

six

times

(that

is,

the

last

return

code

from

the

MAKEBUF

function

is

6),

and

DROPBUF

2

is

issued,

five

buffers

are

deleted.

These

are

buffers

2,

3,

4,

5,

and

6.

DROPBUF

0

removes

everything

from

the

currently

active

data

stack.

NEWSTACK

Creates

a

new

data

stack.

The

previously

active

data

stack

cannot

be

accessed

until

a

DELSTACK

is

issued.

DELSTACK

Deletes

the

currently

active

data

stack.

All

elements

on

the

data

stack

are

lost.

If

the

active

data

stack

is

the

primary

data

stack

(that

is,

only

one

data

stack

exists

and

a

NEWSTACK

was

not

issued),

all

elements

on

the

data

stack

are

deleted,

but

the

data

stack

is

still

operational.

QSTACK

Returns

the

number

of

data

stacks

that

are

available

to

the

running

REXX

program.

QBUF

Returns

the

number

of

buffers

on

the

active

data

stack.

If

the

data

stack

contains

no

buffers,

0

is

returned.

QELEM

Returns

the

number

of

elements

from

the

top

of

the

data

stack

to

the

next

buffer.

If

QBUF

=

0,

then

QELEM

=

0.

Return

Specifications:

For

the

data

stack

routine,

the

contents

of

the

registers

on

return

are:

Registers

0-14

Same

as

on

entry

Register

15

Return

code

Return

Codes:

Table

80

on

page

466

shows

the

return

codes

for

the

data

stack

routine.

These

are

the

return

codes

from

the

routine

itself.

They

are

not

the

return

codes

from

any

of

the

REXX/VSE

commands

that

are

issued,

such

as

NEWSTACK,

DELSTACK,

or

QBUF.

The

command’s

return

code

is

placed

into

the

REXX

special

variable

RC,

which

the

program

can

retrieve.

Data

Stack

Routine

Chapter

21.

Replaceable

Routines

and

Exits

465

The

data

stack

routine

returns

the

return

code

in

register

15.

If

you

specify

the

return

code

parameter

(parameter

6),

the

routine

also

returns

the

return

code

in

the

parameter.

Table

80.

Return

Codes

for

the

Data

Stack

Replaceable

Routine

Return

Code

Description

0

Processing

was

successful.

The

requested

function

completed.

4

The

data

stack

is

empty.

A

return

code

of

4

is

only

for

the

PULL

function.

20

Processing

was

not

successful.

An

error

condition

occurred.

The

requested

function

is

not

performed.

You

may

have

specified

a

function

name

that

is

incorrect.

An

error

message

describing

the

error

may

be

issued.

28

Processing

was

not

successful.

A

language

processor

environment

could

not

be

located.

32

Processing

was

not

successful.

The

parameter

list

is

incorrect.

It

contains

too

few

or

too

many

parameters,

or

the

high-order

bit

of

the

last

address

is

not

1

to

indicate

the

end

of

the

parameter

list.

Storage

Management

Routine

REXX

storage

routines

handle

storage

and

have

pools

of

storage

available

to

satisfy

storage

requests

for

REXX

processing.

If

the

pools

of

storage

available

to

the

REXX

storage

routines

are

depleted,

the

routines

then

call

the

storage

management

routine

to

request

a

storage

pool.

A

storage

pool

is

contiguous

storage

that

can

be

used

by

the

REXX

storage

routines

to

satisfy

storage

requests

for

REXX

processing.

You

can

provide

your

own

storage

management

routine

that

interfaces

with

the

REXX

storage

routines.

If

you

provide

your

own

storage

management

routine,

when

the

pools

of

storage

are

depleted,

the

REXX

storage

routines

call

your

storage

management

routine

for

a

storage

pool.

If

you

do

not

provide

your

own

storage

management

routine,

GETVIS

and

FREEVIS

handle

storage

pool

requests.

The

storage

that

GETVIS

and

FREEVIS

obtain

and

free

is

accessible

in

only

a

single

partition.

No

storage

is

shared

between

partitions.

Providing

your

own

storage

management

routine

gives

you

an

alternative

to

this.

The

storage

management

routine

is

called

to

obtain

or

free

a

storage

pool

for

REXX

processing.

The

routine

supplies

a

storage

pool

that

the

REXX

storage

routines

manage.

The

storage

management

routine

is

called

when:

v

REXX

processing

requests

storage

and

a

sufficient

amount

of

storage

is

not

available

in

the

pools

of

storage

the

REXX

storage

routines

use

v

A

storage

pool

needs

to

be

freed.

A

storage

pool

may

need

to

be

freed

when

a

language

processor

environment

is

terminated

or

when

the

REXX

storage

routines

determine

that

a

particular

pool

of

storage

can

be

freed.

Specify

the

name

of

the

storage

management

routine

in

the

GETFREER

field

in

the

module

name

table.

“Module

Name

Table”

on

page

401

describes

the

format

of

the

module

name

table.

Note

that

an

application

may

replace

this

routine.

Entry

Specifications:

The

following

describes

the

contents

of

the

registers

on

entry

for

the

storage

management

replaceable

routine.

For

more

information

about

register

0,

see

“Using

the

Environment

Block

Address”

on

page

445.

Register

0

Address

of

the

current

environment

block

Register

1

Address

of

the

parameter

list

Registers

2-12

Unpredictable

Data

Stack

Routine

466

REXX/VSE

Reference

Register

13

Address

of

a

register

save

area

Register

14

Return

address

Register

15

Entry

point

address

Parameters:

Register

1

contains

the

address

of

a

parameter

list,

which

consists

of

a

list

of

addresses.

Each

address

in

the

parameter

list

points

to

a

parameter.

All

parameters

are

passed

on

the

call.

Set

the

high-order

bit

of

the

last

address

to

1

to

indicate

the

end

of

the

parameter

list.

Table

81

describes

the

parameters

for

the

storage

management

routine.

Table

81.

Parameters

for

the

Storage

Management

Replaceable

Routine

Parameter

Number

of

Bytes

Description

Parameter

1

8

The

function

to

be

performed.

The

name

is

left

justified,

in

uppercase,

and

padded

to

the

right

with

blanks.

The

following

functions

are

valid:

GET

Obtain

a

storage

pool

above

16

megabytes

in

virtual

storage

GETLOW

Obtain

a

storage

pool

below

16

megabytes

in

virtual

storage

FREE

Free

a

storage

pool

Parameter

2

4

Specifies

the

address

of

a

storage

pool.

This

parameter

is

required

as

an

input

parameter

for

the

FREE

function.

It

specifies

the

address

of

the

storage

pool

the

routine

should

free.

This

parameter

is

used

as

an

output

parameter

for

the

GET

and

GETLOW

functions.

The

parameter

specifies

the

address

of

the

storage

pool

the

routine

obtained.

Parameter

3

4

Specifies

the

size

of

the

storage

pool,

in

bytes,

to

be

freed

or

that

was

obtained.

On

input

for

the

FREE

function,

this

specifies

the

size

of

the

storage

pool

to

free.

This

is

the

size

of

the

storage

pool

to

which

parameter

2

points.

All

requests

for

the

FREE

function

are

for

a

single

storage

pool

that

GET

or

GETLOW

previously

obtained.

On

output

for

the

GET

and

GETLOW

functions,

the

parameter

specifies

the

size

of

the

storage

pool

the

routine

obtained.

This

size

must

be

at

least

the

size

that

was

requested

in

parameter

4.

The

REXX/VSE

storage

routines

use

the

size

returned

in

parameter

3.

Parameter

4

4

Specifies

in

bytes

the

size

of

the

storage

pool

to

obtain.

This

parameter

is

an

input

parameter

for

GET

and

GETLOW.

It

specifies

the

size

of

the

storage

pool

that

is

being

requested.

The

size

of

the

storage

pool

that

is

actually

obtained

is

returned

in

parameter

3.

This

parameter

is

not

used

for

the

FREE

function.

Parameter

5

4

This

field

is

reserved.

Return

Specifications:

For

the

storage

management

replaceable

routine,

the

contents

of

the

registers

on

return

are:

Registers

0-14

Same

as

on

entry

Register

15

Return

code

Storage

Management

Routine

Chapter

21.

Replaceable

Routines

and

Exits

467

Return

Codes:

Table

82

shows

the

return

codes

for

the

storage

management

routine.

Table

82.

Return

Codes

for

the

Storage

Management

Replaceable

Routine

Return

Code

Description

0

Processing

was

successful.

The

requested

function

completed.

20

Processing

was

not

successful.

An

error

condition

occurred.

Storage

was

not

obtained

or

freed.

User

ID

Routine

The

user

ID

routine

returns

the

same

value

as

the

USERID

built-in

function.

REXX/VSE

calls

the

user

ID

replaceable

routine

whenever

the

USERID

built-in

function

is

issued

in

a

language

processor

environment.

The

name

of

the

user

ID

routine

REXX/VSE

supplies

is

ARXUID.

The

name

of

the

user

ID

replaceable

routine

is

specified

in

the

IDROUT

field

in

the

module

name

table.

“Module

Name

Table”

on

page

401

describes

the

format

of

the

module

name

table.

Entry

Specifications:

For

the

user

ID

replaceable

routine,

the

contents

of

the

registers

on

entry

are

described

below.

The

address

of

the

environment

block

can

be

specified

in

either

register

0

or

in

the

environment

block

address

parameter

in

the

parameter

list.

For

more

information,

see

“Using

the

Environment

Block

Address”

on

page

445.

Register

0

Address

of

the

current

environment

block

Register

1

Address

of

the

parameter

list

Registers

2-12

Unpredictable

Register

13

Address

of

a

register

save

area

Register

14

Return

address

Register

15

Entry

point

address

Parameters:

Register

1

contains

the

address

of

a

parameter

list,

which

consists

of

a

list

of

addresses.

Each

address

in

the

parameter

list

points

to

a

parameter.

Set

the

high-order

bit

of

the

last

address

to

1

to

indicate

the

end

of

the

parameter

list.

For

more

information

about

passing

parameters,

see

“Parameter

Lists

for

REXX/VSE

Routines”

on

page

329.

Table

83

describes

the

parameters

for

the

user

ID

routine.

Table

83.

Parameters

for

the

User

ID

Replaceable

Routine

Parameter

Number

of

Bytes

Description

Parameter

1

8

The

function

to

be

performed.

The

function

name

is

left

justified,

in

uppercase,

and

padded

to

the

right

with

blanks.

The

only

valid

function

is

USERID.

This

must

be

in

uppercase,

left

justified,

and

padded

to

the

right

with

blanks.

“Function

Supported

for

the

User

ID

Routine”

on

page

469

describes

function

in

detail.

Parameter

2

4

An

address

of

storage

into

which

the

routine

places

the

user

ID.

On

output,

the

area

that

this

address

points

to

contains

a

character

representation

of

the

user

ID.

Storage

Management

Routine

468

REXX/VSE

Reference

Table

83.

Parameters

for

the

User

ID

Replaceable

Routine

(continued)

Parameter

Number

of

Bytes

Description

Parameter

3

4

The

length

of

storage

to

which

the

address

in

parameter

2

points.

On

input,

this

value

is

the

maximum

length

of

the

area

that

is

available

to

contain

the

ID.

The

length

supplied

is

160

bytes.

The

routine

must

change

this

parameter

and

return

the

actual

length

of

the

character

string

it

returns.

If

the

routine

returns

a

0,

the

USERID

built-in

function

returns

a

null

value.

If

the

routine

copies

more

characters

into

the

storage

area

than

the

storage

provided,

REXX

may

abend

and

any

results

are

unpredictable.

Parameter

4

4

This

parameter

is

optional.

It

is

the

address

of

the

environment

block

that

represents

the

environment

in

which

you

want

the

user

ID

replaceable

routine

to

run.

If

you

specify

a

nonzero

value,

the

user

ID

routine

uses

the

value

you

specify

and

ignores

register

0.

However,

the

routine

does

not

check

whether

the

address

is

valid.

Therefore,

ensure

the

address

you

specify

is

correct

or

unpredictable

results

can

occur.

For

more

information,

see

“Using

the

Environment

Block

Address”

on

page

445.

Parameter

5

4

This

parameter

is

optional.

It

is

a

field

the

user

ID

replaceable

routine

uses

to

return

the

return

code.

If

you

use

this

parameter,

the

user

ID

routine

returns

the

return

code

in

the

parameter

and

also

in

register

15.

Otherwise,

the

routine

uses

only

register

15.

If

the

parameter

list

is

incorrect,

the

return

code

is

returned

only

in

register

15.

“″Return

Codes″”

describes

the

return

codes.

Function

Supported

for

the

User

ID

Routine

Specify

the

function

the

user

ID

routine

is

to

perform

in

parameter

1.

The

only

valid

function

is

USERID.

USERID

Returns

the

same

value

that

the

USERID

built-in

function

would

return.

The

value

returned

can

be:

1.

the

user

ID

from

the

last

SETUID

command

2.

the

user

ID

of

the

calling

REXX

program,

if

one

REXX

program

calls

another

3.

the

user

ID

under

which

the

job

is

running

4.

the

job

name.

Return

Specifications:

For

the

user

ID

replaceable

routine,

the

contents

of

the

registers

on

return

are:

Registers

0-14

Same

as

on

entry

Register

15

Return

code

Return

Codes:

Table

84

shows

the

return

codes

for

the

user

ID

routine.

The

routine

returns

the

return

code

in

register

15.

If

you

specify

the

return

code

parameter

(parameter

5),

the

user

ID

routine

also

returns

the

return

code

in

the

parameter.

Table

84.

Return

Codes

for

the

User

ID

Replaceable

Routine

Return

Code

Description

0

Processing

was

successful.

The

user

ID

was

returned,

or

a

null

character

string

was

returned.

20

Processing

was

not

successful.

Either

parameter

1

(function)

was

not

valid

or

parameter

3

(length)

was

less

than

or

equal

to

0.

The

user

ID

was

not

obtained.

User

ID

Routine

Chapter

21.

Replaceable

Routines

and

Exits

469

Table

84.

Return

Codes

for

the

User

ID

Replaceable

Routine

(continued)

Return

Code

Description

28

Processing

was

not

successful.

The

language

processor

environment

could

not

be

located.

32

Processing

was

not

successful.

The

parameter

list

is

incorrect.

It

contains

too

few

or

too

many

parameters,

or

the

high-order

bit

of

the

last

address

is

not

1

to

indicate

the

end

of

the

parameter

list.

Message

Identifier

Routine

The

message

identifier

replaceable

routine

is

called

to

determine

if

the

message

identifier

(message

ID)

is

to

accompany

an

error

message.

The

name

of

the

message

identifier

routine

that

REXX/VSE

supplies

is

ARXMSGID.

Note:

To

permit

FORTRAN

programs

to

call

ARXMSGID,

REXX/VSE

provides

an

alternate

entry

point

for

the

ARXMSGID

routine.

The

alternate

entry

point

name

is

ARXMID.

The

routine

is

called

whenever

a

message

is

to

be

written

when

a

REXX

program

or

REXX

routine

(for

example,

ARXEXCOM

or

ARXIC)

is

running.

The

name

of

the

message

identifier

replaceable

routine

is

specified

in

the

MSGIDRT

field

in

the

module

name

table.

“Module

Name

Table”

on

page

401

describes

the

format

of

the

module

name

table.

Entry

Specifications:

The

following

describes

the

contents

of

the

registers

on

entry

for

the

message

identifier

routine.

For

more

information

about

register

0,

see

“Using

the

Environment

Block

Address”

on

page

445.

Register

0

Address

of

the

current

environment

block

Registers

1-12

Unpredictable

Register

13

Address

of

a

register

save

area

Register

14

Return

address

Register

15

Entry

point

address

Parameters:

There

is

no

parameter

list

for

the

message

identifier

routine.

Return

codes

are

used

to

return

information

to

the

caller.

Return

Specifications:

For

the

message

identifier

replaceable

routine,

the

contents

of

the

registers

on

return

are:

Registers

0-14

Same

as

on

entry

Register

15

Return

code

Return

Codes:

Table

85

shows

the

return

codes

for

the

message

identifier

routine.

Table

85.

Return

Codes

for

the

Message

Identifier

Replaceable

Routine

Return

Code

Description

0

Include

the

message

identifier

(message

ID)

with

the

message.

Nonzero

Do

not

include

the

message

identifier

(message

ID)

with

the

message.

User

ID

Routine

470

REXX/VSE

Reference

REXX

Exit

Routines

You

can

use

exit

routines

to

customize

REXX

processing.

Generally,

you

use

exit

routines

to

customize

a

particular

command

or

function

on

a

system-wide

basis.

You

use

the

REXX

exits

to

customize

different

aspects

of

REXX

processing

on

a

language

processor

environment

basis.

This

chapter

describes

the

following

types

of

exits:

v

Exits

for

initialization

and

termination

(ARXINITX,

ARXITMV,

and

ARXTERMX)

v

The

SAA-defined

halt

exit

(with

Halt

Test

and

Halt

Clear

functions)

v

Installation-supplied

exits

(for

exec

processing,

exec

initialization,

and

exec

termination).

Some

exits

receive

parameters

on

entry,

and

others

receive

no

parameters.

Some

of

the

REXX

exits,

such

as

the

exits

for

initialization

and

termination,

have

fixed

names.

Others,

such

as

the

exec

processing,

exec

initialization,

exec

termination,

and

halt

exit,

do

not.

You

supply

the

name

yourself

and

then

define

the

name

in

the

appropriate

fields

in

the

module

name

table.

Exits

for

Language

Processor

Environment

Initialization

and

Termination

The

supplied

exits

are

default

exits.

There

are

three

exits

you

can

use

to

customize

the

initialization

and

termination

of

language

processor

environments.

The

names

of

these

exits

are

fixed.

If

you

do

not

wish

to

use

the

default

exits,

you

can

provide

your

own

exits.

If

you

provide

one

or

more

exits,

the

exit

is

called

whenever

the

ARXINIT

and

ARXTERM

routines

are

called.

This

occurs

whenever

a

user

explicitly

calls

ARXINIT

and

ARXTERM

or

when

the

system

automatically

calls

the

routines

to

initialize

and

terminate

a

language

processor

environment.

See

Chapter

20,

“Initialization

and

Termination

Routines,”

on

page

431

for

a

description

of

ARXINIT

and

ARXTERM

and

their

parameters.

ARXINITX

This

is

the

pre-environment

initialization

exit

routine.

You

can

use

ARXINITX

to:

v

Prevent

the

initialization

of

a

language

processor

environment

v

Change

parameters

for

initializing

a

language

processor

environment

v

Perform

special

pre-environment

processing.

By

default,

ARXINIT

sets

a

return

code

of

0

and

returns.

ARXINITX

performs

exit

processing

before

a

new

language

processor

environment

is

initialized.

ARXINIT

calls

ARXINITX.

ARXINITX

receives

control

before

an

environment

is

initialized

and

before

ARXINIT

evaluates

any

parameters.

ARXINITX

receives

the

same

parameters

that

ARXINIT

receives.

ARXINIT

uses

register

0

to

locate

the

previous

environment

block,

reentrant

or

non-reentrant.

Therefore,

changing

register

0

controls

how

ARXINIT

locates

the

previous

environment

block.

If

you

change

register

0

and

do

not

restore

it,

REXX/VSE

uses

the

new

value

to

locate

the

previous

environment

block.

The

following

shows

the

contents

of

the

registers

on

entry

for

the

ARXINITX

exit.

Register

0

Same

as

on

entry

to

ARXINIT

initialization

routine

(address

of

environment

block)

Register

1

Address

of

the

parameter

list

passed

to

ARXINIT

Registers

2–12

Unpredictable

Register

13

Address

of

register

save

area

Register

14

Return

address

Register

15

Entry

point

address

Exit

Routines

Chapter

21.

Replaceable

Routines

and

Exits

471

The

following

table

shows

the

parameters

for

ARXINITX.

Table

86.

Parameters

for

ARXINITX

Parameter

Number

of

Bytes

Description

Parameter

1

8

This

parameter

specifies

the

function

to

be

performed:

INITENVB

Initializes

a

new

environment.

FINDENVB

Obtains

the

address

of

the

environment

block

for

the

current

non-reentrant

environment.

FINDENVB

returns

the

address

of

the

environment

block

in

register

0

and

in

parameter

6.

It

does

not

initialize

a

new

environment.

Parameter

2

8

The

name

of

the

parameters

module,

which

contains

the

values

for

initializing

the

new

environment.

On

the

call

to

the

ARXINIT

initialization

routine,

the

caller

may

have

passed

a

blank

in

this

field.

Therefore,

ARXINIT

assumes

that

all

the

fields

in

the

parameters

module

are

null.

ARXINIT

provides

two

ways

in

which

you

can

pass

parameter

values;

the

parameters

module

and

the

address

of

an

in-storage

parameter

list,

which

is

parameter

3.

Parameter

3

4

The

address

of

an

in-storage

parameter

list,

which

is

an

area

in

storage

containing

parameters

that

are

equivalent

to

the

parameters

in

the

parameters

module.

The

format

of

the

in-storage

list

is

identical

to

the

format

of

the

parameters

module.

This

parameter

may

be

0.

If

the

address

is

0,

ARXINIT

assumes

that

all

fields

in

the

in-storage

parameter

list

are

null.

Parameter

4

4

The

address

of

a

user

field.

ARXINIT

does

not

use

or

check

this

pointer

or

the

field.

You

can

use

this

field

for

your

own

processing.

Parameter

5

4

A

4-byte

field

that

is

reserved.

Parameter

6

4

Only

ARXINIT

uses

this

parameter

for

output,

and

the

exit

should

not

alter

this

parameter.

The

parameter

contains

the

address

of

the

environment

block.

If

you

use

the

FINDENVB

parameter

to

locate

an

environment,

this

parameter

contains

the

address

of

the

environment

block

for

the

current

non-reentrant

environment.

If

you

use

INITENVB

to

initialize

a

new

environment,

ARXINIT

returns

the

address

of

the

environment

block

for

the

newly

created

environment

in

this

parameter.

For

either

FINDENVB

or

INITENVB,

ARXINIT

also

returns

the

address

of

the

environment

block

in

register

0.

This

parameter

lets

higher

level

languages

obtain

the

environment

block

address

in

order

to

examine

information

in

the

environment

block.

Parameter

7

4

Only

ARXINIT

uses

this

parameter

for

output,

and

the

exit

should

not

alter

this

parameter.

In

this

field

ARXINIT

returns

a

reason

code,

which

indicates

why

the

requested

function

did

not

complete

successfully.

Parameter

8

4

This

is

an

optional

parameter

that

lets

you

specify

how

REXX

obtains

storage

in

the

language

processor

environment.

Specify

0

if

you

want

REXX/VSE

to

reserve

a

default

amount

of

storage

work

area.

If

you

want

to

pass

a

storage

work

area

to

ARXINIT,

specify

the

address

of

an

extended

parameter

list.

The

extended

parameter

list

consists

of

a

fullword

that

is

the

address

of

the

storage

work

area

and

a

fullword

that

is

the

length

of

the

work

area,

followed

by

X’FFFFFFFFFFFFFFFF’.

Exit

Routines

472

REXX/VSE

Reference

Table

86.

Parameters

for

ARXINITX

(continued)

Parameter

Number

of

Bytes

Description

Parameter

9

4

Only

ARXINIT

uses

this

parameter

for

output,

and

the

exit

should

not

alter

this

parameter.

It

is

a

4-byte

field

that

ARXINIT

uses

to

return

the

return

code.

The

following

shows

return

specifications

from

ARXINITX.

Register

0

Same

values

passed

to

the

ARXINIT

initialization

routine

Registers

1-14

Same

as

on

entry

Register

15

Return

code

The

following

table

shows

return

codes

for

ARXINITX.

Table

87.

Return

Codes

for

ARXINITX

Return

Code

Meaning

0

Exit

processing

was

successful.

REXX

processing

continues.

Nonzero

Exit

processing

was

not

successful.

REXX

processing

sets

register

15

to

20

and

terminates.

(The

program

is

not

executed.

REXX

sends

a

message

that

indicates

a

failure

in

a

system

service.)

ARXITMV

ARXIMTV

is

the

post-environment

initialization

exit

routine.

It

performs

exit

processing

after

a

language

processor

environment

is

initialized.

You

can

use

ARXITMV

to

perform

special

processing

for

a

newly

initialized

language

processor

environment.

ARXINIT

calls

ARXITMV

after

the

environment

is

initialized

and

after

the

control

blocks,

such

as

the

environment

block,

are

set

up.

By

default,

ARXITMV

does

not

prevent

the

initialization

of

a

language

processor

environment

and

does

not

perform

any

special

initialization

processing.

It

sets

a

return

code

of

0

and

returns.

ARXITMV

does

not

receive

any

parameters.

ARXITMV

has

the

same

return

codes

as

ARXINITX;

see

Table

87.

The

following

shows

entry

specifications

for

ARXITMV.

Register

0

Address

of

new

environment

block

Registers

1-12

Unpredictable

Register

13

Address

of

register

save

area

Register

14

Return

address

Register

15

Exit

entry

point

address

The

following

shows

return

specifications.

Register

0

Same

as

on

entry

Registers

1–14

Same

as

on

entry

Register

15

Return

code

Exit

Routines

Chapter

21.

Replaceable

Routines

and

Exits

473

ARXTERMX

ARXTERMX

is

the

environment

termination

exit

routine.

You

can

use

ARXTERMX

to

prevent

the

termination

of

a

language

processor

environment

or

to

perform

special

termination

processing

for

a

language

processor

environment.

By

default,

ARXTERMX

sets

a

return

code

of

0

and

returns.

ARXTERM

calls

ARXTERMX.

ARXTERMX

performs

exit

processing

before

a

language

processor

environment

is

terminated.

ARXTERMX

does

not

receive

any

parameters.

See

the

list

that

follows

for

entry

specifications.

ARXTERMX

receives

control

before

ARXTERM

terminates

the

environment.

ARXTERMX

has

the

same

return

specifications

as

ARXITMV;

see

page

473.

ARXITMV

has

the

same

return

codes

as

ARXINITX;

see

Table

87

on

page

473.

The

following

shows

entry

specifications

for

ARXTERMX.

Register

0

Address

of

terminating

environment

block

Registers

1–12

Unpredictable

Register

13

Address

of

register

save

area

Register

14

Return

address

Register

15

Exit

entry

point

address

Installing

ARXINITX,

ARXITMV,

and

ARXTERMX:

To

install

the

ARXINITX,

ARXITMV,

or

ARXTERMX

exit,

you

need

to

link-edit

the

exit

with

the

ARXINIT

initialization

routine.

You

cannot

change

the

names

of

these

default

exit

routines.

Halt

Exit

The

halt

exit

has

two

functions:

test

and

clear.

The

halt

test

function

is

called

at

each

clause

boundary.

The

halt

clear

function

is

called

when

a

halt

condition

is

raised.

The

following

describes

the

contents

of

the

registers

on

entry:

Register

0

The

address

of

the

language

processor

environment

(ENVBLOCK)

under

which

the

program

is

running

Register

1

The

address

of

a

list

that

contains

the

addresses

of

the

REXX

exit

parameters

Registers

2-12

Unpredictable

Register

13

The

address

of

a

72-byte

register

save

area

Register

14

The

return

address

Register

15

The

exit

entry

point

address.

The

halt

test

exit

parameter

list

consists

of

the

following

6

fullword

fields:

Table

88.

Parameter

List

for

Halt

Exit

Parameter

Length

Type

Description

RXIT_EXIT

4

Supplied

Exit

identifier

code,

a

unique

integer

value

in

binary

that

identifies

the

exit.

The

value

is

7.

RXIT_SUBFN

4

Supplied

Exit

function

subcode.

The

value

is

1

for

clear,

2

for

test.

Exit

Routines

474

REXX/VSE

Reference

Table

88.

Parameter

List

for

Halt

Exit

(continued)

Parameter

Length

Type

Description

RXIT_ENVB@

4

Supplied

Address

of

the

ENVBLOCK

under

which

the

REXX

program

was

running

when

this

exit

was

called.

RXIT_USER

4

Supplied

This

is

the

ENVBLOCK_USER

field

that

was

established

when

ARXINIT

created

the

environment

block.

RXIT_EXITRC

4

Output

The

exit

must

store

its

return

code

here.

RXHLT_FLAGS

4

Returned

This

parameter

is

for

halt

test

only.

For

the

test

function,

having

the

first

bit

on

raises

halt.

This

is

equivalent

to

setting

this

field

to

the

decimal

value

2147483648.

When

you

do

not

want

to

raise

a

halt

condition,

set

RC

and

RXHLT_FLAGS

to

0.

The

following

shows

return

specifications.

Register

1-14

Same

as

on

entry

Register

15

Ignored

The

halt

exit

may

return

one

of

the

three

following

values

as

a

return

code

in

RXIT_EXITRC:

Table

89.

Return

Codes

for

Halt

Exit

Return

Code

Meaning

0

Successful

handling

of

the

service.

The

parameter

has

been

updated

as

appropriate

for

the

exit.

The

bit

setting

of

the

flags

determines

the

action.

1

Exit

chooses

not

to

handle

the

service

request.

The

language

processor

should

handle

the

request

by

the

default

means.

The

continuation

processing

of

the

language

processor

is

the

same

as

would

occur

if

this

exit

had

not

been

specified.

-1

A

severe

error

occurred

while

processing

this

request.

REXX

ends

the

program

with

error

48

(Failure

in

system

service).

Any

other

value

specified

is

not

supported

and

is

treated

as

a

-1.

REXX

Exit

Data

Areas

and

Parameters

The

ARXXITDF

macro

assigns

the

correct

integer

values

to

the

symbols

identifying

the

REXX

exit

and

the

associated

function

subcodes.

To

include

it

in

an

assembler

language

program,

call

the

macro

with:

ARXXITDF

Include

symbols

for

REXX

exits

and

subcodes

The

macro

declares

the

following

symbol

and

subcodes:

*

RXHLT:

Exit

for

HALT

processing

*

RXHLT

EQU

7

Halt

processing

RXHLTCLR

EQU

1

...

Clear

HALT

indicator

RXHLTTST

EQU

2

...

Test

HALT

indicator

Exit

Routines

Chapter

21.

Replaceable

Routines

and

Exits

475

Installing

a

Halt

Exit:

The

halt

exit

routine

must

be

a

separate

phase

that

ARXINIT

loads

before

the

start

of

processing

of

a

REXX

program.

The

name

of

this

phase

is

in

the

module

name

table,

field

RXHLT.

Installation-Supplied

Exits

There

are

default

exit

routines

for

exec

initialization,

exec

termination,

and

exec

processing.

You

can

use

these

routines

or

provide

and

use

your

own

exit

routines.

To

do

so,

you

specify

the

name

you

have

chosen

in

the

appropriate

field

of

the

module

name

table.

Exec

Initialization

and

Termination

Exits

You

can

use

these

exits

to

update

and

access

REXX

variables.

ARXEXEC

or

a

compiler

runtime

processor

calls

these

exits.

The

exec

initialization

exit

gets

control

after

initialization

of

the

REXX

variable

pool

but

before

the

processing

of

the

first

clause

in

the

program.

The

exec

termination

exit

is

called

after

a

REXX

program

has

completed,

but

before

the

termination

of

the

variable

pool

for

the

program.

The

exec

initialization

and

termination

exits

do

not

have

fixed

names.

For

initialization,

specify

the

name

you

have

chosen

in

the

EXECINIT

field

in

the

module

name

table.

For

termination,

specify

the

name

you

have

chosen

in

the

EXECTERM

field

in

the

module

name

table.

You

can

do

this

by

providing

your

own

parameters

module

that

replaces

the

default

module.

Or

you

can

call

ARXINIT

to

initialize

a

language

processor

environment

and

pass

the

module

name

table

on

the

call.

The

two

exits

are

used

on

a

language

processor

environment

basis.

You

can

provide

an

exec

initialization

and

exec

termination

exit

in

any

type

of

environment.

See

“Changing

the

Default

Values

for

Initializing

an

Environment”

on

page

416

for

a

description

of

how

to

provide

your

own

parameters

module.

See

Chapter

20,

“Initialization

and

Termination

Routines,”

on

page

431

for

a

description

of

ARXINIT.

The

following

shows

entry

specifications

for

both

exits:

Register

0

Address

of

current

environment

block

Registers

1-12

Unpredictable

Register

13

Address

of

register

save

area

Register

14

Return

address

Register

15

Exit

entry

point

address

When

an

environment

is

initialized,

REXX/VSE

creates

the

environment

block

(ENVBLOCK)

that

contains

pointers

to

several

other

control

blocks.

Together,

these

control

blocks

define

all

the

characteristics

of

the

environment.

The

address

of

the

environment

block

is

passed

in

register

0

in

all

calls

to

REXX

exits

and

routines,

and

in

all

calls

to

the

REXX

compiler

runtime

processor

and

compiler

interface

routines.

You

can

read

only

information

from

the

environment

block

or

the

control

blocks

to

which

the

environment

block

points.

If

you

change

the

values,

results

are

unpredictable.

The

exec

initialization

and

termination

exits

have

the

same

return

specifications

as

ARXITMV.

See

page

473.

The

following

table

shows

return

codes.

Table

90.

Return

Codes

Return

Code

Meaning

0

Exit

processing

was

successful.

REXX

processing

continues.

Nonzero

Exit

processing

was

not

successful.

The

program

is

not

run.

REXX

issues

a

message

that

indicates

a

failure

in

a

system

service.

Exit

Routines

476

REXX/VSE

Reference

Exec

Processing

(ARXEXEC)

Exit

Routine

You

can

use

an

exec

processing

exit

to

prevent

the

running

of

a

REXX

program

or

to

perform

special

processing

before

a

REXX

program

runs.

The

ARXEXEC

routine

calls

an

exec

processing

exit.

(If

you

provide

an

exec

processing

exit,

it

is

called

whenever

the

ARXEXEC

routine

is

called

to

invoke

a

REXX

program.

You

can

explicitly

call

ARXEXEC

or

REXX/VSE

can

call

ARXEXEC

to

invoke

a

program.

REXX/VSE

always

calls

ARXEXEC

to

handle

exec

processing.

For

example,

if

you

run

a

REXX

program

using

the

EXEC

command,

the

ARXEXEC

routine

is

called

to

invoke

the

program.)

The

exec

processing

exit

gets

control

before

the

program

is

loaded,

if

the

program

was

not

pre-loaded,

and

before

ARXEXEC

evaluates

any

parameters

on

the

call.

The

exec

processing

exit

does

not

have

a

fixed

name.

Specify

the

name

of

the

exit

in

the

IRXEXECX

field

in

the

module

name

table.

You

can

do

this

by

providing

your

own

parameters

module

that

replaces

the

default

module.

Or

you

can

call

ARXINIT

to

initialize

a

language

processor

environment

and

pass

the

module

name

table

on

the

call.

The

exit

is

used

on

a

language

processor

environment

basis.

You

can

provide

an

exec

processing

exit

in

any

type

of

environment.

See

“Changing

the

Default

Values

for

Initializing

an

Environment”

on

page

416

for

a

description

of

how

to

provide

your

own

parameters

module.

See

Chapter

20,

“Initialization

and

Termination

Routines,”

on

page

431

for

a

description

of

ARXINIT.

The

following

shows

entry

specifications

for

the

exec

processing

exit.

Register

0

Address

of

the

current

environment

block

Register

1

Address

of

the

parameter

list

passed

to

ARXEXEC

Registers

2–12

Unpredictable

Register

13

Address

of

register

save

area

Register

14

Return

address

Register

15

Entry

point

address

The

following

table

shows

parameters

for

the

exec

processing

exit.

Table

91.

Parameters

for

Exec

Processing

Exit

Parameter

Number

of

Bytes

Description

Parameter

1

4

The

address

of

the

exec

block

(EXECBLK).

The

exec

block

is

a

control

block

that

describes

the

program

to

load.

It

contains

information

needed

to

process

the

program,

such

as

the

member

from

which

the

program

is

to

be

loaded

and

the

name

of

the

initial

host

command

environment

when

the

program

starts

running.

This

parameter

can

be

0

if

the

program

is

pre-loaded

and

the

address

of

the

pre-loaded

program

is

passed

in

parameter

4.

If

you

specify

both

this

parameter

and

parameter

4,

the

value

in

parameter

4

is

used

and

this

parameter

is

ignored.

Parameter

2

4

The

address

of

the

arguments

for

the

program.

The

arguments

are

arranged

as

a

vector

of

address/length

pairs

followed

by

X’FFFFFFFFFFFFFFFF’.

There

is

no

limit

to

the

number

of

arguments

passed

to

the

program.

Exit

Routines

Chapter

21.

Replaceable

Routines

and

Exits

477

Table

91.

Parameters

for

Exec

Processing

Exit

(continued)

Parameter

Number

of

Bytes

Description

Parameter

3

4

A

fullword

of

flag

bits.

Only

the

first

4

bits

are

used.

The

remaining

bits

are

reserved.

Bits

0,

1,

and

2

are

mutually

exclusive.

Bit

0

If

the

bit

is

set

on,

the

program

was

called

as

a

command,

that

is,

another

program

did

not

call

it

as

an

external

function

or

subroutine.

Bit

1

If

the

bit

is

set

on,

the

program

was

called

as

an

external

function

(a

function

call).

Bit

2

If

the

bit

is

set

on,

the

program

was

called

as

a

subroutine.

Bit

3

Set

this

bit

on

if

you

want

ARXEXEC

to

return

extended

return

codes

in

the

range

20001-20099.

If

a

syntax

error

occurs,

ARXEXEC

returns

a

value

in

the

range

20001-20099

in

the

evaluation

block,

regardless

of

the

setting

of

bit

3.

If

bit

3

is

on

and

a

syntax

error

occurs,

ARXEXEC

returns

with

a

return

code

in

the

range

20001-20099

that

matches

the

value

returned

in

the

evaluation

block.

If

bit

3

is

off

and

a

syntax

error

occurs,

ARXEXEC

returns

with

return

code

0.

Parameter

4

4

The

address

of

the

in-storage

control

block

(INSTBLK).

The

in-storage

control

block

defines

the

structure

of

a

pre-loaded

program

in

storage.

It

contains

pointers

to

each

record

in

the

program

and

the

length

of

each

record.

This

parameter

is

specified

if

the

caller

of

the

ARXEXEC

routine

has

pre-loaded

the

program.

Otherwise,

this

parameter

is

0.

Parameter

5

4

Reserved,

must

be

0.

Parameter

6

4

The

address

of

an

evaluation

block

(EVALBLOCK).

ARXEXEC

uses

the

evaluation

block

to

return

the

result

from

the

program

that

was

specified

on

either

the

RETURN

or

EXIT

instruction.

The

value

may

be

0,

if

the

program

does

not

return

a

result

or

the

caller

of

ARXEXEC

plans

to

use

the

ARXRLT

(get

result)

routine

to

get

the

result

or

the

result

is

to

be

ignored.

Parameter

7

4

The

address

of

an

8-byte

field

that

defines

a

work

area.

In

the

8-byte

field:

v

The

first

4

bytes

contain

the

address

of

the

work

area

v

The

second

4

bytes

contain

the

length

of

the

work

area.

The

work

area

is

passed

to

the

language

processor

to

use

for

running

the

program.

If

the

work

area

is

too

small,

ARXEXEC

returns

with

a

return

code

of

20

and

a

message

indicates

an

error.

The

minimum

length

required

for

the

work

area

is

X’1800’

bytes.

If

you

do

not

want

to

pass

a

work

area,

specify

an

address

of

0.

ARXEXEC

obtains

storage

for

its

work

area

or

calls

the

replaceable

storage

routine

specified

in

the

GETFREER

field

(in

the

module

name

table)

for

the

environment,

if

you

provided

a

storage

routine.

Parameter

8

4

The

address

of

a

user

field.

ARXEXEC

does

not

use

or

check

this

pointer

or

the

user

field.

You

can

use

this

field

for

your

own

processing.

If

you

do

not

want

to

use

a

user

field,

specify

an

address

of

0.

The

exec

processing

exit

has

the

same

return

specifications

as

ARXITMV.

See

page

473.

The

exec

processing

exit

has

the

same

return

codes

as

ARXINITX;

see

Table

87

on

page

473.

Exit

Routines

478

REXX/VSE

Reference

Installing

the

Exec

Processing,

Exec

Initialization,

and

Exec

Termination:

For

the

exec

initialization

exit,

specify

the

exit’s

name

in

the

EXECINIT

field

in

the

module

name

table.

For

the

exec

termination

exit,

specify

the

exit’s

name

in

the

EXECTERM

field.

For

the

exec

processing

exit,

specify

the

exit’s

name

in

the

IRXEXECX

field.

Link-edit

these

exits

as

separate

phases.

Exit

Routines

Chapter

21.

Replaceable

Routines

and

Exits

479

480

REXX/VSE

Reference

Chapter

22.

Double-Byte

Character

Set

(DBCS)

Support

A

Double-Byte

Character

Set

supports

languages

that

have

more

characters

than

can

be

represented

by

8

bits

(such

as

Korean

Hangeul

and

Japanese

kanji).

REXX

has

a

full

range

of

DBCS

functions

and

handling

techniques.

These

include:

v

String

handling

capabilities

with

DBCS

characters

v

OPTIONS

modes

that

handle

DBCS

characters

in

literal

strings,

symbols

(for

example,

variable

names

and

labels),

comments,

and

data

operations

v

A

number

of

functions

that

specifically

support

the

processing

of

DBCS

character

strings

v

Defined

DBCS

enhancements

to

current

instructions

and

functions.

Note:

The

use

of

DBCS

does

not

affect

the

meaning

of

the

built-in

functions

as

described

in

Chapter

4,

“Functions,”

on

page

61.

This

explains

how

the

characters

in

a

result

are

obtained

from

the

characters

of

the

arguments

by

such

actions

as

selecting,

concatenating,

and

padding.

The

appendix

describes

how

the

resulting

characters

are

represented

as

bytes.

This

internal

representation

is

not

usually

seen

if

the

results

are

printed.

It

may

be

seen

if

the

results

are

displayed

on

certain

terminals.

General

Description

The

following

characteristics

help

define

the

rules

used

by

DBCS

to

represent

extended

characters:

v

Each

DBCS

character

consists

of

2

bytes.

v

Each

SBCS

character

consists

of

1

byte.

v

There

are

no

DBCS

control

characters.

v

The

codes

are

within

the

ranges

defined

in

the

table,

which

shows

the

valid

DBCS

code

for

the

DBCS

blank.

You

cannot

have

a

DBCS

blank

in

a

simple

symbol,

in

the

stem

of

a

compound

variable,

or

in

a

label.

Table

92.

DBCS

Ranges

Byte

EBCDIC

1st

X'41'

to

X'FE'

2nd

X'41'

to

X'FE'

DBCS

blank

X'4040'

v

DBCS

alphanumeric

and

special

symbols

A

DBCS

contains

double-byte

representation

of

alphanumeric

and

special

symbols

corresponding

to

those

of

the

Single-Byte

Character

Set

(SBCS).

In

EBCDIC,

the

first

byte

of

a

double-byte

alphanumeric

or

special

symbol

is

X'42'

and

the

second

is

the

same

hex

code

as

the

corresponding

EBCDIC

code.

Here

are

some

examples:

X’42C1’

is

an

EBCDIC

double-byte

A

X’4281’

is

an

EBCDIC

double-byte

a

X’427D’

is

an

EBCDIC

double-byte

quote

v

No

case

translation

In

general,

there

is

no

concept

of

lowercase

and

uppercase

in

DBCS.

v

Notational

conventions

This

appendix

uses

the

following

notational

conventions:

©

Copyright

IBM

Corp.

1988,

2004

481

DBCS

character

->

.A

.B

.C

.D

SBCS

character

->

a

b

c

d

e

DBCS

blank

->

’.

’

EBCDIC

shift-out

(X’0E’)

->

<

EBCDIC

shift-in

(X’0F’)

->

>

Note:

In

EBCDIC,

the

shift-out

(SO)

and

shift-in

(SI)

characters

distinguish

DBCS

characters

from

SBCS

characters.

Enabling

DBCS

Data

Operations

and

Symbol

Use

The

OPTIONS

instruction

controls

how

REXX

regards

DBCS

data.

To

enable

DBCS

operations,

use

the

EXMODE

option.

To

enable

DBCS

symbols,

use

the

ETMODE

option

on

the

OPTIONS

instruction;

this

must

be

the

first

instruction

in

the

program.

(See

page

45

for

more

information.)

If

OPTIONS

ETMODE

is

in

effect,

the

language

processor

does

validation

to

ensure

that

SO

and

SI

are

paired

in

comments.

Otherwise,

the

contents

of

the

comment

are

not

checked.

The

comment

delimiters

(/*

and

*/)

must

be

SBCS

characters.

Symbols

and

Strings

In

DBCS,

there

are

DBCS-only

symbols

and

strings

and

mixed

symbols

and

strings.

DBCS-Only

Symbols

and

Mixed

SBCS/DBCS

Symbols

A

DBCS-only

symbol

consists

of

only

non-blank

DBCS

codes

as

indicated

in

Table

92

on

page

481.

A

mixed

DBCS

symbol

is

formed

by

a

concatenation

of

SBCS

symbols,

DBCS-only

symbols,

and

other

mixed

DBCS

symbols.

In

EBCDIC,

the

SO

and

SI

bracket

the

DBCS

symbols

and

distinguish

them

from

the

SBCS

symbols.

The

default

value

of

a

DBCS

symbol

is

the

symbol

itself,

with

SBCS

characters

translated

to

uppercase.

A

constant

symbol

must

begin

with

an

SBCS

digit

(0–9)

or

an

SBCS

period.

The

delimiter

(period)

in

a

compound

symbol

must

be

an

SBCS

character.

DBCS-Only

Strings

and

Mixed

SBCS/DBCS

Strings

A

DBCS-only

string

consists

of

only

DBCS

characters.

A

mixed

SBCS/DBCS

string

is

formed

by

a

combination

of

SBCS

and

DBCS

characters.

In

EBCDIC,

the

SO

and

SI

bracket

the

DBCS

data

and

distinguish

it

from

the

SBCS

data.

Because

the

SO

and

SI

are

needed

only

in

the

mixed

strings,

they

are

not

associated

with

the

DBCS-only

strings.

In

EBCDIC:

DBCS-only

string

->

.A.B.C

Mixed

string

->

ab<.A.B>

Mixed

string

->

<.A.B>

Mixed

string

->

ab<.C.D>ef

Validation

The

user

must

follow

certain

rules

and

conditions

when

using

DBCS.

DBCS

Symbol

Validation

DBCS

symbols

are

valid

only

if

you

comply

with

the

following

rules:

v

The

DBCS

portion

of

the

symbol

must

be

an

even

number

of

bytes

in

length

v

DBCS

alphanumeric

and

special

symbols

are

regarded

as

different

to

their

corresponding

SBCS

characters.

Only

the

SBCS

characters

are

recognized

by

REXX

in

numbers,

instruction

keywords,

or

operators

v

DBCS

characters

cannot

be

used

as

special

characters

in

REXX

v

SO

and

SI

cannot

be

contiguous

DBCS

Support

482

REXX/VSE

Reference

v

Nesting

of

SO

or

SI

is

not

permitted

v

SO

and

SI

must

be

paired

v

No

part

of

a

symbol

consisting

of

DBCS

characters

may

contain

a

DBCS

blank.

v

Each

part

of

a

symbol

consisting

of

DBCS

characters

must

be

bracketed

with

SO

and

SI.

Note:

When

you

use

DBCS

symbols

as

variable

names

or

labels,

the

maximum

length

of

a

DBCS

variable

name

is

the

same

as

the

maximum

length

of

an

SBCS

variable

name,

250

bytes,

including

any

SO,

SI,

DBCS,

and

SBCS

characters.

Each

DBCS

character

is

counted

as

2

bytes

and

each

SO

or

SI

is

counted

as

1

byte.

These

examples

show

some

possible

misuses:

<.A.BC>

->

Incorrect

because

of

odd

byte

length

<.A.B><.C>

->

Incorrect

contiguous

SO/SI

<>

->

Incorrect

contiguous

SO/SI

(null

DBCS

symbol)

<.A<.B>.C>

->

Incorrectly

nested

SO/SI

<.A.B.C

->

Incorrect

because

SO/SI

not

paired

<.A.

.B>

->

Incorrect

because

contains

blank

’.

A<.B><.C>

->

Incorrect

symbol

Mixed

String

Validation

The

validation

of

mixed

strings

depends

on

the

instruction,

operator,

or

function.

If

you

use

a

mixed

string

with

an

instruction,

operator,

or

function

that

does

not

allow

mixed

strings,

this

causes

a

syntax

error.

The

following

rules

must

be

followed

for

mixed

string

validation:

v

DBCS

strings

must

be

an

even

number

of

bytes

in

length,

unless

you

have

SO

and

SI.

EBCDIC

only:

v

SO

and

SI

must

be

paired

in

a

string.

v

Nesting

of

SO

or

SI

is

not

permitted.

These

examples

show

some

possible

misuses:

’ab<cd’

->

INCORRECT

-

not

paired

’<.A<.B>.C>

->

INCORRECT

-

nested

’<.A.BC>’

->

INCORRECT

-

odd

byte

length

The

end

of

a

comment

delimiter

is

not

found

within

DBCS

character

sequences.

For

example,

when

the

program

contains

/*

<

*/,

then

the

*/

is

not

recognized

as

ending

the

comment

because

the

scanning

is

looking

for

the

>

(SI)

to

go

with

the

<

(SO)

and

not

looking

for

*/.

When

a

variable

is

created,

modified,

or

referred

to

in

a

REXX

program

under

OPTIONS

EXMODE,

it

is

validated

whether

it

contains

a

correct

mixed

string

or

not.

When

a

referred

variable

contains

a

mixed

string

that

is

not

valid,

it

depends

on

the

instruction,

function,

or

operator

whether

it

causes

a

syntax

error.

The

ARG,

PARSE,

PULL,

PUSH,

QUEUE,

SAY,

TRACE,

and

UPPER

instructions

all

require

valid

mixed

strings

with

OPTIONS

EXMODE

in

effect.

Using

DBCS

Characters

in

Symbols

and

Comments

To

enable

the

use

of

DBCS

characters

in

symbols

and

comments,

use

the

ETMODE

option

of

the

OPTIONS

instruction.

For

more

information,

see

“OPTIONS”

on

page

45.

The

following

are

some

ways

that

DBCS

names

can

be

used:

v

as

variables

or

labels

within

your

program

v

as

constant

symbols

v

to

pass

parameters

on

the

LINKPGM

host

command

environment.

v

as

a

STEM

name

on

EXECIO

or

as

a

trapping

variable

for

the

OUTTRAP

function

v

in

functions

such

as

SYMBOL

and

DATATYPE

DBCS

Support

Chapter

22.

Double-Byte

Character

Set

(DBCS)

Support

483

v

in

arguments

of

functions

(such

as

LENGTH)

v

in

the

variable

access

routine

ARXEXCOM.

The

following

example

shows

a

program

using

a

DBCS

variable

name

and

a

DBCS

subroutine

label:

/*

REXX

*/

OPTIONS

’ETMODE’

/*

ETMODE

to

enable

DBCS

variable

names

*/

<.S.Y.M.D>

=

10

/*

Variable

with

DBCS

characters

between

*/

/*

shift-out

(<)

and

shift-in

(>)

*/

y.<.S.Y.M.D>

=

JUNK

CALL

<.D.B.C.S.R.T.N>

/*

Call

subroutine

with

DBCS

name

*/

EXIT

<.D.B.C.S.R.T.N>:

/*

Subroutine

with

DBCS

name

*/

DO

i

=

1

TO

10

IF

y.i

=

JUNK

THEN

/*

Does

y.i

match

the

DBCS

variable’s

value?

*/

SAY

’Value

of

the

DBCS

variable

is

:

’

<.S.Y.M.D>

END

RETURN

Instruction

Examples

Here

are

some

examples

that

illustrate

how

instructions

work

with

DBCS.

PARSE

In

EBCDIC:

x1

=

’<><.A.B><.

.

><.E><.F><>’

PARSE

VAR

x1

w1

w1

->

’<><.A.B><.

.

><.E><.F><>’

PARSE

VAR

x1

1

w1

w1

->

’<><.A.B><.

.

><.E><.F><>’

PARSE

VAR

x1

w1

.

w1

->

’<.A.B>’

The

leading

and

trailing

SO

and

SI

are

unnecessary

for

word

parsing

and,

thus,

they

are

stripped

off.

However,

one

pair

is

still

needed

for

a

valid

mixed

DBCS

string

to

be

returned.

PARSE

VAR

x1

.

w2

w2

->

’<.

><.E><.F><>’

Here

the

first

blank

delimited

the

word

and

the

SO

is

added

to

the

string

to

ensure

the

DBCS

blank

and

the

valid

mixed

string.

PARSE

VAR

x1

w1

w2

w1

->

’<.A.B>’

w2

->

’<.

><.E><.F><>’

PARSE

VAR

x1

w1

w2

.

w1

->

’<.A.B>’

w2

->

’<.E><.F>’

The

word

delimiting

allows

for

unnecessary

SO

and

SI

to

be

dropped.

x2

=

’abc<>def

<.A.B><><.C.D>’

PARSE

VAR

x2

w1

’’

w2

w1

->

’abc<>def

<.A.B><><.C.D>’

w2

->

’’

PARSE

VAR

x2

w1

’<>’

w2

w1

->

’abc<>def

<.A.B><><.C.D>’

w2

->

’’

DBCS

Support

484

REXX/VSE

Reference

PARSE

VAR

x2

w1

’<><>’

w2

w1

->

’abc<>def

<.A.B><><.C.D>’

w2

->

’’

Note

that

for

the

last

three

examples

’’,

<>,

and

<><>

are

each

a

null

string

(a

string

of

length

0).

When

parsing,

the

null

string

matches

the

end

of

string.

For

this

reason,

w1

is

assigned

the

value

of

the

entire

string

and

w2

is

assigned

the

null

string.

PUSH

and

QUEUE

The

PUSH

and

QUEUE

instructions

add

entries

to

the

data

stack.

Because

an

element

on

the

data

stack

can

be

up

to

1

byte

less

than

16

megabytes,

truncation

will

probably

never

occur.

However,

if

truncation

splits

a

DBCS

string,

REXX

ensures

that

the

integrity

of

the

SO-SI

pairing

is

kept

under

OPTIONS

EXMODE.

SAY

and

TRACE

The

SAY

and

TRACE

instructions

write

information

to

the

current

output

stream.

ASSGN(STDOUT)

returns

the

name

of

the

current

output

stream.

Similar

to

the

PUSH

and

QUEUE

instructions,

REXX

ensures

the

SO-SI

pairs

are

kept

for

any

data

that

is

separated

to

meet

the

requirements

of

the

output

stream

or

device.

When

the

data

is

split

up

in

shorter

lengths,

again

the

DBCS

data

integrity

is

kept

under

OPTIONS

EXMODE.

In

EBCDIC,

if

the

default

output

width

is

less

than

4,

the

string

is

treated

as

SBCS

data,

because

4

is

the

minimum

for

mixed

string

data.

UPPER

Under

OPTIONS

EXMODE,

the

UPPER

instruction

translates

only

SBCS

characters

in

contents

of

one

or

more

variables

to

uppercase,

but

it

never

translates

DBCS

characters.

If

the

content

of

a

variable

is

not

valid

mixed

string

data,

no

uppercasing

occurs.

DBCS

Function

Handling

Some

built-in

functions

can

handle

DBCS.

The

functions

that

deal

with

word

delimiting

and

length

determining

conform

with

the

following

rules

under

OPTIONS

EXMODE:

1.

Counting

characters—Logical

character

lengths

are

used

when

counting

the

length

of

a

string

(that

is,

1

byte

for

one

SBCS

logical

character,

2

bytes

for

one

DBCS

logical

character).

In

EBCDIC,

SO

and

SI

are

considered

to

be

transparent,

and

are

not

counted,

for

every

string

operation.

2.

Character

extraction

from

a

string—Characters

are

extracted

from

a

string

on

a

logical

character

basis.

In

EBCDIC,

leading

SO

and

trailing

SI

are

not

considered

as

part

of

one

DBCS

character.

For

instance,

.A

and

.B

are

extracted

from

<.A.B>,

and

SO

and

SI

are

added

to

each

DBCS

character

when

they

are

finally

preserved

as

completed

DBCS

characters.

When

multiple

characters

are

consecutively

extracted

from

a

string,

SO

and

SI

that

are

between

characters

are

also

extracted.

For

example,

.A><.B

is

extracted

from

<.A><.B>,

and

when

the

string

is

finally

used

as

a

completed

string,

the

SO

prefixes

it

and

the

SI

suffixes

it

to

give

<.A><.B>.

Here

are

some

EBCDIC

examples:

S1

=

’abc<>def’

SUBSTR(S1,3,1)

->

’c’

SUBSTR(S1,4,1)

->

’d’

SUBSTR(S1,3,2)

->

’c<>d’

S2

=

’<><.A.B><>’

SUBSTR(S2,1,1)

->

’<.A>’

SUBSTR(S2,2,1)

->

’<.B>’

SUBSTR(S2,1,2)

->

’<.A.B>’

SUBSTR(S2,1,3,’x’)

->

’<.A.B><>x’

DBCS

Support

Chapter

22.

Double-Byte

Character

Set

(DBCS)

Support

485

S3

=

’abc<><.A.B>’

SUBSTR(S3,3,1)

->

’c’

SUBSTR(S3,4,1)

->

’<.A>’

SUBSTR(S3,3,2)

->

’c<><.A>’

DELSTR(S3,3,1)

->

’ab<><.A.B>’

DELSTR(S3,4,1)

->

’abc<><.B>’

DELSTR(S3,3,2)

->

’ab<.B>’

3.

Character

concatenation—String

concatenation

can

only

be

done

with

valid

mixed

strings.

In

EBCDIC,

adjacent

SI

and

SO

(or

SO

and

SI)

that

are

a

result

of

string

concatenation

are

removed.

Even

during

implicit

concatenation

as

in

the

DELSTR

function,

unnecessary

SO

and

SI

are

removed.

4.

Character

comparison—Valid

mixed

strings

are

used

when

comparing

strings

on

a

character

basis.

A

DBCS

character

is

always

considered

greater

than

an

SBCS

one

if

they

are

compared.

In

all

but

the

strict

comparisons,

SBCS

blanks,

DBCS

blanks,

and

leading

and

trailing

contiguous

SO

and

SI

(or

SI

and

SO)

in

EBCDIC

are

removed.

SBCS

blanks

may

be

added

if

the

lengths

are

not

identical.

In

EBCDIC,

contiguous

SO

and

SI

(or

SI

and

SO)

between

nonblank

characters

are

also

removed

for

comparison.

Note:

The

strict

comparison

operators

do

not

cause

syntax

errors

even

if

you

specify

mixed

strings

that

are

not

valid.

In

EBCDIC:

’<.A>’

=

’<.A.

>’

->

1

/*

true

*/

’<><><.A>’

=

’<.A><><>’

->

1

/*

true

*/

’<>

<.A>’

=

’<.A>’

->

1

/*

true

*/

’<.A><><.B>’

=

’<.A.B>’

->

1

/*

true

*/

’abc’

<

’ab<.

>’

->

0

/*

false

*/

5.

Word

extraction

from

a

string—“Word”

means

that

characters

in

a

string

are

delimited

by

an

SBCS

or

a

DBCS

blank.

In

EBCDIC,

leading

and

trailing

contiguous

SO

and

SI

(or

SI

and

SO)

are

also

removed

when

words

are

separated

in

a

string,

but

contiguous

SO

and

SI

(or

SI

and

SO)

in

a

word

are

not

removed

or

separated

for

word

operations.

Leading

and

trailing

contiguous

SO

and

SI

(or

SI

and

SO)

of

a

word

are

not

removed

if

they

are

among

words

that

are

extracted

at

the

same

time.

In

EBCDIC:

W1

=

’<><.

.A.

.

.B><.C.

.D><>’

SUBWORD(W1,1,1)

->

’<.A>’

SUBWORD(W1,1,2)

->

’<.A.

.

.B><.C>’

SUBWORD(W1,3,1)

->

’<.D>’

SUBWORD(W1,3)

->

’<.D>’

W2

=

’<.A.

.B><.C><>

<.D>’

SUBWORD(W2,2,1)

->

’<.B><.C>’

SUBWORD(W2,2,2)

->

’<.B><.C><>

<.D>’

Built-in

Function

Examples

Examples

for

built-in

functions,

those

that

support

DBCS

and

follow

the

rules

defined,

are

given

in

this

section.

For

full

function

descriptions

and

the

syntax

diagrams,

refer

to

Chapter

4,

“Functions,”

on

page

61.

ABBREV

In

EBCDIC:

ABBREV(’<.A.B.C>’,’<.A.B>’)

->

1

ABBREV(’<.A.B.C>’,’<.A.C>’)

->

0

ABBREV(’<.A><.B.C>’,’<.A.B>’)

->

1

ABBREV(’aa<>bbccdd’,’aabbcc’)

->

1

Applying

the

character

comparison

and

character

extraction

from

a

string

rules.

DBCS

Support

486

REXX/VSE

Reference

COMPARE

In

EBCDIC:

COMPARE(’<.A.B.C>’,’<.A.B><.C>’)

->

0

COMPARE(’<.A.B.C>’,’<.A.B.D>’)

->

3

COMPARE(’ab<>cde’,’abcdx’)

->

5

COMPARE(’<.A><>’,’<.A>’,’<.

>’)

->

0

Applying

the

character

concatenation

for

padding,

character

extraction

from

a

string,

and

character

comparison

rules.

COPIES

In

EBCDIC:

COPIES(’<.A.B>’,2)

->

’<.A.B.A.B>’

COPIES(’<.A><.B>’,2)

->

’<.A><.B.A><.B>’

COPIES(’<.A.B><>’,2)

->

’<.A.B><.A.B><>’

Applying

the

character

concatenation

rule.

DATATYPE

DATATYPE(’<.A.B>’)

->

’CHAR’

DATATYPE(’<.A.B>’,’D’)

->

1

DATATYPE(’<.A.B>’,’C’)

->

1

DATATYPE(’a<.A.B>b’,’D’)

->

0

DATATYPE(’a<.A.B>b’,’C’)

->

1

DATATYPE(’abcde’,’C’)

->

0

DATATYPE(’<.A.B’,’C’)

->

0

Note:

If

string

is

not

a

valid

mixed

string

and

C

or

D

is

specified

as

type,

0

is

returned.

FIND

FIND(’<.A.

.B.C>

abc’,’<.B.C>

abc’)

->

2

FIND(’<.A.

.B><.C>

abc’,’<.B.C>

abc’)

->

2

FIND(’<.A.

.

.B>

abc’,’<.A>

<.B>’)

->

1

Applying

the

word

extraction

from

a

string

and

character

comparison

rules.

INDEX,

POS,

and

LASTPOS

INDEX(’<.A><.B><><.C.D.E>’,’<.D.E>’)

->

4

POS(’<.A>’,’<.A><.B><><.A.D.E>’)

->

1

LASTPOS(’<.A>’,’<.A><.B><><.A.D.E>’)

->

3

Applying

the

character

extraction

from

a

string

and

character

comparison

rules.

INSERT

and

OVERLAY

In

EBCDIC:

INSERT(’a’,’b<><.A.B>’,1)

->

’ba<><.A.B>’

INSERT(’<.A.B>’,’<.C.D><>’,2)

->

’<.C.D.A.B><>’

INSERT(’<.A.B>’,’<.C.D><><.E>’,2)

->

’<.C.D.A.B><><.E>’

INSERT(’<.A.B>’,’<.C.D><>’,3,,’<.E>’)

->

’<.C.D><.E.A.B>’

OVERLAY(’<.A.B>’,’<.C.D><>’,2)

->

’<.C.A.B>’

OVERLAY(’<.A.B>’,’<.C.D><><.E>’,2)

->

’<.C.A.B>’

OVERLAY(’<.A.B>’,’<.C.D><><.E>’,3)

->

’<.C.D><><.A.B>’

OVERLAY(’<.A.B>’,’<.C.D><>’,4,,’<.E>’)

->

’<.C.D><.E.A.B>’

OVERLAY(’<.A>’,’<.C.D><.E>’,2)

->

’<.C.A><.E>’

Applying

the

character

extraction

from

a

string

and

character

comparison

rules.

DBCS

Support

Chapter

22.

Double-Byte

Character

Set

(DBCS)

Support

487

JUSTIFY

JUSTIFY(’<><.

.A.

.

.B><.C.

.D>’,10,’p’)

->

’<.A>ppp<.B><.C>ppp<.D>’

JUSTIFY(’<><.

.A.

.

.B><.C.

.D>’,11,’p’)

->

’<.A>pppp<.B><.C>ppp<.D>’

JUSTIFY(’<><.

.A.

.

.B><.C.

.D>’,10,’<.P>’)

->

’<.A.P.P.P.B><.C.P.P.P.D>’

JUSTIFY(’<><.X.

.A.

.

.B><.C.

.D>’,11,’<.P>’)

->

’<.X.P.P.A.P.P.B><.C.P.P.D>’

Applying

the

character

concatenation

for

padding

and

character

extraction

from

a

string

rules.

LEFT,

RIGHT,

and

CENTER

In

EBCDIC:

LEFT(’<.A.B.C.D.E>’,4)

->

’<.A.B.C.D>’

LEFT(’a<>’,2)

->

’a<>

’

LEFT(’<.A>’,2,’*’)

->

’<.A>*’

RIGHT(’<.A.B.C.D.E>’,4)

->

’<.B.C.D.E>’

RIGHT(’a<>’,2)

->

’

a’

CENTER(’<.A.B>’,10,’<.E>’)

->

’<.E.E.E.E.A.B.E.E.E.E>’

CENTER(’<.A.B>’,11,’<.E>’)

->

’<.E.E.E.E.A.B.E.E.E.E.E>’

CENTER(’<.A.B>’,10,’e’)

->

’eeee<.A.B>eeee’

Applying

the

character

concatenation

for

padding

and

character

extraction

from

a

string

rules.

LENGTH

In

EBCDIC:

LENGTH(’<.A.B><.C.D><>’)

->

4

Applying

the

counting

characters

rule.

REVERSE

In

EBCDIC:

REVERSE(’<.A.B><.C.D><>’)

->

’<><.D.C><.B.A>’

Applying

the

character

extraction

from

a

string

and

character

concatenation

rules.

SPACE

In

EBCDIC:

SPACE(’a<.A.B.

.C.D>’,1)

->

’a<.A.B>

<.C.D>’

SPACE(’a<.A><><.

.C.D>’,1,’x’)

->

’a<.A>x<.C.D>’

SPACE(’a<.A><.

.C.D>’,1,’<.E>’)

->

’a<.A.E.C.D>’

Applying

the

word

extraction

from

a

string

and

character

concatenation

rules.

STRIP

In

EBCDIC:

STRIP(’<><.A><.B><.A><>’,,’<.A>’)

->

’<.B>’

Applying

the

character

extraction

from

a

string

and

character

concatenation

rules.

SUBSTR

and

DELSTR

In

EBCDIC:

SUBSTR(’<><.A><><.B><.C.D>’,1,2)

->

’<.A><><.B>’

DELSTR(’<><.A><><.B><.C.D>’,1,2)

->

’<><.C.D>’

SUBSTR(’<.A><><.B><.C.D>’,2,2)

->

’<.B><.C>’

DELSTR(’<.A><><.B><.C.D>’,2,2)

->

’<.A><><.D>’

SUBSTR(’<.A.B><>’,1,2)

->

’<.A.B>’

SUBSTR(’<.A.B><>’,1)

->

’<.A.B><>’

DBCS

Support

488

REXX/VSE

Reference

Applying

the

character

extraction

from

a

string

and

character

concatenation

rules.

SUBWORD

and

DELWORD

In

EBCDIC:

SUBWORD(’<><.

.A.

.

.B><.C.

.D>’,1,2)

->

’<.A.

.

.B><.C>’

DELWORD(’<><.

.A.

.

.B><.C.

.D>’,1,2)

->

’<><.

.D>’

SUBWORD(’<><.A.

.

.B><.C.

.D>’,1,2)

->

’<.A.

.

.B><.C>’

DELWORD(’<><.A.

.

.B><.C.

.D>’,1,2)

->

’<><.D>’

SUBWORD(’<.A.

.B><.C><>

<.D>’,1,2)

->

’<.A.

.B><.C>’

DELWORD(’<.A.

.B><.C><>

<.D>’,1,2)

->

’<.D>’

Applying

the

word

extraction

from

a

string

and

character

concatenation

rules.

TRANSLATE

In

EBCDIC:

TRANSLATE(’abcd’,’<.A.B.C>’,’abc’)

->

’<.A.B.C>d’

TRANSLATE(’abcd’,’<><.A.B.C>’,’abc’)

->

’<.A.B.C>d’

TRANSLATE(’abcd’,’<><.A.B.C>’,’ab<>c’)

->

’<.A.B.C>d’

TRANSLATE(’a<>bcd’,’<><.A.B.C>’,’ab<>c’)

->

’<.A.B.C>d’

TRANSLATE(’a<>xcd’,’<><.A.B.C>’,’ab<>c’)

->

’<.A>x<.C>d’

Applying

the

character

extraction

from

a

string,

character

comparison,

and

character

concatenation

rules.

VERIFY

In

EBCDIC:

VERIFY(’<><><.A.B><><.X>’,’<.B.A.C.D.E>’)

->

3

Applying

the

character

extraction

from

a

string

and

character

comparison

rules.

WORD,

WORDINDEX,

and

WORDLENGTH

In

EBCDIC:

W

=

’<><.

.A.

.

.B><.C.

.D>’

WORD(W,1)

->

’<.A>’

WORDINDEX(W,1)

->

2

WORDLENGTH(W,1)

->

1

Y

=

’<><.A.

.

.B><.C.

.D>’

WORD(Y,1)

->

’<.A>’

WORDINDEX(Y,1)

->

1

WORDLENGTH(Y,1)

->

1

Z

=

’<.A

.B><.C>

<.D>’

WORD(Z,2)

->

’<.B><.C>’

WORDINDEX(Z,2)

->

3

WORDLENGTH(Z,2)

->

2

Applying

the

word

extraction

from

a

string

and

(for

WORDINDEX

and

WORDLENGTH)

counting

characters

rules.

WORDS

In

EBCDIC:

W

=

’<><.

.A.

.

.B><.C.

.D>’

WORDS(W)

->

3

Applying

the

word

extraction

from

a

string

rule.

DBCS

Support

Chapter

22.

Double-Byte

Character

Set

(DBCS)

Support

489

WORDPOS

In

EBCDIC:

WORDPOS(’<.B.C>

abc’,’<.A.

.B.C>

abc’)

->

2

WORDPOS(’<.A.B>’,’<.A.B.

.A.B><.

.B.C.

.A.B>’,3)

->

4

Applying

the

word

extraction

from

a

string

and

character

comparison

rules.

DBCS

Processing

Functions

This

section

describes

the

functions

that

support

DBCS

mixed

strings.

These

functions

handle

mixed

strings

regardless

of

the

OPTIONS

mode.

Note:

When

used

with

DBCS

functions,

length

is

always

measured

in

bytes

(as

opposed

to

LENGTH(string),

which

is

measured

in

characters).

Counting

Option

In

EBCDIC,

when

specified

in

the

functions,

the

counting

option

can

control

whether

the

SO

and

SI

are

considered

present

when

determining

the

length.

Y

specifies

counting

SO

and

SI

within

mixed

strings.

N

specifies

not

to

count

the

SO

and

SI,

and

is

the

default.

Function

Descriptions

The

following

are

the

DBCS

functions

and

their

descriptions.

DBADJUST

��

DBADJUST(string

)

,operation

��

In

EBCDIC,

adjusts

all

contiguous

SI

and

SO

(or

SO

and

SI)

characters

in

string

based

on

the

operation

specified.

The

following

are

valid

operations.

Only

the

capitalized

and

highlighted

letter

is

needed;

all

characters

following

it

are

ignored.

Blank

changes

contiguous

characters

to

blanks

(X'4040').

Remove

removes

contiguous

characters,

and

is

the

default.

Here

are

some

EBCDIC

examples:

DBADJUST(’<.A><.B>a<>b’,’B’)

->

’<.A.

.B>a

b’

DBADJUST(’<.A><.B>a<>b’,’R’)

->

’<.A.B>ab’

DBADJUST(’<><.A.B>’,’B’)

->

’<.

.A.B>’

DBBRACKET

��

DBBRACKET(string)

��

In

EBCDIC,

adds

SO

and

SI

brackets

to

a

DBCS-only

string.

If

string

is

not

a

DBCS-only

string,

a

SYNTAX

error

results.

That

is,

the

input

string

must

be

an

even

number

of

bytes

in

length

and

each

byte

must

be

a

valid

DBCS

value.

Here

are

some

EBCDIC

examples:

DBCS

Support

490

REXX/VSE

Reference

DBBRACKET(’.A.B’)

->

’<.A.B>’

DBBRACKET(’abc’)

->

SYNTAX

error

DBBRACKET(’<.A.B>’)

->

SYNTAX

error

DBCENTER

��

DBCENTER(string,length

,

pad

,option

)

��

returns

a

string

of

length

length

with

string

centered

in

it,

with

pad

characters

added

as

necessary

to

make

up

length.

The

default

pad

character

is

a

blank.

If

string

is

longer

than

length,

it

is

truncated

at

both

ends

to

fit.

If

an

odd

number

of

characters

are

truncated

or

added,

the

right-hand

end

loses

or

gains

one

more

character

than

the

left-hand

end.

The

option

controls

the

counting

rule.

Y

counts

SO

and

SI

within

mixed

strings

as

one

each.

N

does

not

count

the

SO

and

SI

and

is

the

default.

Here

are

some

EBCDIC

examples:

DBCENTER(’<.A.B.C>’,4)

->

’

<.B>

’

DBCENTER(’<.A.B.C>’,3)

->

’

<.B>’

DBCENTER(’<.A.B.C>’,10,’x’)

->

’xx<.A.B.C>xx’

DBCENTER(’<.A.B.C>’,10,’x’,’Y’)

->

’x<.A.B.C>x’

DBCENTER(’<.A.B.C>’,4,’x’,’Y’)

->

’<.B>’

DBCENTER(’<.A.B.C>’,5,’x’,’Y’)

->

’x<.B>’

DBCENTER(’<.A.B.C>’,8,’<.P>’)

->

’

<.A.B.C>

’

DBCENTER(’<.A.B.C>’,9,’<.P>’)

->

’

<.A.B.C.P>’

DBCENTER(’<.A.B.C>’,10,’<.P>’)

->

’<.P.A.B.C.P>’

DBCENTER(’<.A.B.C>’,12,’<.P>’,’Y’)

->

’<.P.A.B.C.P>’

DBCJUSTIFY

��

DBCJUSTIFY(string,length

,

pad

,option

)

��

formats

string

by

adding

pad

characters

between

nonblank

characters

to

justify

to

both

margins

and

length

of

bytes

length

(length

must

be

nonnegative).

Rules

for

adjustments

are

the

same

as

for

the

JUSTIFY

function.

The

default

pad

character

is

a

blank.

The

option

controls

the

counting

rule.

Y

counts

SO

and

SI

within

mixed

strings

as

one

each.

N

does

not

count

the

SO

and

SI

and

is

the

default.

Here

are

some

examples:

DBCJUSTIFY(’<><AA

BB><CC>’,20,,’Y’)

->

’<AA>

<BB>

<CC>’

DBCJUSTIFY(’<><

AA

BB><

CC>’,20,’<XX>’,’Y’)

->

’<AAXXXXXXBBXXXXXXCC>’

DBCJUSTIFY(’<><

AA

BB><

CC>’,21,’<XX>’,’Y’)

->

’<AAXXXXXXBBXXXXXXCC>

’

DBCS

Support

Chapter

22.

Double-Byte

Character

Set

(DBCS)

Support

491

DBCJUSTIFY(’<><

AA

BB><

CC>’,11,’<XX>’,’Y’)

->

’<AAXXXXBB>

’

DBCJUSTIFY(’<><

AA

BB><

CC>’,11,’<XX>’,’N’)

->

’<AAXXBBXXCC>

’

DBLEFT

��

DBLEFT(string,length

,

pad

,option

)

��

returns

a

string

of

length

length

containing

the

leftmost

length

characters

of

string.

The

string

returned

is

padded

with

pad

characters

(or

truncated)

on

the

right

as

needed.

The

default

pad

character

is

a

blank.

The

option

controls

the

counting

rule.

Y

counts

SO

and

SI

within

mixed

strings

as

one

each.

N

does

not

count

the

SO

and

SI

and

is

the

default.

Here

are

some

EBCDIC

examples:

DBLEFT(’ab<.A.B>’,4)

->

’ab<.A>’

DBLEFT(’ab<.A.B>’,3)

->

’ab

’

DBLEFT(’ab<.A.B>’,4,’x’,’Y’)

->

’abxx’

DBLEFT(’ab<.A.B>’,3,’x’,’Y’)

->

’abx’

DBLEFT(’ab<.A.B>’,8,’<.P>’)

->

’ab<.A.B.P>’

DBLEFT(’ab<.A.B>’,9,’<.P>’)

->

’ab<.A.B.P>

’

DBLEFT(’ab<.A.B>’,8,’<.P>’,’Y’)

->

’ab<.A.B>’

DBLEFT(’ab<.A.B>’,9,’<.P>’,’Y’)

->

’ab<.A.B>

’

DBRIGHT

��

DBRIGHT(string,length

,

pad

,option

)

��

returns

a

string

of

length

length

containing

the

rightmost

length

characters

of

string.

The

string

returned

is

padded

with

pad

characters

(or

truncated)

on

the

left

as

needed.

The

default

pad

character

is

a

blank.

The

option

controls

the

counting

rule.

Y

counts

SO

and

SI

within

mixed

strings

as

one

each.

N

does

not

count

the

SO

and

SI

and

is

the

default.

Here

are

some

EBCDIC

examples:

DBRIGHT(’ab<.A.B>’,4)

->

’<.A.B>’

DBRIGHT(’ab<.A.B>’,3)

->

’

<.B>’

DBRIGHT(’ab<.A.B>’,5,’x’,’Y’)

->

’x<.B>’

DBRIGHT(’ab<.A.B>’,10,’x’,’Y’)

->

’xxab<.A.B>’

DBRIGHT(’ab<.A.B>’,8,’<.P>’)

->

’<.P>ab<.A.B>’

DBRIGHT(’ab<.A.B>’,9,’<.P>’)

->

’

<.P>ab<.A.B>’

DBRIGHT(’ab<.A.B>’,8,’<.P>’,’Y’)

->

’ab<.A.B>’

DBRIGHT(’ab<.A.B>’,11,’<.P>’,’Y’)

->

’

ab<.A.B>’

DBRIGHT(’ab<.A.B>’,12,’<.P>’,’Y’)

->

’<.P>ab<.A.B>’

DBCS

Support

492

REXX/VSE

Reference

DBRLEFT

��

DBRLEFT(string,length

,option

)

��

returns

the

remainder

from

the

DBLEFT

function

of

string.

If

length

is

greater

than

the

length

of

string,

returns

a

null

string.

The

option

controls

the

counting

rule.

Y

counts

SO

and

SI

within

mixed

strings

as

one

each.

N

does

not

count

the

SO

and

SI

and

is

the

default.

Here

are

some

EBCDIC

examples:

DBRLEFT(’ab<.A.B>’,4)

->

’<.B>’

DBRLEFT(’ab<.A.B>’,3)

->

’<.A.B>’

DBRLEFT(’ab<.A.B>’,4,’Y’)

->

’<.A.B>’

DBRLEFT(’ab<.A.B>’,3,’Y’)

->

’<.A.B>’

DBRLEFT(’ab<.A.B>’,8)

->

’’

DBRLEFT(’ab<.A.B>’,9,’Y’)

->

’’

DBRRIGHT

��

DBRRIGHT(string,length

,option

)

��

returns

the

remainder

from

the

DBRIGHT

function

of

string.

If

length

is

greater

than

the

length

of

string,

returns

a

null

string.

The

option

controls

the

counting

rule.

Y

counts

SO

and

SI

within

mixed

strings

as

one

each.

N

does

not

count

the

SO

and

SI

and

is

the

default.

Here

are

some

EBCDIC

examples:

DBRRIGHT(’ab<.A.B>’,4)

->

’ab’

DBRRIGHT(’ab<.A.B>’,3)

->

’ab<.A>’

DBRRIGHT(’ab<.A.B>’,5)

->

’a’

DBRRIGHT(’ab<.A.B>’,4,’Y’)

->

’ab<.A>’

DBRRIGHT(’ab<.A.B>’,5,’Y’)

->

’ab<.A>’

DBRRIGHT(’ab<.A.B>’,8)

->

’’

DBRRIGHT(’ab<.A.B>’,8,’Y’)

->

’’

DBTODBCS

��

DBTODBCS(string)

��

converts

all

passed,

valid

SBCS

characters

(including

the

SBCS

blank)

within

string

to

the

corresponding

DBCS

equivalents.

Other

single-byte

codes

and

all

DBCS

characters

are

not

changed.

In

EBCDIC,

SO

and

SI

brackets

are

added

and

removed

where

appropriate.

Here

are

some

EBCDIC

examples:

DBCS

Support

Chapter

22.

Double-Byte

Character

Set

(DBCS)

Support

493

DBTODBCS(’Rexx

1988’)

->

’<.R.e.x.x.

.1.9.8.8>’

DBTODBCS(’<.A>

<.B>’)

->

’<.A.

.B>’

Note:

In

these

examples,

the

.x

is

the

DBCS

character

corresponding

to

an

SBCS

x.

DBTOSBCS

��

DBTOSBCS(string)

��

converts

all

passed,

valid

DBCS

characters

(including

the

DBCS

blank)

within

string

to

the

corresponding

SBCS

equivalents.

Other

DBCS

characters

and

all

SBCS

characters

are

not

changed.

In

EBCDIC,

SO

and

SI

brackets

are

removed

where

appropriate.

Here

are

some

EBCDIC

examples:

DBTOSBCS(’<.S.d>/<.2.-.1>’)

->

’Sd/2-1’

DBTOSBCS(’<.X.

.Y>’)

->

’<.X>

<.Y>’

Note:

In

these

examples,

the

.d

is

the

DBCS

character

corresponding

to

an

SBCS

d.

But

the

.X

and

.Y

do

not

have

corresponding

SBCS

characters

and

are

not

converted.

DBUNBRACKET

��

DBUNBRACKET(string)

��

In

EBCDIC,

removes

the

SO

and

SI

brackets

from

a

DBCS-only

string

enclosed

by

SO

and

SI

brackets.

If

the

string

is

not

bracketed,

a

SYNTAX

error

results.

Here

are

some

EBCDIC

examples:

DBUNBRACKET(’<.A.B>’)

->

’.A.B’

DBUNBRACKET(’ab<.A>’)

->

SYNTAX

error

DBVALIDATE

��

DBVALIDATE(string

,’C’

)

��

returns

1

if

the

string

is

a

valid

mixed

string

or

SBCS

string.

Otherwise,

returns

0.

Mixed

string

validation

rules

are:

1.

Only

valid

DBCS

character

codes

2.

DBCS

string

is

an

even

number

of

bytes

in

length

3.

EBCDIC

only

—

Proper

SO

and

SI

pairing.

In

EBCDIC,

if

C

is

omitted,

only

the

leftmost

byte

of

each

DBCS

character

is

checked

to

see

that

it

falls

in

the

valid

range

for

the

implementation

it

is

being

run

on

(that

is,

in

EBCDIC,

the

leftmost

byte

range

is

from

X'41'

to

X'FE').

Here

are

some

EBCDIC

examples:

DBCS

Support

494

REXX/VSE

Reference

z=’abc<de’

DBVALIDATE(’ab<.A.B>’)

->

1

DBVALIDATE(z)

->

0

y=’C1C20E111213140F’X

DBVALIDATE(y)

->

1

DBVALIDATE(y,’C’)

->

0

DBWIDTH

��

DBWIDTH(string

,option

)

��

returns

the

length

of

string

in

bytes.

The

option

controls

the

counting

rule.

Y

counts

SO

and

SI

within

mixed

strings

as

one

each.

N

does

not

count

the

SO

and

SI

and

is

the

default.

Here

are

some

EBCDIC

examples:

DBWIDTH(’ab<.A.B>’,’Y’)

->

8

DBWIDTH(’ab<.A.B>’,’N’)

->

6

DBCS

Support

Chapter

22.

Double-Byte

Character

Set

(DBCS)

Support

495

DBCS

Support

496

REXX/VSE

Reference

Chapter

23.

ARXTERMA

Routine

The

ARXTERMA

routine

terminates

a

language

processor

environment.

ARXTERMA

differs

from

the

ARXTERM

termination

routine.

ARXTERM

terminates

a

language

processor

environment

only

if

no

active

REXX

programs

are

currently

running

in

the

environment.

ARXTERMA

terminates

all

active

REXX

programs

under

a

language

processor

environment,

and

optionally

terminates

the

environment.

If

you

customize

REXX

processing

and

initialize

a

language

processor

environment

using

the

ARXINIT

initialization

routine,

when

you

terminate

the

environment,

you

are

recommended

to

use

the

ARXTERM

termination

routine.

“Termination

Routine

–

ARXTERM”

on

page

440

describes

ARXTERM.

Note:

To

permit

FORTRAN

programs

to

call

ARXTERMA,

REXX/VSE

provides

an

alternate

entry

point

for

the

ARXTERMA

routine.

The

alternate

entry

point

name

is

ARXTMA.

On

the

call

to

ARXTERMA,

you

specify

whether

ARXTERMA

should

terminate

the

environment

in

addition

to

terminating

all

active

programs

that

are

currently

running

in

the

environment.

You

can

optionally

pass

the

address

of

the

environment

block

that

represents

the

environment

in

which

you

want

ARXTERMA

to

run.

You

can

pass

the

address

either

in

parameter

2

or

in

register

0.

If

you

do

not

pass

an

environment

block

address,

ARXTERMA

locates

the

current

non-reentrant

environment

that

was

created

at

the

same

task

level

and

runs

in

that

environment.

ARXTERMA

does

not

terminate

an

environment

if:

v

The

environment

was

not

initialized

under

the

current

task

v

The

environment

was

the

first

environment

initialized

under

the

task

and

other

environments

are

still

initialized

under

the

task.

However,

ARXTERMA

does

terminate

all

active

programs

running

in

the

environment.

ARXTERMA

invokes

the

exec

load

routine

to

free

each

program

in

the

environment.

The

exec

load

routine

is

the

routine

the

EXROUT

field

in

the

module

name

table

identifies,

which

is

one

of

the

parameters

for

the

initialization

routine,

ARXINIT.

All

programs

in

the

environment

are

freed

regardless

of

whether

they

were

pre-loaded

before

the

ARXEXEC

routine

was

called.

ARXTERMA

also

frees

the

storage

for

each

program

in

the

environment.

ARXTERMA

sets

the

ENVBLOCK_TERMA_CLEANUP

flag

to

indicate

that

ARXTERMA

is

cleaning

up

the

environment.

ARXTERMA

frees

all

active

programs

and

optionally

terminates

the

environment

itself.

The

replaceable

routines

can

use

this

ENVBLOCK_TERMA_CLEANUP

flag

to

allow

special

processing

during

abnormal

termination.

If

ARXTERMA

does

not

terminate

the

environment,

the

flag

is

cleared

upon

exit

from

ARXTERMA.

Entry

Specifications

For

the

ARXTERMA

termination

routine,

the

contents

of

the

registers

on

entry

are:

Register

0

Address

of

an

environment

block

(optional)

Register

1

Address

of

the

parameter

list

the

caller

passes

Registers

2-12

Unpredictable

Register

13

Address

of

a

register

save

area

Register

14

Return

address

Register

15

Entry

point

address

©

Copyright

IBM

Corp.

1988,

2004

497

Parameters

In

register

1,

you

pass

the

address

of

a

parameter

list,

which

consists

of

a

list

of

addresses.

Each

address

in

the

parameter

list

points

to

a

parameter.

Set

the

high-order

bit

of

the

last

address

to

1

to

indicate

the

end

of

the

parameter

list.

For

more

information

about

passing

parameters,

see

“Parameter

Lists

for

REXX/VSE

Routines”

on

page

329.

Table

93

shows

the

parameters

for

ARXTERMA.

Table

93.

Parameters

for

ARXTERMA

Parameter

Number

of

Bytes

Description

Parameter

1

4

A

fullword

field

in

which

you

specify

whether

you

want

to

terminate

the

environment

in

addition

to

terminating

all

active

programs

running

in

the

environment.

Specify

one

of

the

following:

v

0

—

terminates

all

programs

and

the

environment

v

X'80000000'

—

terminates

all

programs,

but

does

not

terminate

the

environment.

Parameter

2

4

This

parameter

is

optional.

It

is

the

address

of

the

environment

block

that

represents

the

environment

you

want

ARXTERMA

to

terminate.

If

you

do

not

want

to

use

this

parameter,

set

the

high-order

bit

in

the

address

that

points

to

parameter

1

to

1

to

end

the

parameter

list.

(You

cannot

simply

specify

an

address

of

0

because

ARXTERMA

tries

to

use

0

as

a

valid

address

and

fails

with

a

return

code

of

28.)

If

you

specify

an

environment

block

address,

ARXTERMA

uses

the

value

you

specify

and

ignores

register

0.

However,

ARXTERMA

does

not

check

whether

the

address

is

valid.

Therefore,

ensure

the

address

you

specify

is

correct

or

unpredictable

results

can

occur.

If

you

use

register

0

to

specify

the

address

of

an

environment

block,

ARXTERMA

checks

whether

the

address

is

valid.

If

the

address

is

valid,

ARXTERMA

terminates

that

environment.

Otherwise,

ARXTERMA

locates

the

current

non-reentrant

environment

that

was

created

at

the

same

task

level

and

terminates

that

environment.

Return

Specifications

For

the

ARXTERMA

termination

routine,

the

contents

of

the

registers

on

return

are:

Register

0

If

you

passed

the

address

of

an

environment

block

in

register

0,

ARXTERMA

returns

the

address

of

the

environment

block

for

the

previous

environment.

If

you

did

not

pass

an

address

in

register

0,

the

register

contains

the

same

value

as

on

entry.

Registers

1-14

Same

as

on

entry

Register

15

Return

code

ARXTERMA

Routine

498

REXX/VSE

Reference

Return

Codes

Table

94

shows

the

return

codes

for

the

ARXTERMA

routine.

Table

94.

Return

Codes

for

ARXTERMA

Return

Code

Description

0

Processing

was

successful.

If

ARXTERMA

also

terminated

the

environment,

the

environment

was

not

the

last

environment

on

the

task.

4

Processing

was

successful.

If

ARXTERMA

also

terminated

the

environment,

the

environment

was

the

last

environment

on

the

task.

20

Processing

was

not

successful.

ARXTERMA

could

not

terminate

the

environment.

28

Processing

was

not

successful.

The

environment

could

not

be

found.

ARXTERMA

Routine

Chapter

23.

ARXTERMA

Routine

499

ARXTERMA

Routine

500

REXX/VSE

Reference

Chapter

24.

Support

for

the

Library

for

REXX/370

in

REXX/VSE

Before

using

the

Library

for

REXX/370

in

REXX/VSE

to

execute

a

compiled

REXX

program,

you

need

to

compile

the

program

on

VM

CMS

or

MVS.

This

appendix

introduces

the

compiler

and

describes

the

support

for

the

Library

for

REXX/370

in

REXX/VSE.

Benefits

of

Using

a

Compiler

The

IBM

Compiler

for

REXX/370

and

the

Library

for

REXX/370

in

REXX/VSE

provide

significant

benefits

for

programmers

during

program

development

and

for

users

when

a

program

is

run.

The

benefits

include:

v

Improved

performance

v

Reduced

system

load

v

Protection

for

source

code

and

programs

v

Improved

productivity

and

quality

v

Portability

of

compiled

programs

v

SAA

compliance

checking.

Improved

Performance

The

performance

improvements

that

you

can

expect

when

you

run

compiled

REXX

programs

depend

on

the

type

of

program.

A

program

that

performs

large

numbers

of

arithmetic

operations

of

default

precision

shows

the

greatest

improvement.

A

program

that

mainly

issues

commands

to

the

host

shows

minimal

improvement

because

REXX

cannot

decrease

the

time

the

host

takes

to

process

the

commands.

Reduced

System

Load

Compiled

REXX

programs

run

faster

than

interpreted

programs.

Because

a

program

has

to

be

compiled

only

once,

system

load

is

reduced

and

response

time

is

improved

when

the

program

is

run

frequently.

For

example,

a

REXX

program

that

performs

many

arithmetic

operations

might

take

12

seconds

to

run

on

the

interpreter.

Running

the

program

60

times

uses

about

12

minutes

of

processor

time.

The

same

program

when

compiled

might

run

six

times

faster,

using

only

about

2

minutes

of

processor

time.

Protection

for

Source

Code

and

Programs

Your

REXX

programs

and

algorithms

are

assets

that

you

want

to

protect.

The

Compiler

produces

object

code,

which

helps

you

protect

these

assets

by

discouraging

other

users

from

making

unauthorized

changes

to

your

programs.

You

can

distribute

your

REXX

programs

in

object

code

only.

Improved

Productivity

and

Quality

The

Compiler

can

produce

source

listings,

cross-reference

listings,

and

messages,

which

help

you

more

easily

develop

and

maintain

your

REXX

programs.

The

Compiler

identifies

syntax

errors

in

a

program

before

you

start

testing

it.

You

can

then

focus

on

correcting

errors

in

logic

during

testing

with

the

REXX

interpreter.

Portability

of

Compiled

Programs

A

compiled

REXX

program

can

run

under

other

operating

systems,

such

as

MVS/ESA*

or

VM

CMS.

A

REXX

program

compiled

under

VM

CMS

or

MVS/ESA

can

run

under

REXX/VSE.

©

Copyright

IBM

Corp.

1988,

2004

501

SAA

Compliance

Checking

The

Systems

Application

Architecture

(SAA)

definitions

of

software

interfaces,

conventions,

and

protocols

provide

a

framework

for

designing

and

developing

applications

that

are

consistent

within

and

across

several

operating

systems.

SAA

REXX

is

a

set

of

common

elements

of

the

REXX

language.

The

REXX/VSE

interpreter

supports

these

elements.

To

help

you

write

programs

for

use

in

all

SAA

environments,

the

Compiler

can

optionally

check

for

SAA

compliance.

With

this

option

in

effect,

a

warning

message

is

issued

for

each

non-SAA

item

found

in

a

program.

Compiler

Publications

For

more

information

about

the

compiler,

see

the

following

books:

v

IBM

Compiler

and

Library

for

SAA

REXX/370

Release

2:

Introducing

the

Next

Step

in

REXX

Programming,

G511-1430

v

IBM

Compiler

and

Library

for

SAA

REXX/370

Release

2

User’s

Guide

and

Reference,

SH19-8160

v

IBM

Compiler

and

Library

for

SAA

REXX/370

Release

2

Diagnosis

Guide,

SH19-8179.

Routines

and

Interfaces

for

the

Library

for

REXX/370

in

REXX/VSE

REXX/VSE

provides

routines

and

interfaces

it

uses

during

the

execution

of

compiled

programs

under

a

compiler

runtime

processor.

Central

to

compiler

support

is

the

compiler

programming

table.

REXX/VSE

uses

the

compiler

runtime

processor

name

stored

in

the

compiled

REXX

program

to

locate

the

entry

for

the

compiler

runtime

processor

in

the

compiler

programming

table.

The

compiler

programming

table

entry

contains

the

name

of

the

compiler

runtime

processor

and

the

names

of

up

to

four

optional

compiler

interface

routines.

REXX/VSE

uses

the

compiler

runtime

processor

to

run

compiled

programs.

During

the

execution

of

a

compiled

program,

REXX/VSE

invokes

compiler

interface

routines

to

perform

specialized

processing.

The

following

information,

to

the

end

of

the

chapter,

is

product-sensitive

programming

interface

information.

Programming

Routines

for

a

REXX

Compiler

Runtime

Processor

REXX/VSE

provides

various

programming

routines

that

support

a

REXX

compiler

runtime

processor.

These

routines

are:

v

ARXERS

-

a

REXX

compiler

programming

routine

that

searches

for

and

runs

an

external

routine.

For

more

information

on

the

search

order

for

external

routines,

see

page

63.

v

ARXHST

-

a

REXX

compiler

programming

routine

that

searches

for

and

runs

a

host

command.

For

more

information

on

locating

host

commands,

see

“Commands”

on

page

23.

v

ARXRTE

-

a

REXX

compiler

programming

routine

that

searches

for

and

invokes

a

REXX

exit

routine.

For

more

information

on

REXX

exit

routines,

see

“REXX

Exit

Routines”

on

page

471

In

addition,

you

can

use

the

GETEVAL

function

of

the

ARXRLT

programming

service

to

obtain

the

evaluation

block

for

an

external

function

or

subroutine.

These

routines

and

the

GETEVAL

function

of

ARXRLT

are

intended

for

use

only

by

a

compiler

runtime

processor.

For

more

information

on

the

ARXRLT

programming

service,

see

page

137.

Compiler

Support

502

REXX/VSE

Reference

Routines

and

Interfaces

to

Support

a

REXX

Compiler

This

section

discusses

the

characteristics

of

a

compiled

REXX

program

and

the

routines

and

interfaces

to

support

a

REXX

compiler,

including:

v

The

compiler

programming

table

v

The

compiler

runtime

processor

v

The

four

compiler

interface

routines:

–

Compiler

interface

initialization

routine

–

Compiler

interface

termination

routine

–

Compiler

interface

load

routine

–

Compiler

interface

variable

handling

routine.

Overview

REXX/VSE

defines

a

format

for

compiled

REXX

programs

so

that

REXX/VSE

can

distinguish

between

compiled

and

interpreted

programs.

REXX/VSE

also

provides

a

defined

interface

for

installing

a

REXX

compiler

runtime

processor.

A

compiler

runtime

processor

executes

compiled

programs.

To

initiate

runtime

processing

of

a

compiled

REXX

program,

REXX/VSE

uses

a

compiler

programming

table

to

identify

the

runtime

processor

and

up

to

four

interface

routines.

You

can

modify

the

compiler

programming

table

to

identify

routines

for

a

compiler

runtime

processor,

if

a

compiler

runtime

processor

is

installed.

Each

of

the

four

compiler

interface

routines

are

optional

and

can

provide

special

processing

for

initializing

and

terminating

the

compiler

runtime

processor,

loading

compiled

REXX

programs,

and

accessing

REXX

variables.

How

REXX

Identifies

a

Compiled

Program

During

REXX

program

processing,

REXX/VSE

determines

whether

a

program

is

compiled

or

interpreted.

REXX/VSE

recognizes

a

program

as

compiled

if

the

program

meets

the

following

three

criteria:

v

The

length

of

the

first

record

is

at

least

20

bytes

v

The

string

’EXECPROC’

is

in

columns

5–12

of

first

record

v

The

first

non-blank

in

columns

1–4

of

the

first

record

is

not

a

comment

delimiter.

If

a

program

meets

these

criteria,

REXX/VSE

determines

the

name

of

a

compiler

runtime

processor

from

columns

13–20

of

the

first

record.

You

might

find

that

some

interpreted

programs

meet

these

criteria

and

are,

therefore,

incorrectly

executed

as

compiled

programs.

There

are

several

ways

to

correct

this

problem,

including:

v

Shift

everything

in

the

first

record

one

column

to

the

right.

This

leaves

the

string

’EXECPROC’

in

the

first

record,

but

not

in

the

expected

position

(columns

5–12)

for

a

compiled

program.

v

Add

a

comment

as

the

first

record

of

the

REXX

program.

The

record

that

contains

’EXECPROC’

remains

intact

as

the

second

record.

The

Compiler

Programming

Table

The

compiler

programming

table

is

a

control

block

that

REXX/VSE

uses

to

obtain

information

about

a

compiler

runtime

processor.

This

information

includes

the

names

of

up

to

four

optional

compiler

interface

routines.

Before

REXX/VSE

runs

the

first

compiled

program

in

the

first

language

processor

environment

REXX/VSE

loads

ARXCMPTM

as

the

compiler

programming

table.

Once

the

compiler

programming

table

is

loaded,

it

is

used

for

all

compiled

programs

in

the

current

and

any

subsequent

language

processor

environments.

The

ARXCMPTM

module

is

in

PRD1.BASE.

Source

for

a

sample

compiler

programming

table

is

in

PRD1.BASE

member

ARXCMPTM.Z.

If

you

want

to

install

another

REXX

compiler

runtime

processor,

you

can

create

your

own

compiler

programming

table

using

this

member

as

a

model.

After

you

create

the

source

for

the

compiler

programming

table,

assemble

and

link-edit

the

table

as

phase

ARXCMPTM.

You

must

place

ARXCMPTM

in

the

SVA.

Compiler

Support

Chapter

24.

Support

for

the

Library

for

REXX/370

in

REXX/VSE

503

A

mapping

macro,

ARXCMPTB,

for

the

compiler

programming

table

is

in

PRD1.BASE.

See

Table

95

and

Table

96

for

the

format

of

the

compiler

programming

table.

Note:

Each

field

name

in

the

following

tables

must

include

the

prefix

COMPGMTB_.

Table

95.

Compiler

Programming

Table

Header

Information

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

0

4

FIRST

Address

of

the

first

entry

4

4

TOTAL

Total

number

of

entries

8

4

USED

Number

of

entries

used

12

4

LENGTH

Length

of

each

entry

16

8

--

Reserved

24

8

—

X'FFFFFFFFFFFFFFFF'.

Table

96.

Compiler

Programming

Table

Entry

Information

Offset

(Decimal)

Number

of

Bytes

Field

Name

Description

0

8

RTPROC

Name

of

the

Compiler

Runtime

Processor

8

8

COMPINIT

Name

of

the

Compiler

Interface

Initialization

Routine

16

8

COMPTERM

Name

of

the

Compiler

Interface

Termination

Routine

24

8

COMPLOAD

Name

of

the

Compiler

Interface

Load

Routine

32

8

COMPVAR

Name

of

the

Compiler

Interface

Variable

Handling

Routine

40

16

STORAGE

Four

words

of

storage

that

a

REXX

compiler

runtime

processor

can

use.

For

example,

a

REXX

compiler

runtime

processor

might

use

these

storage

words

as

anchors

for

its

control

block

structure.

Figure

29

on

page

505

shows

the

sample

compiler

programming

table

shipped

in

PRD1.BASE

member

ARXCMPTM.Z.

EAGRTXIN

is

the

name

of

the

compiler

interface

initialization

routine.

EAGRTXTR

is

the

name

of

the

compiler

interface

termination

routine.

EAGRTPRC

is

the

name

of

the

compiler

runtime

processor.

EAGRTXLD

is

the

name

of

the

compiler

interface

load

routine.

EAGRTXVH

is

the

name

of

the

compiler

interface

variable

handling

routine.

Compiler

Support

504

REXX/VSE

Reference

The

Compiler

Runtime

Processor

When

REXX/VSE

encounters

a

compiled

REXX

program,

REXX/VSE

passes

control

to

the

appropriate

compiler

runtime

processor

to

run

the

program.

Before

the

first

invocation

of

a

compiled

REXX

program

in

the

first

language

processor

environment,

REXX/VSE

loads

the

appropriate

compiler

runtime

processor,

saves

the

location

of

the

compiler

runtime

processor,

then

invokes

the

compiler

runtime

processor.

On

subsequent

invocations

of

compiled

REXX

programs,

and

in

subsequent

language

processor

environments,

REXX/VSE

uses

the

saved

location

of

the

loaded

compiler

runtime

processor

to

pass

control

to

the

compiler

runtime

processor.

The

compiler

runtime

processor

must

issue

all

messages

relating

to

language

processing.

This

includes

those

VSE/ESA

Messages

and

Codes

contains.

When

the

compiler

runtime

processor

receives

control,

it

must

pass

control

to

the

exec

initialization

routine

(EXECINIT)

and

exec

termination

routine

(EXECTERM)

at

the

appropriate

times.

The

programming

routine

ARXRTE

must

pass

control

to

these

routines.

Table

97

describes

the

results

required

from

a

compiler

runtime

processor.

The

results

vary

according

to

how

the

compiled

program

was

invoked

under

the

compiler

runtime

processor.

Table

97.

Compiler

Runtime

Processor

Expected

Results

Method

of

Invocation

(Compiled

Program)

Returned

Results

(Compiled

Program)

EXIT/RETURN

Without

Expression

EXIT/RETURN

With

Expression

Language

Error

Processing

Error

ARXCMPTM

CSECT

,

ARXCMPTM

AMODE

31

ARXCMPTM

RMODE

ANY

ARXCMPTB_HEADER

DS

0CL32

ARXCMPTB_FIRST

DC

AL4(FIRST_ENTRY)

ARXCMPTB_TOTAL

DC

F’1’

ARXCMPTB_USED

DC

F’1’

ARXCMPTB_LENGTH

DC

F’56’

DC

X’0000000000000000’

ARXCMPTB_FFFF

DC

X’FFFFFFFFFFFFFFFF’

FIRST_ENTRY

DS

0CL56

FIRST_ENTRY_RTPROC

DC

C’EAGRTPRC’

FIRST_ENTRY_COMPINIT

DC

C’EAGRTXIN’

FIRST_ENTRY_COMPTERM

DC

C’EAGRTXTR’

FIRST_ENTRY_COMPLOAD

DC

C’EAGRTXLD’

FIRST_ENTRY_COMPVAR

DC

C’EAGRTXVH’

FIRST_ENTRY_STORAGE

DC

4F’0’

END

ARXCMPTM

Figure

29.

Sample

Compiler

Programming

Table

Compiler

Support

Chapter

24.

Support

for

the

Library

for

REXX/370

in

REXX/VSE

505

Subroutine

Set

return

code

to

0.

The

compiler

runtime

processor

must

not

obtain

or

complete

an

EVALBLOK.

Set

return

code

to

0.

The

compiler

runtime

processor

must

use

the

GETEVAL

function

of

ARXRLT

to

obtain

an

EVALBLOK.

The

compiler

runtime

processor

must

then

use

the

results

from

the

execution

of

the

compiled

program

to

complete

the

EVALBLOK.

Set

return

code

to

200nn,

where

1≤nn≤99.

The

compiler

runtime

processor

must

not

obtain

or

complete

an

EVALBLOK.

Set

return

code

to

20.

The

compiler

runtime

processor

must

not

obtain

or

complete

an

EVALBLOK.

Function

For

a

RETURN

without

expression,

set

the

return

code

to

20045.

Return

code

20045

is

a

special

case

of

return

code

200nn.

For

an

EXIT

without

expression,

set

the

return

code

to

0.

Set

return

code

to

0.

The

compiler

runtime

processor

must

use

the

GETEVAL

function

of

ARXRLT

to

obtain

an

EVALBLOK.

The

compiler

runtime

processor

must

then

use

the

results

from

the

execution

of

the

compiled

program

to

complete

the

EVALBLOK.

Set

return

code

to

200nn,

where

1≤nn≤99.

The

compiler

runtime

processor

must

not

obtain

or

complete

an

EVALBLOK.

Set

return

code

to

20.

The

compiler

runtime

processor

must

not

obtain

or

complete

an

EVALBLOK.

Compiler

Support

506

REXX/VSE

Reference

Command

Set

return

code

to

0.

The

compiler

runtime

processor

must

use

the

GETEVAL

function

of

ARXRLT

to

obtain

an

EVALBLOK.

The

compiler

runtime

processor

must

then

complete

the

EVALBLOK

with

a

result

of

0.

Set

return

code

to

0.

The

compiler

runtime

processor

must

represent

the

results

from

the

compiled

program

execution

as

a

number

in

string

format.

If

the

result

string

fits

in

a

fullword,

the

compiler

runtime

processor

must

use

the

GETEVAL

function

of

ARXRLT

to

obtain

an

EVALBLOK.

The

compiler

runtime

processor

must

then

complete

the

EVALBLOK

with

the

result

string.

If

the

result

string

does

not

fit

in

a

fullword,

then

the

compiler

runtime

processor

must

set

the

return

code

to

20026

and

must

not

obtain

or

modify

an

EVALBLOK.

Set

return

code

to

200nn,

where

1≤nn≤99.

The

compiler

runtime

processor

must

not

obtain

or

complete

an

EVALBLOK.

Set

return

code

to

20.

The

compiler

runtime

processor

must

not

obtain

or

complete

an

EVALBLOK.

Entry

Specifications

The

contents

of

the

registers

on

entry

to

the

compiler

runtime

processor

are:

Register

0

Address

of

an

environment

block

Register

1

Address

of

the

parameter

list

Registers

2-12

Unpredictable

Register

13

Address

of

a

register

save

area

Register

14

Return

address

Register

15

Entry

point

address

Parameters

for

the

Compiler

Runtime

Processor

In

register

1,

REXX/VSE

passes

the

address

of

a

parameter

list,

which

consists

of

a

list

of

addresses.

Each

address

in

the

parameter

list

points

to

a

parameter.

REXX/VSE

passes

all

parameters

on

the

call.

REXX/VSE

sets

the

high-order

bit

of

the

last

address

in

the

parameter

list

to

1.

Table

98

on

page

508

lists

the

parameters

for

the

compiler

runtime

processor.

Compiler

Support

Chapter

24.

Support

for

the

Library

for

REXX/370

in

REXX/VSE

507

Table

98.

Parameters

for

a

Compiler

Runtime

Processor

Parameter

Number

of

Bytes

Description

Parameter

1

4

EXECBLK

address.

On

entry

to

the

compiler

runtime

processor,

this

parameter

contains

the

address

of

the

REXX

exec

block

(EXECBLK)

that

ARXLOAD

uses.

The

exec

block

is

a

control

block

that

describes

the

program

to

be

loaded.

For

more

information

on

the

exec

block

parameter

for

ARXLOAD,

see

“The

Exec

Block”

on

page

449.

Parameter

2

4

Compiled

Program

arguments.

On

entry

to

the

compiler

runtime

processor,

this

parameter

contains

the

address

of

a

series

of

address/length

pairs

that

describe

the

arguments

for

the

program.

A

double

word

of

X'FFFFFFFFFFFFFFFF'

delineates

the

end

of

the

pairs.

For

more

information

on

REXX

program

arguments,

see

“Format

of

Argument

List”

on

page

342.

Parameter

3

4

A

fullword

of

flag

bits.

For

more

information

on

flag

bits,

see

the

ARXEXEC

parameters

on

page

340.

Parameter

4

4

In-storage

control

block

address.

The

in-storage

control

block

contains

a

series

of

address/length

pairs

that

REXX

uses

to

describe

the

structure

of

a

loaded

program

in

storage.

ARXLOAD

or

the

compiler

interface

load

routine

initializes

the

in-storage

control

block

before

a

compiler

runtime

processor

receives

control.

For

more

information

on

the

in-storage

control

block,

see

“The

In-Storage

Control

Block

(INSTBLK)”

on

page

343.

Parameter

5

4

This

is

reserved.

Parameter

6

4

Address

of

a

user

field.

When

a

program

calls

ARXEXEC

to

invoke

a

compiled

REXX

program,

the

program

can

pass

the

address

of

a

user

field.

ARXEXEC

passes

the

user

field

address

to

the

compiler

runtime

processor

in

this

parameter.

For

more

information

on

the

user

field,

see

page

341.

Parameter

7

4

Environment

block

address.

On

entry,

this

parameter

contains

the

address

of

the

REXX

environment

block

with

which

the

compiler

programming

table

is

associated.

This

parameter

is

identical

to

the

address

in

register

0.

For

more

information

on

the

REXX

environment

block,

see

“Format

of

the

Environment

Block

(ENVBLOCK)”

on

page

418.

Parameter

8

4

Compiler

runtime

processor

entry

address.

Specifies

the

address

of

the

entry

in

the

compiler

programming

table

for

the

compiler

runtime

processor.

Parameter

9

4

Compiler

runtime

processor

return

code.

On

exit,

the

compiler

runtime

processor

must

set

this

parameter

to

a

return

code

that

indicates

the

completion

status

of

the

compiler

runtime

processor.

Table

99

lists

the

return

codes

for

the

compiler

runtime

processor.

Parameter

10

4

Compiler

runtime

processor

abend

and

reason

codes.

The

abend

and

reason

codes

are

the

same

as

those

ARXEXEC

returns.

For

more

information

on

abend

and

reason

codes

for

ARXEXEC,

see

page

“″Return

Codes″”

on

page

347.

Return

Specifications

On

return

from

the

compiler

runtime

processor,

the

contents

of

registers

0–14

must

be

the

same

as

on

entry.

Return

Codes

Table

99

lists

the

return

codes

the

compiler

runtime

processor

issues.

Table

99.

Return

Codes

from

a

REXX

Compiler

Runtime

Processor

Return

Code

(Decimal)

Description

0

Processing

was

successful.

Table

97

on

page

505

shows

the

expected

results

from

the

compiler

runtime

processor.

Compiler

Support

508

REXX/VSE

Reference

Table

99.

Return

Codes

from

a

REXX

Compiler

Runtime

Processor

(continued)

Return

Code

(Decimal)

Description

20

Processing

was

not

successful.

The

compiler

runtime

processor

issued

an

error

message

that

describes

the

error.

20001–20099

Processing

was

successful.

However,

the

compiler

runtime

processor

detected

a

syntax

error

in

the

compiled

program.

The

return

code

value

is

20000

plus

the

value

of

the

REXX

error

number.

See

VSE/ESA

Messages

and

Codes.

Programming

Considerations

The

compiler

runtime

processor

must

follow

standard

linkage

conventions.

It

must

save

the

registers

on

entry

and

restore

the

registers

when

it

returns.

The

compiler

runtime

processor

must

be

reentrant.

Environment

The

attributes

for

the

compiler

runtime

processor

are:

v

State:

Problem

Program

v

Key:

8

v

AMODE(31)/RMODE(ANY)

v

ASC

mode:

Primary

v

Task

Mode

v

Reentrant.

Compiler

Interface

Routines

During

various

stages

of

processing

a

compiled

REXX

program,

REXX/VSE

invokes

a

compiler

interface

routine,

if

installed,

to

perform

special

processing.

The

compiler

runtime

processor

is

not

required

to

use

the

compiler

interface

routines.

However,

you

must

install

those

compiler

interface

routines

that

the

compiler

runtime

processor

requires.

To

indicate

to

REXX/VSE

that

a

compiler

interface

routine

is

not

required,

specify

a

module

name

of

eight

blanks

in

the

appropriate

field

of

the

compiler

programming

table

entry.

The

four

compiler

interface

routines

are:

Compiler

interface

initialization

routine

Initializes

a

compiler

runtime

processor

Compiler

interface

termination

routine

Terminates

a

compiler

runtime

processor

Compiler

interface

load

routine

Performs

specialized

processing

to

service

a

request

to

load

or

free

a

compiled

program

Compiler

interface

variable

handling

routine

Performs

specialized

processing

to

service

a

request

to

access

REXX

variables.

Compiler

Interface

Initialization

Routine

This

routine,

if

installed,

receives

control

to

initialize

a

compiler

runtime

processor

before

the

compiler

runtime

processor

is

invoked

for

the

first

time.

REXX/VSE

invokes

a

compiler

interface

initialization

routine

once

for

each

compiler

runtime

processor

that

runs

in

a

REXX

language

processor

environment.

Entry

Specifications

The

contents

of

the

registers

on

entry

to

the

compiler

interface

initialization

routine

are:

Register

0

Address

of

an

environment

block

Register

1

Address

of

the

parameter

list

Registers

2-12

Unpredictable

Compiler

Support

Chapter

24.

Support

for

the

Library

for

REXX/370

in

REXX/VSE

509

Register

13

Address

of

a

register

save

area

Register

14

Return

address

Register

15

Entry

point

address

Parameter

List

In

register

1,

REXX/VSE

passes

the

address

of

a

parameter

list,

which

consists

of

a

list

of

addresses.

Each

address

in

the

parameter

list

points

to

a

parameter.

REXX/VSE

passes

all

parameters

on

the

call

and

sets

the

high-order

bit

of

the

last

address

in

the

parameter

list

to

1.

The

following

table

lists

the

parameters

for

the

compiler

interface

initialization

routine.

Table

100.

Parameter

List

for

the

Compiler

Interface

Initialization

Routine

Parameter

Number

of

Bytes

Description

Parameter

1

4

Environment

block

address.

On

entry,

this

parameter

contains

the

address

of

the

REXX

environment

block

with

which

the

compiler

programming

table

is

associated.

This

parameter

is

identical

to

the

address

in

register

0.

For

more

information

on

the

REXX

environment

block,

see

“Format

of

the

Environment

Block

(ENVBLOCK)”

on

page

418.

Parameter

2

4

Compiler

runtime

processor

entry

address.

Specifies

the

address

of

the

entry

in

the

compiler

programming

table

for

the

compiler

runtime

processor.

Parameter

3

4

Compiler

interface

initialization

routine

return

code.

On

exit,

the

compiler

interface

initialization

routine

must

set

this

parameter

to

a

return

code

that

indicates

the

completion

status

of

the

compiler

interface

initialization

routine.

Table

101

lists

the

return

codes

for

the

compiler

interface

initialization

routine.

Return

Specifications

On

return

from

the

compiler

interface

initialization

routine,

the

contents

of

registers

0–14

must

be

the

same

as

on

entry.

Return

Codes

Table

101

lists

the

return

codes

the

compiler

interface

initialization

routine

issues.

Table

101.

Return

Codes

from

the

Compiler

Interface

Initialization

Routine

Return

Code

(Decimal)

Description

0

Processing

was

successful.

REXX/VSE

can

now

pass

control

to

the

compiler

runtime

processor.

20

Processing

was

not

successful.

REXX/VSE

does

not

give

control

to

the

associated

compiler

runtime

processor.

REXX/VSE

does

not

execute

any

compiled

REXX

program

that

uses

the

associated

compiler

runtime

processor.

Programming

Considerations

The

compiler

interface

initialization

routine

must

follow

standard

linkage

conventions.

It

must

save

the

registers

on

entry

and

restore

the

registers

when

it

returns.

The

compiler

interface

initialization

routine

must

be

reentrant.

Environment

The

attributes

for

the

compiler

interface

initialization

routine

are:

v

State:

Problem

Program

v

Key:

8

v

AMODE(31)/RMODE(ANY)

v

ASC

mode:

Primary

v

Task

Mode

v

Reentrant.

Compiler

Support

510

REXX/VSE

Reference

Compiler

Interface

Termination

Routine

This

routine,

if

installed,

receives

control

at

the

termination

of

a

REXX

language

processor

environment.

Entry

Specifications

The

contents

of

the

registers

on

entry

to

the

compiler

interface

termination

routine

are:

Register

0

Address

of

an

environment

block

Register

1

Address

of

the

parameter

list

Registers

2-12

Unpredictable

Register

13

Address

of

a

register

save

area

Register

14

Return

address

Register

15

Entry

point

address

Parameter

List

In

register

1,

REXX/VSE

passes

the

address

of

a

parameter

list,

which

consists

of

a

list

of

addresses.

Each

address

in

the

parameter

list

points

to

a

parameter.

REXX/VSE

passes

all

parameters

on

the

call

and

sets

the

high-order

bit

of

the

last

address

in

the

parameter

list

to

1.

The

following

table

lists

the

parameters

for

the

compiler

interface

termination

routine.

Table

102.

Parameter

List

for

the

Compiler

Interface

Termination

Routine

Parameter

Number

of

Bytes

Description

Parameter

1

4

Environment

block

address.

On

entry,

this

parameter

contains

the

address

of

the

REXX

environment

block

with

which

the

compiler

programming

table

is

associated.

This

parameter

is

identical

to

the

address

in

register

0.

For

more

information

on

the

REXX

environment

block,

see

“Format

of

the

Environment

Block

(ENVBLOCK)”

on

page

418.

Parameter

2

4

Compiler

runtime

processor

entry

address.

Specifies

the

address

of

the

entry

in

the

compiler

programming

table

for

the

compiler

runtime

processor.

Parameter

3

4

Compiler

interface

termination

routine

return

code.

This

parameter

is

reserved

for

future

use.

REXX/VSE

initializes

this

parameter

to

0

and

does

not

inspect

the

parameter

on

return

from

the

compiler

interface

termination

routine.

Return

Specifications

On

return

from

the

compiler

interface

termination

routine,

the

contents

of

registers

0–14

must

be

the

same

as

on

entry.

Return

Codes

The

return

code

parameter

in

the

compiler

interface

termination

routine

is

reserved

for

future

use.

The

compiler

interface

termination

routine

must

not

modify

the

return

code

parameter;

REXX/VSE

does

not

inspect

the

return

code

parameter.

Programming

Considerations

The

compiler

interface

termination

routine

must

follow

standard

linkage

conventions.

It

must

save

the

registers

on

entry

and

restore

the

registers

when

it

returns.

The

compiler

interface

termination

routine

must

be

reentrant.

Environment

The

attributes

for

the

compiler

interface

termination

routine

are:

v

State:

Problem

Program

v

Key:

8

v

AMODE(31)/RMODE(ANY)

Compiler

Support

Chapter

24.

Support

for

the

Library

for

REXX/370

in

REXX/VSE

511

v

ASC

mode:

Primary

v

Task

Mode

v

Reentrant.

Compiler

Interface

Load

Routine

ARXLOAD

passes

control

to

the

compiler

interface

load

routine

in

either

of

two

cases:

v

After

the

REXX

language

processor

reads

a

compiled

REXX

program

into

storage.

v

When

the

REXX

language

processor

makes

a

request

to

free

the

in-storage

control

block

that

an

earlier

request

to

the

compiler

interface

load

routine

created.

Note:

This

section

discusses

the

interaction

between

the

compiler

interface

load

routine

and

the

IBM-supplied

ARXLOAD

routine.

For

compiled

programs,

ARXLOAD

calls

the

compiler

interface

load

routine,

if

installed,

before

ARXLOAD

builds

the

in-storage

control

block

and

after

ARXLOAD

has

obtained

all

information

the

compiler

interface

load

routine

requires.

One

of

the

inputs

(parameter

5)

to

the

compiler

interface

load

routine

is

a

group

of

blocks

containing

the

compiled

REXX

program.

The

compiler

interface

load

routine

must

create

and

initialize

an

in-storage

control

block

from

the

group

of

blocks,

preferably

above

16

megabytes

in

virtual

storage.

For

more

information

about

the

in-storage

control

block,

see

“The

In-Storage

Control

Block

(INSTBLK)”

on

page

343.

Entry

Specifications

The

contents

of

the

registers

on

entry

to

the

compiler

interface

load

routine

are:

Register

0

Address

of

an

environment

block

Register

1

Address

of

the

parameter

list

Registers

2-12

Unpredictable

Register

13

Address

of

a

register

save

area

Register

14

Return

address

Register

15

Entry

point

address

Parameter

List

In

register

1,

the

calling

program

(ARXLOAD)

passes

the

address

of

a

parameter

list,

which

consists

of

a

list

of

addresses.

Each

address

in

the

parameter

list

points

to

a

parameter.

ARXLOAD

passes

all

parameters

on

the

call

and

sets

the

high-order

bit

of

the

last

address

in

the

parameter

list

to

1.

The

following

table

lists

the

parameters

for

the

compiler

interface

load

routine.

Compiler

Support

512

REXX/VSE

Reference

Table

103.

Parameter

List

for

the

Compiler

Interface

Load

Routine

Parameter

Number

of

Bytes

Description

Parameter

1

8

Function

requested.

On

entry,

this

parameter

contains

the

function

requested

of

the

compiler

interface

load

routine

The

function

specification

is

in

uppercase,

left-justified,

and

padded

on

the

right

with

blanks.

Acceptable

values

are:

″LOAD

″

Specifies

that

the

compiler

interface

load

routine

is

to

load

a

program

into

storage.

″FREE

″

Specifies

that

the

compiler

interface

load

routine

is

to

free

the

program

represented

by

the

in-storage

control

block

specified

in

parameter

8.

For

more

information

on

the

LOAD

and

FREE

functions,

see

“″Functions

You

Can

Specify...″”

on

page

448.

Parameter

2

4

EXECBLK

address.

On

entry

to

the

compiler

interface

load

routine,

this

parameter

contains

the

address

of

the

REXX

exec

block

(EXECBLK)

that

ARXLOAD

uses.

The

exec

block

is

a

control

block

that

describes

the

program

to

be

loaded.

For

more

information

on

the

exec

block

parameter

for

ARXLOAD,

see

“The

Exec

Block”

on

page

449.

Parameter

3

4

Record

format.

On

entry,

this

parameter

specifies

the

format

of

records

in

the

blocks

passed

to

this

routine

in

parameter

5.

Possible

values

for

this

parameter

are

’F

’

for

fixed-length

records

and

’V

’

for

variable-length

records.

Variable-length

records

do

not

span

across

blocks.

Parameter

4

4

Record

length.

On

entry,

this

parameter

specifies

the

length

of

each

record

for

fixed-length

records,

or

the

maximum

record

length

for

variable-length

records.

Each

variable-length

record

contains

a

record

descriptor

word

(RDW).

The

first

two

bytes

of

the

RDW

indicate

the

actual

length

of

the

record,

including

the

RDW.

Parameter

5

4

Address

of

a

vector

of

address/length

pairs.

Each

address/length

pair

contains

the

address

and

length

of

a

block

of

data

that

contains

the

statements

of

the

program.

A

double

word

of

X'FFFFFFFFFFFFFFFF'

indicates

the

end

of

the

pairs.

Parameter

6

4

Environment

block

address.

On

entry,

this

parameter

contains

the

address

of

the

REXX

environment

block

with

which

the

compiler

programming

table

is

associated.

This

parameter

is

identical

to

the

address

in

register

0.

For

more

information

on

the

REXX

environment

block,

see

“Format

of

the

Environment

Block

(ENVBLOCK)”

on

page

418.

Parameter

7

4

Compiler

runtime

processor

entry

address.

Specifies

the

address

of

the

entry

in

the

compiler

programming

table

for

the

compiler

runtime

processor.

Compiler

Support

Chapter

24.

Support

for

the

Library

for

REXX/370

in

REXX/VSE

513

Table

103.

Parameter

List

for

the

Compiler

Interface

Load

Routine

(continued)

Parameter

Number

of

Bytes

Description

Parameter

8

4

In-storage

control

block

address.

The

in-storage

control

block

contains

a

series

of

address/length

pairs

that

REXX

uses

to

describe

the

structure

of

a

loaded

program

in

storage.

For

more

information

on

the

in-storage

control

block,

see

“The

In-Storage

Control

Block

(INSTBLK)”

on

page

343.

When

ARXLOAD

invokes

the

compiler

interface

load

routine

to

load

a

compiled

program,

the

compiler

interface

load

routine

should

create

an

in-storage

control

block

and

place

the

control

block

address

in

this

parameter.

ARXLOAD

considers

this

parameter

to

be

valid

only

when

the

return

code

from

the

compiler

interface

load

routine

is

0.

When

ARXLOAD

invokes

the

compiler

interface

load

routine

to

free

storage

for

the

REXX

program,

this

parameter

contains

the

address

of

the

in-storage

control

block

that

the

compiler

interface

load

routine

previously

created

and

is

to

free.

For

complete

details

on

in-storage

control

blocks,

see

“The

In-Storage

Control

Block

(INSTBLK)”

on

page

343.

Parameter

9

4

Compiler

interface

load

routine

return

code.

On

exit,

the

compiler

interface

load

routine

must

set

this

parameter

to

a

return

code

that

indicates

the

completion

status

of

the

compiler

interface

load

routine.

Table

104

lists

the

return

codes

issued

by

the

compiler

interface

load

routine.

Return

Specifications

On

return

from

the

compiler

interface

load

routine,

the

contents

of

registers

0–14

must

be

the

same

as

on

entry.

Return

Codes

Table

104

lists

the

return

codes

issued

by

the

compiler

interface

load

routine.

Table

104.

Return

Codes

from

the

Compiler

Interface

Load

Routine

Return

Code

(Decimal)

Description

0

Processing

was

successful.

If

the

requested

function

was

LOAD,

parameter

8

contains

the

address

of

the

created

in-storage

control

block.

If

the

requested

function

was

FREE,

the

in-storage

control

block

specified

in

parameter

8

has

been

freed.

4

Processing

was

successful.

However,

the

compiler

interface

load

routine

did

not

create

an

in-storage

control

block.

ARXLOAD

will

create

an

in-storage

control

block.

20

Processing

was

not

successful.

A

severe

error

has

occurred.

The

compiler

interface

load

routine

should

issue

a

message

to

accompany

this

return

code.

ARXLOAD

propagates

a

return

code

of

20

to

the

caller

of

ARXLOAD.

Programming

Considerations

The

compiler

interface

load

routine

must

follow

standard

linkage

conventions.

It

must

save

the

registers

on

entry

and

restore

the

registers

when

it

returns.

The

compiler

interface

load

routine

must

be

reentrant.

Environment

The

attributes

for

the

compiler

interface

load

routine

are:

v

State:

Problem

Program

v

Key:

8

Compiler

Support

514

REXX/VSE

Reference

v

AMODE(31)/RMODE(ANY)

v

ASC

mode:

Primary

v

Task

Mode

v

Reentrant.

Compiler

Interface

Variable

Handling

Routine

The

compiler

interface

variable

handling

routine,

if

installed,

receives

control

whenever

an

external

routine

or

host

command

requests

access

to

REXX

variables

using

ARXEXCOM.

Entry

Specifications

The

contents

of

the

registers

on

entry

to

the

compiler

interface

variable

handling

routine

are:

Register

0

Address

of

an

environment

block

Register

1

Address

of

the

parameter

list

Registers

2-12

Unpredictable

Register

13

Address

of

a

register

save

area

Register

14

Return

address

Register

15

Entry

point

address

Parameter

List

for

the

Compiler

Interface

Variable

Handling

Routine

In

register

1,

the

calling

program

passes

the

address

of

a

parameter

list,

which

consists

of

a

list

of

addresses.

Each

address

in

the

parameter

list

points

to

a

parameter.

REXX/VSE

sets

the

high-order

bit

of

the

last

address

in

the

parameter

list

to

1.

Table

105

lists

the

parameters

for

the

compiler

interface

variable

handling

routine.

Table

105.

Parameter

List

for

the

Compiler

Interface

Variable

Handling

Routine

Parameter

Number

of

Bytes

Description

Parameter

1

1

Variable

handling

function

request.

On

entry

to

the

compiler

interface

variable

handling

routine,

this

parameter

contains

a

1-character

field

corresponding

to

the

shared

variable

request

code

(SHVCODE)

used

by

ARXEXCOM.

For

more

information

on

shared

variable

request

codes,

see

“″SHVCODE″”

on

page

360.

This

routine

must

also

support

the

function

’n’—Fetch

Next

with

Mask.

The

Fetch

Next

with

Mask

function

must

search

through

all

variables

known

to

the

language

processor.

These

variables

include

stem

variables

that

have

been

assigned

a

value.

The

output

from

this

function

is

expected

to

be

the

next

variable

that

begins

with

the

specified

mask.

Parameter

2

4

The

address

of

the

variable

name

to

be

manipulated.

This

is

an

input

parameter

for

the

following

functions:

Function

SHVCODE

Set

Variable

’S’,’s’

Fetch

Variable

’F’,’f’

Drop

Variable

’D’,’d’

Fetch

Private

’P’

For

the

Fetch

Next

(’N’)

and

Fetch

Next

with

Mask

(’n’)

functions,

this

parameter

must

be

set

on

output

to

the

address

of

the

next

variable

name.

Parameter

3

4

Length

of

variable

name.

Specifies

the

length

of

the

string

to

which

the

address

in

parameter

2

points.

Compiler

Support

Chapter

24.

Support

for

the

Library

for

REXX/370

in

REXX/VSE

515

Table

105.

Parameter

List

for

the

Compiler

Interface

Variable

Handling

Routine

(continued)

Parameter

Number

of

Bytes

Description

Parameter

4

4

Address

of

the

value

for

the

variable.

This

is

an

input

parameter

for

the

Set

Variable

function

(’S’,’s’)

and

an

output

parameter

for

the

following

functions:

Function

SHVCODE

Fetch

Variable

’F’,’f’

Fetch

Next

’N’

Fetch

Next

with

Mask

’n’

Fetch

Private

’P’

This

parameter

is

not

used

for

the

Drop

Variable

(’D’,’d’)

function.

Parameter

5

4

Length

of

the

value

for

the

variable.

Specifies

the

length

of

the

value

to

which

the

address

in

parameter

4

points.

Parameter

6

4

Work

block

extension

address.

On

entry,

this

parameter

contains

the

address

of

the

work

block

extension.

The

work

block

extension

contains

the

WORKEXT_RTPROC

field,

which

the

compiler

runtime

processor

can

use

as

an

anchor

for

resources

that

are

specific

to

a

particular

compiled

program.

Parameter

7

4

Compiler

runtime

processor

entry

address.

Specifies

the

address

of

the

entry

in

the

compiler

programming

table

for

the

compiler

runtime

processor.

Parameter

8

4

Environment

block

address.

On

entry,

this

parameter

contains

the

address

of

the

REXX

environment

block

with

which

the

compiler

programming

table

is

associated.

This

parameter

is

identical

to

the

address

in

register

0.

For

more

information

on

the

REXX

environment

block,

see

“Format

of

the

Environment

Block

(ENVBLOCK)”

on

page

418.

Parameter

9

1

Shared

variable

function

return

code

(SHVRET).

On

output,

the

compiler

interface

variable

handling

routine

must

set

this

parameter

to

the

appropriate

value

for

the

SHVRET

field.

The

values

returned

in

this

parameter

for

the

Fetch

Next

with

Mask

function

must

be

identical

to

those

returned

for

the

Fetch

Next

function.

For

a

list

of

appropriate

values

for

the

SHVRET

field,

see

“″SHVBLOCK″”

on

page

358.

Parameter

10

4

Compiler

interface

variable

handling

routine

return

code.

On

exit,

the

compiler

interface

variable

handling

routine

must

set

this

parameter

to

a

return

code

that

indicates

the

completion

status

of

the

compiler

interface

variable

handling

routine.

Table

106

on

page

517

lists

the

return

codes

for

the

compiler

interface

variable

handling

routine.

Parameter

11

4

Fetch

next

mask.

This

parameter

is

optional

and

used

only

with

the

Fetch

Next

with

Mask

function

(’n’).

When

the

language

processor

provides

this

parameter,

it

specifies

an

address

of

a

mask

used

to

search

for

the

next

variable

or

stem.

The

mask

can

be

a

character

string

that

meets

the

naming

conventions

for

simple

variables

or

variable

stems.

The

mask

cannot

identify

a

compound

variable.

The

compiler

interface

variable

handling

routine

must

return

a

variable

whose

name

begins

with

the

mask

provided.

A

parameter

value

of

0

indicates

that

no

mask

is

provided.

Parameter

12

4

Fetch

next

mask

length.

This

parameter

is

optional

and

may

be

used

only

in

conjunction

with

parameter

11.

This

value

is

the

length

of

the

mask

provided

in

parameter

11.

This

parameter

is

ignored

if

the

value

in

parameter

11

is

0.

Return

Specifications

On

return

from

the

compiler

interface

variable

handling

routine,

the

contents

of

registers

0–14

must

be

the

same

as

on

entry.

Compiler

Support

516

REXX/VSE

Reference

Return

Codes

Table

106

lists

the

return

codes

the

compiler

interface

variable

handling

routine

issues.

Table

106.

Return

Codes

from

the

Compiler

Interface

Variable

Handling

Routine

Return

Code

(Decimal)

Description

0

Processing

was

successful.

4

Processing

was

not

successful.

Insufficient

storage

was

available.

8

Processing

was

not

successful.

The

name

that

was

passed

in

parameter

2,

or

created

by

a

symbolic

substitution

on

parameter

2,

is

too

long.

12

Processing

was

not

successful.

The

name

that

was

passed

in

parameter

2,

or

created

by

a

symbolic

substitution

on

parameter

2,

is

incorrect

because

it

begins

with

a

character

that

is

not

valid.

20

Processing

was

not

successful.

Programming

Considerations

The

compiler

interface

variable

handling

routine

must

follow

standard

linkage

conventions.

It

must

save

the

registers

on

entry

and

restore

the

registers

when

it

returns.

The

compiler

interface

variable

handling

routine

must

be

reentrant.

Environment

The

attributes

for

the

compiler

interface

variable

handling

routine

are:

v

State:

Problem

Program

v

Key:

8

v

AMODE(31)/RMODE(ANY)

v

ASC

mode:

Primary

v

Task

Mode

v

Reentrant.

Environment

for

the

Programming

Routines

The

ARXERS,

ARXHST,

and

ARXRTE

programming

routines

must

run

in

an

environment

with

the

following

characteristics:

v

State:

Problem

Program

v

Key:

8

v

AMODE(31)/RMODE(ANY)

v

ASC

mode:

Primary

v

Task

mode.

External

Routine

Search

Routine

(ARXERS)

ARXERS

is

a

programming

routine

that

searches

for

and

runs

an

external

routine.

ARXERS

allows

a

compiler

runtime

processor

to

pass

control

to

an

external

routine

by

a

direct

interface.

A

compiler

runtime

processor

that

uses

ARXERS

leaves

the

implementation

of

the

external

routine

search

and

invocation

to

REXX/VSE.

For

more

information

on

the

search

order

for

REXX

external

routines,

see

page

63.

Entry

Specifications

The

contents

of

the

registers

on

entry

to

ARXERS

are:

Register

0

Address

of

an

environment

block

(optional)

Register

1

Address

of

the

parameter

list

Registers

2-12

Unpredictable

Register

13

Address

of

a

register

save

area

Register

14

Return

address

Compiler

Support

Chapter

24.

Support

for

the

Library

for

REXX/370

in

REXX/VSE

517

Register

15

Entry

point

address

Parameters

for

ARXERS

You

can

pass

the

address

of

an

environment

block

in

register

0.

In

register

1,

the

compiler

runtime

processor

must

pass

the

address

of

a

parameter

list,

which

consists

of

a

list

of

addresses.

Each

address

in

the

parameter

list

points

to

a

parameter.

The

first

five

parameters

are

required.

The

addresses

that

point

to

parameter

6

and

parameter

7

are

optional.

If

ARXERS

does

not

find

the

high-order

bit

set

on

in

the

address

for

parameter

5

or

(optional

parameters)

6

or

7,

ARXERS

does

not

invoke

the

specified

routine

and

returns

with

a

return

code

of

32

in

register

15.

See

Table

108

on

page

519

for

more

information

on

return

codes.

Set

the

high-order

bit

of

the

last

address

in

the

parameter

list

to

1.

Table

107

lists

the

parameters

for

the

external

routine

search

routine.

Table

107.

Parameters

for

the

External

Routine

Search

Routine

Parameter

Number

of

Bytes

Description

Parameter

1

8

Function

requested.

On

entry

to

ARXERS,

this

parameter

contains

the

function

requested

of

the

external

routine

search

routine.

The

function

specification

must

be

in

uppercase,

left-justified,

and

padded

on

the

right

with

blanks.

Acceptable

values

are:

″EXTSUB

″

Specifies

that

the

external

routine

that

is

being

requested

is

a

subroutine.

The

subroutine

is

not

required

to

return

an

EVALBLOK.

For

a

successfully

run

subroutine

that

does

not

return

an

EVALBLOK,

the

EVALBLOK

address

is

set

to

0

and

the

return

code

is

set

to

0.

″EXTBRSUB″

Specifies

that

the

external

routine

that

is

being

requested

is

a

subroutine

and

receives

control

through

a

branch

instruction.

The

external

routine

is

invoked

using

standard

register

linkage.

See

Table

21

on

page

349

for

more

information.

″EXTFCT

″

Specifies

that

the

external

routine

that

is

being

requested

is

a

function.

The

function

is

required

to

return

an

EVALBLOK.

For

a

successfully

run

function

that

does

not

return

an

EVALBLOK,

the

EVALBLOK

address

is

set

to

0

and

the

return

code

is

set

to

4.

″EXTBRFCT″

Specifies

that

the

external

routine

that

is

being

requested

is

a

function

and

receives

control

through

a

branch

instruction.

The

external

routine

is

called

using

standard

register

linkage

conventions.

See

Table

21

on

page

349

for

more

information.

Parameter

2

4

Address

of

the

external

routine

name.

For

the

″EXTFCT

″

and

″EXTSUB

″

functions,

this

parameter

specifies

the

address

of

the

external

routine

name

for

the

requested

external

routine.

The

name

must

not

include

the

opening

left

parenthesis

that

identifies

the

routine

as

a

function,

if

that

is

the

type

of

routine

being

called.

For

the

″EXTBRFCT″

and

″EXTBRSUB″

functions,

this

parameter

specifies

the

address

of

the

external

routine

that

is

to

be

given

control.

ARXERS

branches

to

this

address

after

building

the

parameter

list

for

the

specified

routine.

Parameter

3

4

Length

of

the

external

routine

name.

Specifies

the

length

of

the

external

routine

name

to

which

parameter

2

points.

ARXERS

ignores

this

parameter

if

parameter

1

is

″EXTBRFCT″

or

″EXTBRSUB″.

Parameter

4

4

Address

of

the

arguments

for

the

external

routine.

Specifies

the

address

of

a

set

of

address/length

pairs

that

hold

the

arguments

for

the

external

routine.

These

arguments

must

be

in

the

format

an

external

routine

expects.

(See

page

349

for

a

description

of

the

argument

list

format.)

Compiler

Support

518

REXX/VSE

Reference

Table

107.

Parameters

for

the

External

Routine

Search

Routine

(continued)

Parameter

Number

of

Bytes

Description

Parameter

5

4

Address

of

an

EVALBLOK.

On

return

from

ARXERS,

this

parameter

contains

the

address

of

an

EVALBLOK

(if

any)

that

ARXERS

returned

after

an

external

routine

successfully

completed.

An

address

of

0

indicates

that

ARXERS

did

not

receive

an

EVALBLOK.

Parameter

6

4

The

address

of

a

REXX

environment

block

is

optional.

This

is

the

address

of

the

REXX

environment

block

under

which

the

request

is

to

be

performed.

If

the

compiler

runtime

processor

supplies

a

nonzero

parameter,

ARXERS

considers

this

parameter

to

be

a

valid

environment

block

address.

If

you

omit

this

parameter

or

it

is

0,

ARXERS

obtains

the

environment

block

address

from

register

0.

See

“Using

the

Environment

Block

Address”

on

page

445

for

more

information

about

this.

Parameter

7

4

Return

code.

The

return

code

parameter

is

optional.

Upon

return

from

ARXERS,

this

parameter

contains

the

return

code

for

ARXERS.

Register

15

contains

the

same

value

as

this

parameter

(if

used).

Return

Specifications

On

return

from

the

external

routine

search

routine,

the

contents

of

the

registers

are:

Registers

0-14

Same

as

on

entry

Register

15

Return

code.

Return

Codes

Table

108

lists

the

return

codes

issued

by

the

external

routine

search

routine.

Table

108.

Return

Codes

from

the

External

Routine

Search

Routine

Return

Code

(Decimal)

Description

0

Processing

was

successful.

ARXERS

located

the

external

routine,

and

the

external

routine

returned

control

with

a

return

code

of

0

in

register

15.

If

you

specified

EXTFCT

or

EXTBRFCT,

the

address

of

the

EVALBLOK

is

available

in

parameter

5.

4

Processing

was

successful.

ARXERS

located

the

external

routine,

and

the

external

routine

returned

control

with

a

return

code

of

0

in

register

15.

However,

you

specified

EXTFCT

or

EXTBRFCT,

and

the

external

routine

returned

no

EVALBLOK.

8

Processing

was

successful.

ARXERS

located

the

external

routine,

and

the

external

routine

returned

with

a

nonzero

return

code

in

register

15.

12

Processing

was

not

successful.

ARXERS

attempted

to

create

an

EVALBLOK,

but

insufficient

virtual

storage

was

available.

16

Processing

was

not

successful.

ARXERS

could

not

locate

the

specified

routine.

20

Processing

was

not

successful.

An

error

message

may

accompany

this

return

code.

28

Processing

was

not

successful.

ARXERS

was

unable

to

locate

a

language

processor

environment.

Verify

that

you

passed

a

valid

environment

block

address.

32

Processing

was

not

successful.

The

parameter

list

is

incorrect.

The

parameter

list

contains

either

too

few

or

too

many

parameters,

or

the

high-order

bit

of

the

last

address

in

the

list

is

not

set

to

1

to

indicate

the

end

of

the

parameter

list.

Host

Command

Search

Routine

(ARXHST)

ARXHST

is

a

programming

routine

that

searches

for

and

runs

a

host

command.

ARXHST

allows

a

compiler

runtime

processor

to

pass

control

to

a

host

command

through

a

direct

interface.

A

compiler

Compiler

Support

Chapter

24.

Support

for

the

Library

for

REXX/370

in

REXX/VSE

519

runtime

processor

that

uses

ARXHST

leaves

the

implementation

of

the

host

command

search

and

invocation

to

REXX/VSE.

For

more

information

on

the

search

order

for

REXX

external

routines,

see

page

63.

ARXHST

also

allows

a

compiler

runtime

processor

to

set

and

clear

the

ETMODE

flag,

based

on

the

OPTIONS

ETMODE

or

OPTIONS

NOETMODE

instruction.

The

″ETMODE″

function

of

ARXHST

sets

the

ETMODE

flag.

The

″NOETMODE″

function

of

ARXHST

clears

the

ETMODE

flag.

For

more

information

on

OPTIONS

ETMODE

and

OPTIONS

NOETMODE,

see

the

OPTIONS

instruction

on

page

45.

Entry

Specifications

The

contents

of

the

registers

on

entry

to

ARXHST

are:

Register

0

Address

of

an

environment

block

(optional)

Register

1

Address

of

the

parameter

list

the

caller

passes

Registers

2-12

Unpredictable

Register

13

Address

of

a

register

save

area

Register

14

Return

address

Register

15

Entry

point

address

Parameters

for

ARXHST

In

register

1,

the

compiler

runtime

processor

must

pass

the

address

of

a

parameter

list,

which

consists

of

a

list

of

addresses.

Each

address

in

the

parameter

list

points

to

a

parameter.

The

first

six

parameters

are

required.

The

addresses

that

point

to

parameter

7

and

parameter

8

are

optional.

If

ARXHST

does

not

find

the

high-order

bit

set

on

in

the

address

for

parameter

6

or

(optional

parameters)

7

or

8,

ARXHST

does

not

invoke

the

specified

routine

and

returns

with

a

return

code

of

32

in

register

15.

See

Table

110

on

page

521

for

more

information

on

return

codes.

The

high-order

bit

of

the

last

address

in

the

parameter

list

must

be

set

to

1.

Table

109

lists

the

parameters

for

the

host

command

search

routine.

Table

109.

Parameters

for

the

Host

Command

Search

Routine

Parameter

Number

of

Bytes

Description

Parameter

1

8

Function

requested.

On

entry

to

ARXHST,

this

parameter

contains

the

function

requested

of

the

host

command

search

routine.

The

function

name

must

be

in

uppercase,

left-justified,

and

padded

on

the

right

with

blanks.

Acceptable

values

are:

″HOSTCMD

″

Specifies

ARXHST

searches

for

and

invokes

a

host

command.

″ETMODE″

Specifies

that

ARXHST

sets

the

ETMODE

flag.

″NOETMODE″

Specifies

that

ARXHST

clears

the

ETMODE

flag.

Parameter

2

8

Host

command

environment

name.

Specifies

the

name

of

the

host

command

environment

that

is

in

effect

for

the

compiled

REXX

program

that

is

running.

The

name

must

be

in

uppercase,

left-justified,

and

padded

on

the

right

with

blanks.

The

name

should

correspond

to

an

entry

in

the

host

command

environment

table.

Use

this

parameter

only

for

the

″HOSTCMD″

function.

For

the

″ETMODE″

or

″NOETMODE″

functions,

set

this

parameter

to

blanks.

Parameter

3

4

Address

of

host

command

string.

Specifies

the

address

of

a

string

for

the

host

command

environment

to

run.

ARXHST

passes

the

string

as

is

to

the

host

command

environment

routine

that

corresponds

to

the

host

command

environment

specified

in

parameter

2.

The

program

that

calls

ARXHST

must

manage

(allocate

and

free)

storage

for

the

command

buffer.

Use

this

parameter

only

for

the

″HOSTCMD″

function.

For

the

″ETMODE″

or

″NOETMODE″

functions,

set

this

parameter

to

0.

Compiler

Support

520

REXX/VSE

Reference

Table

109.

Parameters

for

the

Host

Command

Search

Routine

(continued)

Parameter

Number

of

Bytes

Description

Parameter

4

4

Host

command

string

length.

Specifies

the

length

of

the

command

string

to

which

the

address

in

parameter

3

points.

Use

this

parameter

only

for

the

″HOSTCMD″

function.

For

the

″ETMODE″

or

″NOETMODE″

functions,

set

this

parameter

to

0.

Parameter

5

4

Command

output

buffer

address.

Specifies

the

address

of

an

area

to

hold

the

result

of

the

command.

This

result

is

a

character

representation

of

the

binary

return

code

the

host

command

issues.

It

is

recommended

that

this

area

be

20

bytes.

If

parameter

2

is

not

defined

in

the

host

command

environment

table,

ARXHST

returns

the

character

representation

of

-3.

The

compiler

runtime

processor

that

calls

ARXHST

should

properly

set

the

REXX

special

variable

RC.

Use

this

parameter

only

for

the

″HOSTCMD″

function.

For

the

″ETMODE″

or

″NOETMODE″

functions,

set

this

parameter

to

0.

Parameter

6

4

Output

area

length.

Specifies

the

length

of

the

output

area

to

which

the

address

in

parameter

5

points.

Use

this

parameter

only

for

the

″HOSTCMD″

function.

For

the

″ETMODE″

or

″NOETMODE″

functions,

set

this

parameter

to

0.

Parameter

7

4

The

address

of

a

REXX

environment

block

is

optional.

This

is

the

address

of

the

REXX

environment

block

under

which

the

request

is

to

be

performed.

If

the

compiler

runtime

processor

supplies

a

nonzero

parameter,

ARXHST

considers

this

parameter

to

be

a

valid

environment

block

address.

If

you

omit

this

parameter

or

it

is

0,

ARXHST

obtains

the

environment

block

address

from

register

0.

See

“Using

the

Environment

Block

Address”

on

page

445

for

more

information

about

this.

Parameter

8

4

The

requested

function

return

code

is

optional.

On

return

from

ARXHST,

this

parameter

contains

the

return

code

for

ARXHST.

See

Table

110

for

information

on

return

codes

the

host

command

search

routine

issues.

Register

15

contains

the

same

value

as

this

parameter

(if

used).

Return

Specifications

On

return

from

the

host

command

search

routine,

the

contents

of

the

registers

are:

Registers

0-14

Same

as

on

entry

Register

15

Return

code.

Return

Codes

Table

110

lists

the

return

codes

the

host

command

search

routine

issues.

Table

110.

Return

Codes

from

the

Host

Command

Search

Routine

Return

Code

(Decimal)

Description

0

Processing

was

successful.

For

the

″HOSTCMD″

function,

ARXHST

located

the

host

command

and

the

host

command

returned

with

a

return

code

of

0

in

register

15.

For

the

″ETMODE″

and

″NOETMODE″

functions,

ARXHST

set

or

cleared

the

ETMODE

flag

successfully.

20

Processing

was

not

successful.

For

the

″HOSTCMD″

function,

ARXHST

could

not

locate

the

specified

host

command.

ARXHST

returns

-3

in

the

command

output

buffer.

The

command

string

specified

in

parameters

3

and

4

is

incorrect,

the

requested

function

could

not

be

located

in

the

search

order,

or

the

host

command

environment

table

did

not

define

the

host

command

environment

routine.

This

return

code

could

also

indicate

passing

an

incorrect

function

(parameter

1)

to

ARXHST.

Valid

functions

are

″HOSTCMD″,

″ETMODE″,

and

″NOETMODE″.

Compiler

Support

Chapter

24.

Support

for

the

Library

for

REXX/370

in

REXX/VSE

521

Table

110.

Return

Codes

from

the

Host

Command

Search

Routine

(continued)

Return

Code

(Decimal)

Description

28

Processing

was

not

successful.

ARXHST

could

not

locate

a

language

processor

environment.

The

command

output

area

is

not

modified.

Verify

that

you

passed

a

valid

environment

block

address.

32

Processing

was

not

successful.

The

parameter

list

is

incorrect.

The

parameter

list

contains

too

few

or

too

many

parameters,

or

the

high-order

bit

of

the

last

address

in

the

list

is

not

set

to

1

to

indicate

the

end

of

the

parameter

list.

The

command

output

buffer

is

not

modified.

nn

Processing

was

successful.

The

specified

host

command

environment

routine

returned

a

nonzero

return

code.

The

return

code

from

the

host

command

environment

routine

is

nn.

Exit

Routing

Routine

(ARXRTE)

ARXRTE

is

a

programming

routine

that

locates

and

invokes

a

REXX

exit.

ARXRTE

provides

a

way

for

a

compiler

runtime

processor

to

invoke

REXX

exit

routines.

A

compiler

runtime

processor

that

uses

ARXRTE

leaves

the

implementation

of

exit

routing

to

REXX/VSE.

For

information

about

REXX

exit

routines,

see

“REXX

Exit

Routines”

on

page

471.

Entry

Specifications

The

contents

of

the

registers

on

entry

to

ARXRTE

are:

Register

0

Address

of

an

environment

block

(optional)

Register

1

Address

of

the

parameter

list

the

caller

passes

Registers

2-12

Unpredictable

Register

13

Address

of

a

register

save

area

Register

14

Return

address

Register

15

Entry

point

address

Parameters

for

ARXRTE

In

register

1,

the

compiler

runtime

processor

must

pass

the

address

of

a

parameter

list,

which

consists

of

a

list

of

addresses.

Each

address

in

the

parameter

list

points

to

a

parameter.

The

first

three

parameters

are

required.

The

addresses

that

point

to

parameter

4

and

parameter

5

are

optional.

If

ARXRTE

does

not

find

the

high-order

bit

set

on

in

either

the

address

for

parameter

3

or

(optional

parameters)

4

or

5,

ARXRTE

does

not

invoke

the

specified

routine

and

returns

with

a

return

code

of

32

in

register

15.

See

Table

112

on

page

523

for

more

information

on

return

codes.

To

end

the

parameter

list,

set

the

high-order

bit

of

the

last

address

to

1.

Table

111

lists

the

parameters

for

the

exit

routing

routine.

Table

111.

Parameters

for

the

Exit

Routing

Routine

Parameter

Number

of

Bytes

Description

Parameter

1

8

Function

requested.

On

entry

to

ARXRTE,

this

parameter

contains

the

function

requested

of

the

exit

routing

routine.

The

function

name

must

be

in

uppercase,

left-justified,

and

padded

on

the

right

with

blanks.

Acceptable

values

are:

″EXECINIT″

Specifies

running

the

EXECINIT

exit

routine.

For

more

information

on

the

EXECINIT

exit,

see

“Exec

Initialization

and

Termination

Exits”

on

page

476.

″EXECTERM″

Specifies

running

the

EXECTERM

exit

routine.

For

more

information

on

the

EXECTERM

exit,

see

“Exec

Initialization

and

Termination

Exits”

on

page

476.

Compiler

Support

522

REXX/VSE

Reference

Table

111.

Parameters

for

the

Exit

Routing

Routine

(continued)

Parameter

Number

of

Bytes

Description

Parameter

2

8

Exit

routine

parameter

list

address.

Specifies

the

address

of

the

parameter

list

for

the

requested

exit

routine.

If

the

exit

does

not

require

parameters,

the

address

in

this

parameter

must

be

set

to

0.

For

a

discussion

of

the

parameters

for

the

specified

exit,

see

“REXX

Exit

Routines”

on

page

471.

Parameter

3

4

Exit

routine

return

code.

On

return

from

ARXRTE,

this

parameter

contains

the

return

code

value

from

the

requested

exit.

This

value

has

meaning

only

if

the

return

code

from

ARXRTE

is

0.

Parameter

4

4

The

address

of

a

REXX

environment

block

is

optional.

This

is

the

address

of

the

REXX

environment

block

under

which

the

request

is

to

be

performed.

If

the

compiler

runtime

processor

supplies

a

nonzero

parameter,

ARXRTE

considers

this

parameter

to

be

a

valid

environment

block

address.

If

you

omit

this

parameter

or

it

is

0,

ARXRTE

obtains

the

environment

block

address

from

register

0.

(See

Chapter

20,

“Initialization

and

Termination

Routines,”

on

page

431.)

Parameter

5

4

Return

code.

The

return

code

parameter

is

optional.

On

return

from

ARXRTE,

this

parameter

contains

the

return

code

for

ARXRTE.

Register

15

will

contain

the

same

value

as

this

parameter

(if

used).

Return

Specifications

On

return

from

the

exit

routing

routine,

the

contents

of

the

registers

are:

Registers

0-14

Same

as

on

entry

Register

15

Return

code.

Return

Codes

Table

112

lists

the

return

codes

the

exit

routing

routine

issues.

Table

112.

Return

Codes

from

the

Exit

Routing

Routine

Return

Code

(Decimal)

Description

0

Processing

was

successful.

ARXRTE

located

the

exit,

passed

control

to

the

exit,

and

the

exit

ran

to

completion.

The

return

code

from

the

exit

is

available

in

parameter

3.

4

Processing

was

not

successful.

The

module

name

table

for

the

current

environment

did

not

have

an

entry

for

the

requested

exit.

Verify

that

the

environment

block

address

specified

in

parameter

4

is

correct

and

that

the

module

name

table

contains

the

name

of

the

exit

you

specified.

20

Processing

was

not

successful.

The

error

may

occur

because:

v

A

compiled

program

is

not

executing

v

The

requested

function

is

not

supported.

28

Processing

was

not

successful.

A

language

processor

environment

could

not

be

located.

Verify

that

the

environment

block

address

specified

in

parameter

4

is

correct.

32

Processing

was

not

successful.

The

parameter

list

contained

too

few

or

too

many

parameters,

or

the

high-order

bit

of

the

last

parameter

was

not

set

to

1

to

indicate

the

end

of

the

parameter

list.

Compiler

Support

Chapter

24.

Support

for

the

Library

for

REXX/370

in

REXX/VSE

523

524

REXX/VSE

Reference

Appendix

A.

List

of

the

Names

of

Macros

Intended

for

Customers’

Use

The

macros

identified

in

this

appendix

are

provided

as

programming

interfaces

for

customers

of

REXX/VSE.

Warning:

Do

not

use

as

programming

interfaces

any

REXX/VSE

macros

other

than

those

identified

in

this

appendix.

General-Use

Programming

Interfaces

The

macros

listed

in

this

topic

are

general-use

programming

interfaces

intended

for

customer

use.

Some

macros

have

keywords,

fields,

or

parameters

that

are

designed

for

IBM

internal

use

only.

Such

keywords,

fields,

or

parameters

are

not

part

of

the

programming

interfaces

for

use

by

customers

in

writing

programs

that

request

or

receive

the

services

of

REXX/VSE.

Please

refer

to

the

appropriate

product

documentation

for

the

correct

classification

and

use

of

these

keywords,

fields,

or

parameters.

Mapping

Macros

This

section

lists

the

general-use

programming

interface

mapping

macros

for

REXX/VSE.

The

data

areas

are

programming

interfaces

or

contain

fields

that

are

programming

interfaces.

(The

macro

ID

is

the

member

name

in

PRD1.BASE;

the

acronym

identifies

the

control

block

and

is

typically

the

prefix

of

each

field

in

the

control

block.)

Table

113.

Mapping

Macros

Macro

ID

Acronym

ARXARGTB

ARGTABLE

ARXDSIB

DSIB

ARXEFPL

EFPL

ARXENVB

ENVBLOCK

ARXEVALB

EVALBLOCK

ARXEXECB

EXECBLK

ARXEXTE

ARXEXTE

ARXFPDIR

FPCKDIR

ARXINSTB

INSTBLK

ARXMODNT

MODNAMET

ARXPACKT

PACKTB

ARXPARMB

PARMBLOCK

ARXSHVB

SHVBLOCK

ARXSUBCT

SUBCOMTB

ARXWORKB

WORKBLOK

Product-Sensitive

Programming

Interfaces

Macros

listed

in

this

topic

are

product-sensitive

programming

interfaces

intended

for

customer

use.

Macros

can

have

keywords,

fields,

or

parameters

that

are

designed

for

IBM

internal

use

only.

Such

keywords,

fields,

or

parameters

are

not

part

of

the

programming

interfaces

for

use

by

customers

in

writing

programs

that

request

or

receive

the

services

of

REXX/VSE.

Please

refer

to

the

appropriate

product

documentation

for

the

correct

classification

and

use

of

these

keywords,

fields,

or

parameters.

©

Copyright

IBM

Corp.

1988,

2004

525

Mapping

Macros

This

section

lists

the

product-sensitive

programming

interface

mapping

macros

for

REXX/VSE.

The

data

areas

are

programming

interfaces

or

contain

fields

that

are

programming

interfaces.

Table

114.

Mapping

Macros

Macro

ID

Acronym

ARXCMPTB

—

ARXENVB

ENVBLOCK

ARXEXTE

ARXEXTE

ARXWORKB

WORKBLOK

526

REXX/VSE

Reference

Appendix

B.

Servicing

REXX/VSE

When

applying

a

Program

Temporary

Fix

(PTF),

check

if

mandatory

or

recommended

phases

are

affected

which

had

been

loaded

into

the

SVA

during

IPL.

Mandatory

phases

are:

Table

115.

Mandatory

Phases

Phase

Name

Approximate

Size

Residency

Mode

ARXREXX

2080

ANY

ARXINIT

361.088

ANY

ARXRXVEC

920

ANY

EAGRTXIN

274.832

ANY

EAGRTXLD

304

ANY

EAGRTPRC

304

ANY

EAGRTXTR

312

ANY

EAGRTXVH

304

ANY

Recommended

phases

are

Table

116.

Recommended

Phases

Phase

Name

Approximate

Size

Residency

Mode

ARXIOLAR

7424

24

ARXSTO00

23104

ANY

ARXSTAM

17096

ANY

ARXRX24.

5344

24

If

these

phases

have

been

affected

by

a

PTF

they

can

be

made

active

by

running

job

ARXINST.Z.

This

job

calls

loadlist

$SVAREXX

and

loads

the

mandatory

and

recommended

phases

listed

above

into

the

SVA.

Make

sure

to

have

600KB

of

SVA

storage.

In

order

to

load

single

phases

into

the

SVA,

replace

LIST=$SVAREXX

by

the

name

of

the

affected

phase

and

run

part

1

of

ARXINST.Z.

*

$$

JOB

JNM=ARXINST,DISP=D,CLASS=0

//

JOB

ARXINST

LOAD

REXX

INTO

THE

SVA

*

--

*

*

PART

1:

Load

REXX/VSE

via

$SVAREXX

*

*

--

//

LIBDEF

PHASE,SEARCH=PRD1.BASE

SET

SDL

LIST=$SVAREXX

/*

*

--

*

*

PART

2:

VERIFY

THAT

THE

MANDATORY

AND

RECOMMENDED

*

*

*

REXX/VSE

PHASES

HAVE

BEEN

LOADED

INTO

THE

SVA

*

*

--

//

EXEC

ARXVERFY

*

--

*

*

PART

3:

INITIALIZE

REXX/VSE

TABLES

*

*

--

//

EXEC

ARXLINK

/&

*

$$

EOJ

Figure

30.

Initializing

REXX/VSE

using

ARXINST.Z

©

Copyright

IBM

Corp.

1988,

2004

527

To

replace,

for

example,

phase

EAGRTXIN

you

would

code

the

following:

*

$$

JOB

JNM=RELOAD,DISP=D,CLASS=0

//

JOB

RELOAD

LOAD

EAGRTXIN

INTO

THE

SVA

//

LIBDEF

PHASE,SEARCH=PRD1.BASE

SET

SDL

EAGRTXIN,SVA

/*

/&

*

$$

EOJ

Figure

31.

Loading

Single

Phases

into

the

SVA

528

REXX/VSE

Reference

Appendix

C.

REXX

Supplied

Link

Books

REXX

allows

you

to

write

exit

routines

that

may

replace

IBM

supplied

programs.

In

order

to

activate

your

exit

routines

you

need

to

relink

ARXINIT

together

with

your

object

decks.

The

sample

job

ARXSKLNK.Z

in

PRD1.BASE

shows

you

how

to

link

the

REXX

phase

ARXINIT.

The

job

includes

a

link

book

with

the

name

ARXINLNK.OBJ.

You

can

also

use

the

skeleton

ARXSKLNK.Z

to

link

other

REXX

phases.

The

following

is

the

list

of

supplied

link

books:

LINKBOOK

PHASE

ARXCONA1:

ARXCONAD

ARXCPRO1:

ARXCPROF

ARXDILK1:

ARXDI01

ARXDILNK:

ARXDI02,

ARXDI03,

ARXDI04,

ARXDI05,

ARXDI06,

ARXDI07,

ARXDI08,

ARXDI09,

ARXDI0A,

ARXDI0B,

ARXDI0C,

ARXDI0D,

ARXDI0E

ARXEFCO1:

ARXEFCO

ARXEFSO1:

ARXEFSO

ARXEFSN1:

ARXEFSN

ARXENPL0:

ARX00ENP

ARXENPL1:

ARX01ENP

ARXENPL2:

ARX02ENP

ARXENPL3:

ARX03ENP

ARXENPL4:

ARX04ENP

ARXENPL5:

ARX05ENP

ARXENPL6:

ARX06ENP

ARXENPL7:

ARX07ENP

ARXENPL8:

ARX08ENP

ARXENPL9:

ARX09ENP

ARXENUL1:

ARX01ENU

ARXENUL2:

ARX02ENU

ARXENUL3:

ARX03ENU

ARXENUL4:

ARX04ENU

ARXENUL5:

ARX05ENU

ARXENUL6:

ARX06ENU

ARXENUL7:

ARX07ENU

ARXENUL8:

ARX08ENU

ARXENUL9:

ARX09ENU

ARXENUL0:

ARX00ENU

ARXINLNK:

ARXINIT

ARXREXX1:

ARXREXX

©

Copyright

IBM

Corp.

1988,

2004

529

ARXANCR1:

ARXANCHR

ARXCMPT1:

ARXCMPTM

ARXPARM1:

ARXPARMS

ARXIOLA1:

ARXIOLAR

ARXFLOC1:

ARXFLOC

ARXFUSE1:

ARXFUSER

ARXSTAM1:

ARXSTAM

ARXEMSG1:

ARXEMSG

ARXLINKL:

ARXLINK

ARXINTL:

ARXINT

ARXLOADL:

ARXLOAD

ARXLDL:

ARXLD

ARXSUBCL:

ARXSUBCM

ARXSUBL:

ARXSUB

ARXEXC1:

ARXCEXEC

ARXEXECL:

ARXEXEC

ARXEXL:

ARXEX

ARXINOUL:

ARXINOUT

ARXIOL:

ARXIO

ARXJCLL:

ARXJCL

ARXRLFL:

ARXRLT

ARXSTKL:

ARXSTK

ARXTRML1:

ARXTERM

ARXTRML2:

ARXTRM

ARXICLNK:

ARXIC

ARXUIDL:

ARXUID

ARXTERML:

ARXTERMA

ARXTMAL:

ARXTMA

ARXMSGIL:

ARXMSGID

ARXMIDL:

ARXMID

ARXEXCOL:

ARXEXCOM

ARXEXCL:

ARXEXC

ARXSAYL:

ARXSAY

ARXERSL:

ARXERS

ARXHSTL:

ARXHST

ARXHLTL:

ARXHLT

ARXTXTL:

ARXTXT

530

REXX/VSE

Reference

ARXLINL:

ARXLIN

ARXRTEL:

ARXRTE

ARXRXVEL:

ARXRXVEC

ARXRX24L:

ARXRX24

ARXLNK04:

ARXVERFY

ARXLNK05:

ARXEFVSE

ARXSTOLK:

ARXSTO00

ARXSYSL1:

ARXSYSLN

ARXEOJ1:

ARXEOJTB

ARXJCL2:

ARXJCLAD

ARXIDCM1:

ARXIDCAM

ARXLIBRI:

ARXLIBR

ARXOCXI1:

ARXOCXIT

ARXOUTL:

ARXOUT

REXXLOA1:

REXXLOAD

Appendix

C.

REXX

Supplied

Link

Books

531

532

REXX/VSE

Reference

Bibliography

This

bibliography

lists

some

publications

that

provide

additional

information

about

REXX

or

the

VSE/ESA

system.

v

REXX/VSE

User’s

Guide,

SC33-6641

v

VSE/ESA

REXX/VSE

Diagnosis

Reference,

SC33-6332

v

VSE/ESA

System

Macros

User’s

Guide,

SC33-6715

v

VSE/ESA

Guide

to

System

Functions,

SC33-6711

v

VSE/ESA

System

Control

Statements,

SC33-6713

v

VSE/POWER

Administration

and

Operation,

SC33-6733

v

VSE/POWER

Application

Programming,

SC33-6736

v

VSE/ESA

Library

Guide,

GC33-6619

v

VSE/ESA

Messages

and

Codes,

SC33-6796

v

VSE/ESA

Installation,

SC33-6704

v

SAA

Common

Programming

Interface

REXX

Level2

Reference,

SC24-5549

v

IBM

Compiler

and

Library

for

SAA

REXX/370

Release

2:

Introducing

the

Next

Step

in

REXX

Programming,

G511-1430

v

IBM

Compiler

and

Library

for

SAA

REXX/370

Release

2

User’s

Guide

and

Reference,

SH19-8160

v

IBM

Compiler

and

Library

for

SAA

REXX/370

Release

2

Diagnosis

Guide,

SH19-8179.

©

Copyright

IBM

Corp.

1988,

2004

533

Bibliography

534

REXX/VSE

Reference

Index

Special

characters
-

(subtraction

operator)

15

-3

return

code

461

,

(comma)
as

continuation

character

13

in

CALL

instruction

32

in

function

calls

61

in

parsing

template

list

30,

117

separator

of

arguments

32,

61

:

(colon)
as

a

special

character

12

in

a

label

18

!

prefix

on

TRACE

option

58

?

prefix

on

TRACE

option

57

/

(division

operator)

15,

124

//

(remainder

operator)

15,

127

/=

(not

equal

operator)

16

/==

(strictly

not

equal

operator)

15,

16

.

(period)
as

placeholder

in

parsing

110

causing

substitution

in

variable

names

20

in

numbers

124

$ABEND

461

$RC

334

$SVAREXX

527

*

(multiplication

operator)

15,

124

-

tracing

flag

59

**

(power

operator)

15,

126

\

(NOT

operator)

16

\>

(not

greater

than

operator)

16

\>>

(strictly

not

greater

than

operator)

16

\<

(not

less

than

operator)

16

\<<

(strictly

not

less

than

operator)

16

\=

(not

equal

operator)

16

\==

(strictly

not

equal

operator)

15

%

(integer

division

operator)

15,

127

>

(greater

than

operator)

16

>.>

tracing

flag

59

>>

(strictly

greater

than

operator)

15,

16

>>>

tracing

flag

59

>>=

(strictly

greater

than

or

equal

operator)

16

><

(greater

than

or

less

than

operator)

16

>=

(greater

than

or

equal

operator)

16

>C>

tracing

flag

59

>F>

tracing

flag

59

>L>

tracing

flag

59

>O>

tracing

flag

59

>P>

tracing

flag

59

>V>

tracing

flag

59

<

(less

than

operator)

16

<>

(less

than

or

greater

than

operator)

16

<<

(strictly

less

than

operator)

15,

16

<<=

(strictly

less

than

or

equal

operator)

16

<=

(less

than

or

equal

operator)

16

|

(inclusive

OR

operator)

16

||

(concatenation

operator)

14

&

(AND

logical

operator)

16

&&

(exclusive

OR

operator)

16

+

(addition

operator)

15,

124

+++

tracing

flag

59

=

(equal

sign)
assignment

indicator

19

equal

operator

15

immediate

debug

command

323

in

DO

instruction

34

in

parsing

template

112

==

(strictly

equal

operator)

15,

16,

124

¬

(NOT

operator)

16

¬>

(not

greater

than

operator)

16

¬>>

(strictly

not

greater

than

operator)

16

¬<

(not

less

than

operator)

16

¬<<

(strictly

not

less

than

operator)

16

¬=

(not

equal

operator)

16

¬==

(strictly

not

equal

operator)

15,

16

A
ABBREV

function
description

64

example

64

testing

abbreviations

64

using

to

select

a

default

64

abbreviations
testing

with

ABBREV

function

64

ABS

function
description

64

example

64

absolute

value
finding

using

ABS

function

64

function

64

used

with

power

126

abuttal

14

Accept

function,

REXX

Sockets

279

Access

Control

Table

(DTSECTAB)

223

access

control

to

console

automation

228

accessing

REXX

variables

356

action

taken

when

a

condition

is

not

trapped

132

action

taken

when

a

condition

is

trapped

132

actions

(Message

Action

Table)

249

ACTIVATE

console

222

activate

console

(MCSOPER

macro)

219

active

loops

42

adding

an

operator

communication

exit

98,

238

adding

information

to

a

VSAM

file

170

addition
description

125

operator

15

additional

operator

examples

127

ADDRESS

CONSOLE

221

ADDRESS

function
description

65

determining

current

environment

65

example

65

ADDRESS

instruction
description

28

©

Copyright

IBM

Corp.

1988,

2004

535

ADDRESS

instruction

(continued)
example

28

settings

saved

during

subroutine

calls

33

ADDRESS

JCL

command

201

ADDRESS

LINK

environments

205

ADDRESS

LINK

IDCAMS

215

ADDRESS

LINK

LIBR

214

address

of

environment

block
obtaining

431

passing

to

REXX

routines

329,

393,

415

ADDRESS

POWER

commands

24,

181

address

setting

29,

33

address,

specifying

with

SETUID

166

advanced

topics

in

parsing

117

algebraic

precedence

16

alphabetic

character

word

options

in

TRACE

57

alphabetics
checking

with

DATATYPE

71

used

as

symbols

11

alphanumeric

checking

with

DATATYPE

71

altering
flow

within

a

repetitive

DO

loop

42

special

variables

23

TRACE

setting

88

alternate

entry

point

names

421

alternate

messages

flag

400

ALTMSGS

flag

104,

400

AND,

logical

operator

16

ANDing

character

strings

together

66

ARG

function
description

65

example

65

ARG

instruction
description

29

example

30

ARG

option

of

PARSE

instruction

47

argument

list

for

function

package

349

arguments
checking

with

ARG

function

65

of

functions

29,

61

of

subroutines

29,

31

passing

to

functions

61

retrieving

with

ARG

function

65

retrieving

with

ARG

instruction

29

retrieving

with

the

PARSE

ARG

instruction

47

arithmetic
basic

operator

examples

126

comparisons

128

errors

130

exponential

notation

example

129

numeric

comparisons,

example

128

NUMERIC

settings

44

operation

rules

125

operator

examples

127

operators

15,

123,

124

overflow

130

precision

124

underflow

130

whole

numbers

130

array
initialization

of

21

array

(continued)
setting

up

20

array

of

MDB

variables

234

ARXANCHR

phase

424

ARXANCHR.Z

sample

424

ARXARGTB

mapping

macro

342,

349

ARXCMPTB

(compiler

programming

table)
creating

the

source

503

format

504

mapping

macro

504

ARXCMPTM

(compiler

programming

table

module)
example

504

ARXCONAD

228

ARXDSIB

mapping

macro

451,

457

ARXEFPL

mapping

macro

349

ARXEFPLX

244

ARXEFVSE

352

ARXENVB

mapping

macro

418

ARXENVT

mapping

macro

424

ARXEOJTB

210

ARXERS

(external

routine

search)
entry

specifications

517

environment

517

parameter

descriptions

518

return

codes

519

return

specifications

519

ARXERS

compiler

programming

routine

423

ARXEVALB

mapping

macro

345,

349

ARXEX

alternate

entry

point

338

ARXEXC

alternate

entry

point

356

ARXEXCOM

variable

pool

access

interface

356

ARXEXEC

routine
argument

list

342

description

333,

338

evaluation

block

345

exec

block

341

getting

larger

area

to

store

result

368

getting

larger

evaluation

block

368

in-storage

control

block

343

overview

327

parameters

339

return

codes

347

returning

result

from

program

345

ARXEXECB

mapping

macro

341,

449

ARXEXTE

mapping

macro

421

ARXFLOC

352,

353

ARXFPDIR

mapping

macro

353

ARXFUSER

352,

353

ARXHLT

routine

374

ARXHST

(host

command

search)
entry

specifications

520

environment

517

return

codes

521

return

specifications

521

ARXHST

compiler

programming

routine

423

ARXIC

routine

365

ARXINIT

initialization

routine

431

ARXINITX

exit

444,

471

ARXINOUT

I/O

routine

450

ARXINSTB

mapping

macro

343

ARXINT

alternate

entry

point

431

536

REXX/VSE

Reference

ARXIO

alternate

entry

point

450

ARXIOPTS

456

ARXITMV

exit

444,

473

ARXJCL

routine
calling

336

description

333

overview

327

parameters

336

return

codes

337

ARXLD

alternate

entry

point

446

ARXLIN

routine

380

ARXLOAD

exec

load

routine

446

ARXMID

alternate

entry

point

470

ARXMODNT

mapping

macro

402

ARXMSGID

message

ID

routine

470

ARXOUT

routine

382

ARXPACKT

mapping

macro

407

ARXPARMB

mapping

macro

395,

397

ARXPARMS

parameters

module

104,

409

ARXPARMS.Z
sample

for

parameters

module

416

ARXPARMS.Z

(sample

for

ARXPARMS)

416

ARXRLT

get

result

routine

368

ARXRTE

(exit

routing

routine)
entry

specifications

522

environment

517

parameter

descriptions

522

return

codes

523

return

specifications

523

ARXRTE

compiler

programming

routine

424

ARXSAY

routine

372

ARXSHVB

mapping

macro

359

ARXSTK

data

stack

routine

462

ARXSUB

alternate

entry

point

362

ARXSUBCM

routine

362

ARXSUBCT

mapping

macro

364,

405

ARXTERM

termination

routine

440

ARXTERMA

termination

routine

497

ARXTERMX

exit

444,

474

ARXTMA

alternate

entry

point

497

ARXTRM

alternate

entry

point

440

ARXTXT

routine

376

ARXUID

user-ID

routine

468

ARXWORKB

mapping

macro

420

ARXXITDF

475

ASSGN

function

97

assigning
data

to

variables

46

assignment
description

19

indicator

(=)

19

multiple

assignments

114

of

compound

variables

20,

21

associative

storage

20

ATTNROUT

field

(module

name

table)

403

AUTH=

in

DTSECTAB

223

authorized
calling

REXX

program

as

333

automatic

initialization

of

language

processor

environments

394

B
B2X

function
description

67

example

67

backslash,

use

of

12,

16

basic

operator

examples

126

batch
running

program

in

333

bibliography

533

binary
description

10

digits

10

strings
nibbles

10

to

hexadecimal

conversion

67

Bind

function,

REXX

Sockets

281

BITAND

function
description

66

example

66

logical

bit

operations

66

BITOR

function
description

66

example

66

logical

bit

operations,

BITOR

66

bits

checked

using

DATATYPE

71

BITXOR

function
description

67

example

67

logical

bit

operations,

BITXOR

67

blanks
adjacent

to

special

character

8

as

concatenation

operator

14

in

parsing,

treatment

of

110

removal

with

STRIP

function

84

boolean

operations

16

bottom

of

program

reached

during

execution

39

bracketed

DBCS

strings
DBBRACKET

function

490

DBUNBRACKET

function

494

built-in

functions
ABBREV

64

ABS

64

ADDRESS

65

ARG

65

B2X

67

BITAND

66

BITOR

66

BITXOR

67

C2D

70

C2X

70

calling

31

CENTER

68

CENTRE

68

COMPARE

68

CONDITION

68

COPIES

69

D2C

75

D2X

76

DATATYPE

71

DATE

72

DBCS

functions

490

Index

537

built-in

functions

(continued)
definition

31

DELSTR

74

DELWORD

75

description

63

DIGITS

75

ERRORTEXT

76

EXTERNALS

94

FIND

94

FORM

77

FORMAT

77

FUZZ

78

INDEX

95

INSERT

78

JUSTIFY

95

LASTPOS

79

LEFT

79

LENGTH

80

LINESIZE

96

MAX

80

MIN

80

OVERLAY

81

POS

81

QUEUED

81

RANDOM

82

REVERSE

82

RIGHT

83

SIGN

83

SOURCELINE

84

SPACE

84

STRIP

84

SUBSTR

85

SUBWORD

85

SYMBOL

86

TIME

86

TRACE

88

TRANSLATE

88

TRUNC

89

USERID

96

VALUE

89

VERIFY

90

WORD

90

WORDINDEX

91

WORDLENGTH

91

WORDPOS

91

WORDS

92

X2B

92

X2C

93

X2D

93

XRANGE

92

BY

phrase

of

DO

instruction

34

C
C2D

function
description

70

example

70

implementation

maximum

70

C2X

function
description

70

example

70

CALL

instruction
description

31

example

32

implementation

maximum

33

calling

a

phase

205

calling

REXX

routines,

general

considerations

328

calls
recursive

32

carriage

control

characters

182,

188

CART

(command

and

response

correlation

token)

220

creating

224

examples

224

GETMSG

function

233

SENDMSG

function

240

CART

command

220,

224

CC

characters

182,

188

CENTER

function
description

68

example

68

centering

a

string

using
CENTER

function

68

CENTRE

function

68

CENTRE

function
description

68

example

68

chains

of

environments

392,

412

change

value

in

specific

storage

address

105,

106

changing

defaults

for

initializing

language

processor

environments

416

changing

destination

of

commands

28

changing

maximum

number

of

language

processor

environments

424

character
definition

8

position

of

a

string

79

position

using

INDEX

95

removal

with

STRIP

function

84

strings,

ANDing

66

strings,

exclusive-ORing

67

strings,

ORing

66

to

decimal

conversion

70

to

hexadecimal

conversion

70

word

options,

alphabetic

in

TRACE

57

characteristics

of

language

processor

environment

394

See

language

processor

environment

checking

arguments

with

ARG

function

65

cjustif
description

491

clauses
assignment

18,

19

commands

19

continuation

of

13

description

8,

18

instructions

18

keyword

instructions

18

labels

18

null

18

clock,

elapsed

time
See

elapsed-time

clock

Close

function,

REXX

Sockets

282

close

member

flag

400

538

REXX/VSE

Reference

CLOSEXFL

flag

400

CMDSOFL

flag

398

code

page

8

collating

sequence

using

XRANGE

92

collections

of

variables

89

colon
as

a

special

character

12

as

label

terminators

18

in

a

label

18

combining

string

and

positional

patterns

118

comma
as

continuation

character

13

in

CALL

instruction

32

in

function

calls

61

in

parsing

template

list

30,

117

separator

of

arguments

32,

61

command
-3

return

code

24

ACTIVATE

222

adding/removing

an

operator

communication

exit

98,

238

ADDRESS

POWER

181

alternative

destinations

22

authorization

220

CART

220,

224

clause

19

CONSTATE

225

CONSWITCH

225

CORCMD

245,

270

creating

a

new

library

member

98

DEACTIVATE

226

definition

of

host

24

destination

of

28

environment,

console

221

errors,

trapping

131

inhibiting

with

TRACE

instruction

58

issue

via

SENDCMD

function

239

issuing

to

host

22

issuing

to

underlying

operating

system

22

JCL

EXEC

333

MSG

238,

239,

251,

256

reponses

outstanding

in

parallel

227

reserved

names

142

return

codes

from

24

REXX/VSE

143

serialize

a

REXX

program

98,

235

trap

lines

of

output

99

command

and

response

correlation

token
See

CART

(command

and

response

correlation

token)

command

authorization

220

command

environments
See

environment

command

inhibition
See

TRACE

instruction

command

processors
in

parallel

227

return

and

reason

codes

270

command

search

order

flag

398

commands,

REXX

console

221

comments
description

9

examples

9

REXX

program

identifier

8

communicating

with

a

user

console

140

COMPARE

function
description

68

example

68

comparisons
description

15

numeric,

example

128

of

numbers

15,

128

of

strings
using

COMPARE

68

compiler

interface

routines
initialization

description

509

entry

specifications

509

environment

510

parameter

descriptions

510

programming

considerations

510

return

codes

510

return

specifications

510

load
description

512

entry

specifications

512

environment

514

parameter

descriptions

512

programming

considerations

514

return

codes

514

return

specifications

514

overview

509

termination
description

511

entry

specifications

511

environment

511

parameter

descriptions

511

programming

considerations

511

return

codes

511

return

specifications

511

variable

handling
description

515

entry

specifications

515

environment

517

parameter

descriptions

515

programming

considerations

517

return

codes

517

return

specifications

516

compiler

programming

routine
ARXERS

423

ARXHST

423

ARXRTE

424

compiler

programming

routines
See

also

exit

routing

routine

(ARXRTE)

See

also

host

command

search

(ARXHST)

overview

517

compiler

programming

table

(ARXCMPTB)
creating

the

source

503

format

504

mapping

macro

504

Index

539

compiler

programming

table

module

(ARXCMPTM)
example

504

compiler

runtime

processor
call

compiler

interface

load

routine

447

considerations

for

exec

load

routine

447

description

505

entry

specifications

507

environment

509

interface

routine
initialization

509

load

512

termination

511

variable

handling

515

interface

routines

417,

419

obtain

evaluation

block

368

parameter

descriptions

507

programming

considerations

509

programming

routine
exit

routing

routine

(ARXRTE)

522

external

routine

search

(ARXERS)

517

host

command

search

(ARXHST)

519

results

expected

from

compiled

program

505

return

codes

508

return

specifications

508

compiler

support,

REXX
description

503

identifying

a

compiled

program

503

completion

messages

195

compound
symbols

20

variable
description

20

setting

new

value

21

comppt
parameter

containing

address

of

419

CONCAT

option,

FINDMSG

function

231

concatenation
of

strings

14

operator
||

14

abuttal

14

blank

14

concatenation

option,

FINDMSG

function

231

conceptual

overview

of

parsing

119

condition
action

taken

when

not

trapped

132

action

taken

when

trapped

132

definition

131

ERROR

131

FAILURE

131

HALT

131

information

134

information,

definition

33

NOVALUE

131

saved

during

subroutine

calls

33

SYNTAX

132

trap

information

using

CONDITION

68

trapping

of

131

traps,

notes

133

CONDITION

function
description

68

CONDITION

function

(continued)
example

69

conditional
loops

34

phrase

36

Connect

function,

REXX

Sockets

282

considerations

for

calling

REXX

routines

328

console

217

ACTIVATE

222

activating

(MCSOPER

macro)

219

application

framework

(REXXCO)

248

command

environment

221

current

221,

225

data

flow

217

DEACTIVATE

226

general-use

interfaces

219

I/O

interfaces

218

master

220

name

222

profile

221,

222

REXX,

commands

221

user

220

console

automation
benefits

217

demos

253

scenarios

248

CONSOLE

host

command

environment

26

console

profile

221,

222

REXALLRC

221,

222

REXAUTO

222,

224

REXNORC

221,

222,

246

REXX

222

console

program

217

Console

Router

217

data

flow

217

queue

space

245

return

and

reason

codes

270

routing

codes

220

constant

symbols

20

CONSTATE

command

225

CONSWITCH

command

225

content

addressable

storage

20

continuation
character

13

clauses

13

example

13

of

data

for

display

53

control
storing

VSE/POWER

spool-access

services

messages

99

control

blocks
environment

block

(ENVBLOCK)

393,

418

evaluation

(EVALBLOCK)

345,

349

exec

block

(EXECBLK)

341

for

language

processor

environment

392,

417

in-storage

(INSTBLK)

343

input

and

output

456

parameter

block

(PARMBLOCK)

394,

419

request

(SHVBLOCK)

359

return

result

from

program

345

shared

variable

(SHVBLOCK)

359

540

REXX/VSE

Reference

control

blocks

(continued)
SHVBLOCK

359

vector

of

external

entry

points

421

work

block

extension

419

control

service

(CTL)

196

control

variable

35

controlled

loops

35

conversion
binary

to

hexadecimal

67

character

to

decimal

70

character

to

hexadecimal

70

conversion

functions

63

decimal

to

character

75

decimal

to

hexadecimal

76

formatting

numbers

77

functions

94

hexadecimal

to

binary

92

hexadecimal

to

character

93

hexadecimal

to

decimal

93

COPIES

function
description

69

example

69

copying

a

string

using

COPIES

69

copying

information

146

copying

information

from

one

VSAM

file

to

another

170

copying

information

to

and

from

a

list

of

compound

variables

(REXX

stem)

170

CORCMD

command

245,

270

counting
option

in

DBCS

490

words

in

a

string

92

CPU

monitor

247

creating
buffer

on

the

data

stack

160

new

data

stack

161,

428

non-reentrant

environment

431

reentrant

environment

431

creating

a

new

library

member

98,

236

crp
portability

501

CTL

196

CTL

VSE/POWER

spool-access

services

service

25,

181

return

codes

197

current

console

221,

225

current

non-reentrant

environment,

locating

431

current

terminal

line

width

96

customizing

services
description

385

environment

characteristics
See

language

processor

environment

exit

routines

385

general

considerations

for

calling

routines

328

language

processor

environments

391

replaceable

routines

385,

389

See

replaceable

routines

summary

of

138

D
D2C

function
description

75

example

75

implementation

maximum

76

D2X

function
description

76

example

76

implementation

maximum

76

data
length

14

terms

13

data

flow

(Console

Router)

217

Data

Set

Information

Block

(DSIB)

457

data

stack
counting

lines

in

81

creating

161,

428

creating

a

buffer

160

data

left

on

stack

333

deleting

143

DELSTACK

command

143

discarding

a

buffer

144

DROPBUF

command

144

dropping

a

buffer

144

MAKEBUF

command

160

NEWSTACK

command

161,

428

number

of

buffers

163

number

of

elements

on

164

primary

428

QBUF

command

163

QELEM

command

164

QSTACK

command

165

querying

number

of

elements

on

164

querying

the

number

of

165

querying

the

number

of

buffers

163

replaceable

routine

462

secondary

428

sharing

between

environments

425

use

in

different

environments

425

writing

to

with

PUSH

52

writing

to

with

QUEUE

52

data

stack

flag

398

DATA

system

variable,

MERGE

function

237

DATATYPE

function
description

71

example

71

date

and

version

of

the

language

processor

48

DATE

function
description

72

example

73

DBADJUST

function
description

490

example

490

DBBRACKET

function
description

490

example

490

DBCENTER

function
description

491

example

491

DBCS
built-in

function

descriptions

490

Index

541

DBCS

(continued)
built-in

function

examples

486

characters

481

counting

option

490

description

481

enabling

data

operations

and

symbol

use

482

EXMODE

482

function

handling

485

functions
DBADJUST

490

DBBRACKET

490

DBCENTER

491

DBCJUSTIFY

491

DBLEFT

492

DBRIGHT

492

DBRLEFT

493

DBRRIGHT

493

DBTODBCS

493

DBTOSBCS

494

DBUNBRACKET

494

DBVALIDATE

494

DBWIDTH

495

handling

481

instruction

examples

484

mixed

SBCS/DBCS

string

482

mixed

string

validation

example

483

mixed

symbol

482

notational

conventions

481

only

string

71

parsing

characters

119

processing

functions

490

SBCS

strings

481

shift-in

(SI)

characters

481,

486

shift-out

(SO)

characters

481,

486

string,

DBCS-only

482

string,

mixed

SBCS/DBCS

482

strings

45,

481

strings

and

symbols

482

support

481,

497

symbol

validation

and

example

482

symbol,

DBCS-only

482

symbol,

mixed

482

symbols

and

strings

482

validation,

mixed

string

483

DBLEFT

function
description

492

example

492

DBRIGHT

function
description

492

example

492

DBRLEFT

function
description

493

example

493

DBRRIGHT

function
description

493

example

493

DBTODBCS

function
description

493

DBTOSBCS

function
description

494

example

494

DBUNBRACKET

function
description

494

example

494

DBVALIDATE

function
description

494

example

494

DBWIDTH

function
description

495

example

495

DEACTIVATE

console

226

debugging

programs

323

-3

return

code

24

See

also

interactive

debug

See

also

TRACE

instruction

immediate

commands

143

return

codes

from

commands

24

debugging,

CORCMD

command

245,

270

decimal
arithmetic

123,

131

to

character

conversion

75

to

hexadecimal

conversion

76

default
environment

23

selecting

with

ABBREV

function

64

default

input

97

default

output

97

defaults

for

initializing

language

processor

environments

409

defaults

provided

for

ARXPARMS

parameters

module

409

delayed

state
description

131

deleting
part

of

a

string

74

words

from

a

string

75

deleting

a

data

stack

143

deleting

information

in

a

VSAM

file

170

delimiters

in

a

clause
See

also

colon

See

semicolons

DELMSG

function

219,

229,

262

DELSTACK

command

143

DELSTR

function
description

74

example

74

DELWORD

function
description

75

example

75

demo

programs

253

REXXASM

263

REXXCPUM

259

REXXCXIT

256

REXXDOM

261

REXXFLSH

255

REXXJMGR

262

REXXLOAD

254

REXXSCAN

264

REXXSPCE

257

REXXTRY

262

REXXWAIT

263

SETSDL

263

542

REXX/VSE

Reference

derived

names

of

variables

20

description
of

built-in

functions

for

DBCS

490

DIGITS

function
description

75

example

75

DIGITS

option

of

NUMERIC

instruction

44,

124

direct

interface

to

variables

(ARXEXCOM)

356

directory

names,

function

packages
ARXFLOC

352,

353

ARXFUSER

352,

353

directory,

function

package

352

example

of

354

format

353

format

of

entries

353

specifying

in

function

package

table

356

discarding

a

buffer

on

the

data

stack

144

division
description

126

operator

15

DLBL
for

SAM

files

147

DO

instruction
See

also

loops

description

34

example

36

DOM

macro

219

Double-Byte

Character

Set
See

DBCS

DROP

instruction
description

38

example

38

DROPBUF

command

144

dropping

a

buffer

on

the

data

stack

144

DSIB

457

dtaastk
leftover

data

333

DTRIINIT

conventions

237

DTSECTAB

(Access

Control

Table)

223

dummy

instruction
See

NOP

instruction

dup0003
binary

strings

10

description

9

hexadecimal

strings

10

literal

strings

9

numbers

11

operator

characters

12

special

characters

12

symbols

11

dup0018
interactive

56,

323

E
ECHO

parameter

140

ECHO/ECHOU

option

220,

227,

245

EFPL

(external

function

parameter

list)

349

elapsed-time

clock
measuring

intervals

with

86

saved

during

subroutine

calls

33

ELSE

keyword
See

IF

instruction

emptying

a

VSAM

file

170

enabled

for

variable

pool

access

(ARXEXCOM)

356

END

clause
See

also

DO

instruction

See

also

SELECT

instruction

specifying

control

variable

35

end

of

job

return

table

ARXEOJTB

210

engineering

notation

129

entry

point

names

421

environment
addressing

of

28

console

command

221

default

29,

47

determining

current

using

ADDRESS

function

65

for

activating

/

deactivating

console

sessions

26

for

loading

and

calling

programs

26,

205

host

command

23

language

processor

386,

391

name,

definition

28

temporary

change

of

28

environment

block
description

393,

415,

417

format

418

obtaining

address

of

431

overview

for

calling

REXX

routines

329

passing

on

call

to

REXX

routines

329,

393,

415

environment

table

for

number

of

language

processor

environments

424

EOJ

return

table

ARXEOJTB

210

equal
operator

15

sign
in

parsing

template

112

to

indicate

assignment

12,

19

equality,

testing

of

15

error
definition

23

during

execution

of

functions

63

from

commands

23

messages
retrieving

with

ERRORTEXT

76

producing

the

message

ID

470

replaceable

routine

for

message

ID

470

traceback

after

60

trapping

131

error

codes

of

failing

functions

243

ERROR

condition

of

SIGNAL

and

CALL

instructions

134

error

handling

(REXXCO)

253

ERRORTEXT

function
description

76

example

76

ETMODE

45

evaluation

block
for

ARXEXEC

routine

345

for

function

packages

348,

349

obtaining

a

larger

one

368

evaluation

block

(EVALBLOK)
used

by

compiler

runtime

processor

505

Index

543

evaluation

of

expressions

14

event

251

example
ABBREV

function

64

ABS

function

64

ADDRESS

function

65

ADDRESS

instruction

28

ARG

function

65

ARG

instruction

30

ARXJCL

on

JCL

EXEC

336

ASSGN

external

function

98

B2X

function

67

basic

arithmetic

operators

126

BITAND

function

66

BITOR

function

66

BITXOR

function

67

built-in

function

in

DBCS

486

C2D

function

70

C2X

function

70

CALL

instruction

32

CENTER

function

68

CENTRE

function

68

character

13

clauses

13

combining

positional

pattern

and

parsing

into

words

114

combining

string

and

positional

patterns

118

combining

string

pattern

and

parsing

into

words

114

comments

9

COMPARE

function

68

CONDITION

function

69

console

application

framework

(REXXCO)

248

continuation

13

COPIES

function

69

D2C

function

75

D2X

function

76

DATATYPE

function

71

DATE

function

73

DBADJUST

function

490

DBBRACKET

function

490

DBCENTER

function

491

DBCS

instruction

484

DBLEFT

function

492

DBRIGHT

function

492

DBRLEFT

function

493

DBRRIGHT

function

493

DBTOSBCS

function

494

DBUNBRACKET

function

494

DBVALIDATE

function

494

DBWIDTH

function

495

DELSTACK

command

144

DELSTR

function

74

DELWORD

function

75

DIGITS

function

75

DO

instruction

36

DROP

instruction

38

ERRORTEXT

function

76

EXEC

25

EXECIO

command

151,

154,

156

EXIT

instruction

39

exponential

notation

129

example

(continued)
expressions

17

FIND

function

94

FORM

function

77

FORMAT

function

77

FUZZ

function

78

GETQE

command

186

IF

instruction

40

INDEX

function

95

INSERT

function

79

INTERPRET

instruction

41

ITERATE

instruction

42

JCL

EXEC

333

JUSTIFY

function

95

LASTPOS

function

79

LEAVE

instruction

43

LEFT

function

79

LENGTH

function

80

LIBDEF

333

MAKEBUF

command

145,

161

MAX

function

80

MIN

function

80

mixed

string

validation

483

NEWSTACK

command

162

NOP

instruction

44

numeric

comparisons

128

OUTTRAP

external

function

100

OVERLAY

function

81

parsing

instructions

116

parsing

multiple

strings

in

a

subroutine

118

period

as

a

placeholder

110

POS

function

81

PROCEDURE

instruction

49

PULL

instruction

51

PUSH

instruction

52

PUTQE

command

193

QBUF

command

163

QELEM

command

164

QSTACK

command

165

QUEUE

instruction

52

QUEUED

function

82

RANDOM

function

82

REVERSE

function

82

RIGHT

function

83

SAY

instruction

53

SELECT

instruction

54

SIGL,

special

variable

135

SIGN

function

83

SIGNAL

instruction

55

simple

templates,

parsing

109

SOURCELINE

function

84

SPACE

function

84

special

characters

12

STORAGE

external

function

106

STRIP

function

85

SUBCOM

command

168

SUBSTR

function

85

SUBWORD

function

85

SYMBOL

function

86

symbol

validation

483

templates

containing

positional

patterns

112

544

REXX/VSE

Reference

example

(continued)
templates

containing

string

patterns

111

TIME

function

87

TRACE

function

88

TRACE

instruction

59

TRANSLATE

function

88

TRUNC

function

89

UPPER

instruction

60

using

a

variable

as

a

positional

pattern

115

using

a

variable

as

a

string

pattern

115

VALUE

function

89

VERIFY

function

90

WORD

function

90

WORDINDEX

function

91

WORDLENGTH

function

91

WORDPOS

function

91

WORDS

function

92

X2B

function

92

X2C

function

93

X2D

function

93

XRANGE

function

92

exception

conditions

saved

during

subroutine

calls

33

exclusive

OR

operator

16

exclusive-ORing

character

strings

together

67

exec

block

(EXECBLK)

341,

449

EXEC

command

25,

145

exec

initialization

exit

444,

476

exec

load

replaceable

routine

446

exec

processing

exit

(IRXEXECX)

444,

477

exec

processing

routines
ARXEXEC

338

ARXJCL

335

exec

termination

exit

444,

476

EXECINIT

field

(module

name

table)

403

EXECIO

command

146

files

operated

upon

147

input

checking

153

STEM

operand

148

EXECTERM

field

(module

name

table)

404

execution
by

language

processor

7

of

data

41

EXIT

instruction
description

39

example

39

exit

routines

389,

471

ARXINITX

444,

471

ARXITMV

444,

473

ARXTERMX

444,

474

exec

initialization

444,

476

exec

processing

444,

477

exec

termination

444,

476

for

ARXEXEC

444,

477

halt

474

language

processor

environment

initialization

444,

471

language

processor

environment

termination

444,

471

exit

routing

routine

(ARXRTE)
entry

specifications

522

environment

517

exit

routing

routine

(ARXRTE)

(continued)
parameter

descriptions

522

return

codes

523

return

specifications

523

EXMODE
in

DBCS

482

with

OPTIONS

instruction

45

exponential

notation
description

123,

128

example

129

usage

11

exponentiation
description

128

operator

15

EXPOSE

option

of

PROCEDURE

instruction

49

exposed

variable

49

expressions
evaluation

14

examples

17

parsing

of

48

results

of

14

tracing

results

of

57

EXROUT

field

(module

name

table)

403

external
data

queue
counting

lines

in

81

reading

from

with

PULL

51

writing

to

with

PUSH

52

writing

to

with

QUEUE

52

functions
ASSGN

97

description

62

LOCKMGR

98,

235

MERGE

98,

236

OPERMSG

98,

238

OUTTRAP

99

PAUSEMSG

101,

239

REXXMSG

103

search

order

63

SLEEP

105

SORTSTEM

105

STORAGE

105

SYSVAR

106

instruction,

UPPER

60

routine
calling

31

definition

31

subroutines
description

62

search

order

63

variables
access

with

VALUE

function

89

external

entry

points
alternate

names

421

ARXEX

338

ARXEXC

356

ARXEXCOM

356

ARXEXEC

338

ARXHLT

374

ARXIC

365

ARXINIT

431

Index

545

external

entry

points

(continued)
ARXINOUT

450

ARXINT

431

ARXIO

450

ARXJCL

335

ARXLD

446

ARXLIN

380

ARXLOAD

446

ARXMID

470

ARXMSGID

470

ARXOUT

382

ARXRLT

368

ARXSAY

372

ARXSTK

462

ARXSUB

362

ARXSUBCM

362

ARXTERM

440

ARXTERMA

497

ARXTMA

497

ARXTRM

440

ARXTXT

376

ARXUID

468

external

function

parameter

list

(EFPL)

349

external

functions
ASSGN

97

creating

a

new

library

member

236

LOCKMGR

98,

235

MERGE

98,

236

OPERMSG

98,

238

OUTTRAP

99

PAUSEMSG

101,

239

providing

in

function

packages

348

REXXIPT

102

REXXMSG

103

SETLANG

104

SLEEP

105

SORTSTEM

105

STORAGE

105

SYSVAR

106

writing

348

EXTERNAL

option

of

PARSE

instruction

47

external

REXX

program

(″Action″)

250,

251,

256

external

routine

search

(ARXERS)
entry

specifications

517

environment

517

parameter

descriptions

518

return

codes

519

return

specifications

519

EXTERNALS

function
description

94

extracting
substring

85

word

from

a

string

90

words

from

a

string

85

F
FAILURE

condition

of

SIGNAL

and

CALL

instructions

131,

134

failure,

definition

23

Fast

Service

Upgrade

(FSU)

3

Fcntl

function,

REXX

Sockets

284

FIFO

(first-in/first-out)

stacking

52

file
copying

information

146

sequence

numbers

7,

446

FIND

function
description

94

example

94

finding
mismatch

using

COMPARE

68

string

in

another

string

81,

95

string

length

80

word

length

91

FINDMSG

function

219,

230

findstr,

FINDMSG

function

230

flags

for

language

processor

environment

396,

397

ALTMSGS

400

CLOSEXFL

400

CMDSOFL

398

defaults

provided

409

FUNCSOFL

398

LOCPKFL

399

NEWSCFL

399

NEWSTKFL

399

NOESTAE

400

NOLOADDD

400

NOMSGIO

400

NOMSGWTO

400

NOPMSGS

400

NOREADFL

398

NOSTKFL

398

NOWRTFL

399

RENTRANT

400

SPSHARE

400

STORFL

400

SYSPKFL

399

TSOFL

398

USERPKFL

399

flags,

tracing
-

59

>.>

59

>>>

59

>C>

59

>F>

59

>L>

59

>O>

59

>P>

59

>V>

59

+++

59

flow

of

control
unusual,

with

CALL

131

unusual,

with

SIGNAL

131

with

CALL/RETURN

31

with

DO

construct

34

with

IF

construct

40

with

SELECT

construct

54

flow

of

REXX

program

processing

385

FOR

phrase

of

DO

instruction

34

FOREVER

repetitor

on

DO

instruction

34

FORM

function
description

77

546

REXX/VSE

Reference

FORM

function

(continued)
example

77

FORM

option

of

NUMERIC

instruction

44,

129

FORMAT

function
description

77

example

77

formatting
DBCS

blank

adjustments

490

DBCS

bracket

adding

490

DBCS

bracket

stripping

494

DBCS

EBCDIC

to

DBCS

493

DBCS

string

width

495

DBCS

strings

to

SBCS

494

DBCS

text

justification

491

numbers

for

display

77

numbers

with

TRUNC

89

of

output

during

tracing

59

text

centering

68

text

justification

95

text

left

justification

79,

492

text

left

remainder

justification

493

text

right

justification

83,

492

text

right

remainder

justification

493

text

spacing

84

text

validation

function

494

FORTRAN

programs,

alternate

entry

points

for

external

entry

points

421

fptbtso
defining

function

packages

products

provide

352

framework,

example

console

application

(REXXCO)

248

FSU

(Fast

Service

Upgrade)

3

FUNCSOFL

flag

398

function

package

flags

399

function

package

table

356,

394,

406

defaults

provided

409

function

packages
ARXFLOC

352,

353

ARXFUSER

352,

353

description

348

directory

352

directory

names

352,

353

ARXFLOC

352,

353

ARXFUSER

352,

353

specifying

in

function

package

table

356

supplied

by

REXX/VSE

352,

353

example

of

directory

354

external

function

parameter

list

349

format

of

entries

in

directory

353

function

package

table

356

getting

larger

area

to

store

result

368

getting

larger

evaluation

block

368

interface

for

writing

code

348

link-editing

the

code

353

overview

327

parameters

code

receives

349

provided

by

IBM

products

352

summary

of

138

supplied

directory

names

352,

353

types

of
local

351

function

packages

(continued)
types

of

(continued)
system

351

user

351

writing

348

function

search

order

flag

398

function,

built-in
See

built-in

functions

functions

61,

94

ABS

64

ADDRESS

65

ARG

65

ASSGN

97

B2X

67

BITAND

66

BITOR

66

BITXOR

67

built-in

64,

93

built-in,

description

63

C2D

70

C2X

70

call,

definition

61

calling

61

CENTER

68

CENTRE

68

COMPARE

68

CONDITION

68

COPIES

69

D2C

75

D2X

76

DATATYPE

71

DATE

72

definition

61

DELMSG

219,

229,

262

DELSTR

74

DELWORD

75

description

61

DIGITS

75

error

codes

243

ERRORTEXT

76

external

62,

96

ASSGN

97

LOCKMGR

98,

235

MERGE

98,

236

OPERMSG

98,

238

OUTTRAP

99

PAUSEMSG

101,

239

REXXMSG

103

SLEEP

105

SORTSTEM

105

STORAGE

105

SYSVAR

106

EXTERNALS

94

FIND

94

FINDMSG

219,

230

forcing

built-in

or

external

reference

62

FORM

77

FORMAT

77

FUZZ

78

GETMSG

219,

233

INDEX

95

Index

547

functions

(continued)
INSERT

78

internal

61

JUSTIFY

95

LASTPOS

79

LEFT

79

LENGTH

80

LINESIZE

96

LOCKMGR

98,

235

MAX

80

MERGE

98,

236,

250

MIN

80

numeric

arguments

of

130

OPERMSG

98,

238,

256

OUTTRAP

99

OVERLAY

81

PAUSEMSG

101,

239

POS

81

processing

in

DBCS

490

providing

in

function

packages

348

QUEUED

81

RANDOM

82

return

from

53

REVERSE

82

REXXMSG

103

RIGHT

83

search

order

62,

63

SENDCMD

220,

239

SENDMSG

218,

239

SIGN

83

SLEEP

105

SORTSTEM

105,

240

SOURCELINE

84

SPACE

84

STORAGE

105

STRIP

84

SUBSTR

85

SUBWORD

85

SYMBOL

86

SYSDEF

241

SYSDEF

(connecting

to

VSE/OCCF)

224,

242

SYSDEF

(disconnecting

from

VSE/OCCF)

242

SYSVAR

106,

242

TIME

86

TRACE

88

TRANSLATE

88

TRUNC

89

USERID

96

VALUE

89

variables

in

49

VERIFY

90

WORD

90

WORDINDEX

91

WORDLENGTH

91

WORDPOS

91

WORDS

92

writing

external

348

X2B

92

X2C

93

X2D

93

XRANGE

92

FUZZ
controlling

numeric

comparison

128

option

of

NUMERIC

instruction

44,

128

FUZZ

function
description

78

example

78

G
general

concepts

7,

26

general

considerations

for

calling

REXX

routines

328

general-use

interface,

console

219

get

result

routine

(ARXRLT)

368

GET

VSE/POWER

spool-access

services

service

25,

181

GetClientId

function,

REXX

Sockets

285

GETFREER

field

(module

name

table)

403

GetHostByAddr

function,

REXX

Sockets

285

GetHostByName

function,

REXX

Sockets

286

GetHostId

function,

REXX

Sockets

286

GetHostName

function,

REXX

Sockets

287

GETMSG

function

219,

233

GetPeerName

function,

REXX

Sockets

287

GETQE

command

182

GetSockName

function,

REXX

Sockets

288

GetSockOpt

function,

REXX

Sockets

288

getting

a

larger

evaluation

block

368

GiveSocket

function,

REXX

Sockets

289

global

variables
access

with

VALUE

function

89

GOTO,

unusual

131

greater

than

operator

16

greater

than

or

equal

operator

(>=)

16

greater

than

or

less

than

operator

(><)

16

group,

DO

34

grouping

instructions

to

run

repetitively

34

guard

digit

125

H
HALT

condition

of

SIGNAL

and

CALL

instructions

131,

134

halt

exit

474

Halt

Interpretation

(HI)

immediate

command

160,

323,

365

Halt

Typing

(HT)

immediate

command

160,

365

halt,

trapping

131

halting

a

looping

program

325

from

a

program

365

HI

immediate

command

160

using

the

ARXIC

routine

365

hexadecimal
See

also

conversion

checking

with

DATATYPE

71

description

10

digits

10

strings
implementation

maximum

10

to

binary,

converting

with

X2B

92

to

character,

converting

with

X2C

93

to

decimal,

converting

with

X2D

93

548

REXX/VSE

Reference

HI

(Halt

Interpretation)

immediate

command

160,

325,

365

HI

(Halt

Interpretation),

passed

from

MSG

command

238,

251

hints

and

tips

244

homepage,

REXX/VSE

5

host

command

environment
ARXSUBCM

routine

362

change

entries

in

SUBCOMTB

table

362

check

existence

of

167

CONSOLE

26

description

23

JCL

25

LINK

26,

205

LINKPGM

26,

205

POWER

25

replaceable

routine

459

VSE

25

host

command

environment

table

394,

404

defaults

provided

409

host

command

replaceable

routine

228

host

command

search

(ARXHST)
entry

specifications

520

environment

517

return

codes

521

return

specifications

521

host

commands
-3

return

code

24,

461

ADDRESS

POWER

181

definition

of

24

issuing

commands

to

underlying

operating

system

22

return

codes

from

24

REXX/VSE

143

using

139

hours

calculated

from

midnight

86

how

to

use

this

book

1

HT

(Halt

Typing)

immediate

command

160,

365

I
I/O

control

block

456

replaceable

routine

450

to

and

from

a

VSAM

file

169

to

and

from

files

146

I/O

disposition

97

I/O

interface,

console

218

identf
program

8

REXX

program

8

identifying

users

96

IDROUT

field

(module

name

table)

404

IEXM

247

IF

instruction
description

40

example

40

immediate

commands

143

HI

(Halt

Interpretation)

160,

325,

365

HT

(Halt

Typing)

160,

365

issuing

from

program

365

immediate

commands

(continued)
RT

(Resume

Typing)

166,

365

TE

(Trace

End)

168,

325,

365

TQ

(Trace

Query)

168,

365

TS

(Trace

Start)

169,

325,

365

implementation

maximum
C2D

function

70

CALL

instruction

33

D2C

function

76

D2X

function

76

hexadecimal

strings

10

literal

strings

10

MAX

function

80

MIN

function

80

numbers

12

operator

characters

21

symbols

11

TIME

function

87

X2D

function

94

implied

semicolons

13

imprecise

numeric

comparison

128

in-storage

control

block

(INSTBLK)

343

in-storage

parameter

list

436

inclusive

OR

operator

16

INDD

field

(module

name

table)

403

indefinite

loops

35

See

looping

program

indentation

during

tracing

59

INDEX

function
description

95

example

95

indirect

evaluation

of

data

41

inequality,

testing

of

15

infinite

loops

34

See

looping

program

inhibition

of

commands

with

TRACE

instruction

58

initialization
of

arrays

21

of

compound

variables

21

of

language

processor

environments
automatic

394

using

routine

ARXINIT

392,

431

initialization

routine

(ARXINIT)
description

431

how

environment

values

are

determined

411

how

values

are

determined

435

in-storage

parameter

list

436

output

parameters

438

parameters

module

436

reason

codes

438

restrictions

on

values

436

specifying

values

436

to

initialize

an

environment

431

to

locate

an

environment

431

values

used

to

initialize

environment

411

Initialize

function,

REXX

Sockets

290

INNAME

system

variable,

MERGE

function

236,

250

input

and

output
See

I/O

input

and

output

control

block

456

Index

549

input/output
ARXIOPTS

control

block

456

default

97

replaceable

routine

450

to

and

from

a

VSAM

file

169

to

and

from

files

146

INSERT

function
description

78

example

79

inserting

a

string

into

another

78

installation

of

REXX/VSE

SOCKET

function

321

INSTBLK

(in-storage

control

block)

343

instructions
ADDRESS

28

ARG

29

CALL

31

definition

18

DO

34

DROP

38

EXIT

39

IF

40

INTERPRET

41

ITERATE

42

keyword

18

description

27

LEAVE

43

NOP

44

NUMERIC

44

OPTIONS

45

PARSE

46

parsing,

summary

116

PROCEDURE

49

PULL

51

PUSH

52

QUEUE

52

RETURN

53

SAY

53

SELECT

54

SIGNAL

55

TRACE

56

UPPER

60

integer
arithmetic

123,

131

division
description

123,

127

operator

15

interactive

debug

56,

323

See

also

TRACE

instruction

description

323

interface

for

writing

functions

and

subroutines

348

interface

routine

(OUTTRAP)

328

interface

to

variables

(ARXEXCOM)

356

internal
functions

description

61

return

from

53

variables

in

49

routine
calling

31

definition

31

internal

REXX

program

(″Action″)

249,

251,

255

INTERPRET

instruction
description

41

example

41

interpretive

execution

of

data

41

interrupting

program

execution

325

interrupting

program

interpretation

365

interrupting

program

processing

160

invoking
built-in

functions

31

REXX

programs

140

routines

31

Ioctl

function,

REXX

Sockets

291

IOROUT

field

(module

name

table)

403

IRXEXECX

exec

processing

exit

444,

477

IRXEXECX

field

(module

name

table)

403

issuing

host

commands

23

ITERATE

instruction
See

also

DO

instruction

description

42

example

42

use

of

variable

on

42

J
JCL

host

command

environment

25,

201

JCL

jobname
see

SYSJOBNAME

variable

106

job
as

an

″Action″

250,

257

creation

by

MERGE

function

237

skeleton

252

job

completion

messages

195

job

management

198

justification,

text

right,

RIGHT

function

83

JUSTIFY

function
description

95

example

95

justifying

text

with

JUSTIFY

function

95

K
keyword

See

also

instructions

conflict

with

commands

141

description

27

mixed

case

27

reservation

of

141

L
label

as

target

of

CALL

31

as

target

of

SIGNAL

55

description

18

duplicate

55

in

INTERPRET

instruction

41

search

algorithm

55

language
codes

for

REXX

messages
determining

current

104

in

parameter

block

396

550

REXX/VSE

Reference

language

(continued)
codes

for

REXX

messages

(continued)
in

parameters

module

396

SETLANG

function

104

setting

104

determining
for

REXX

messages

104

processor

date

and

version

48

processor,

execution

7

structure

and

syntax

8

language

processor

environment
automatic

initialization

394

chains

of

392,

412

changing

the

defaults

for

initializing

416

characteristics

394

considerations

for

calling

REXX

routines

329

control

blocks

for

392,

417

data

stack

in

425

description

386,

391

flags

and

masks

397

how

environments

are

located

414

maximum

number

of

392,

424

non-reentrant

431

obtaining

address

of

environment

block

431

overview

for

calling

REXX

routines

329

reentrant

431

restrictions

on

values

for

417

sharing

data

stack

425

terminating

440,

497

LASTPOS

function
description

79

example

79

leading
blank

removal

with

STRIP

function

84

zeros
adding

with

the

RIGHT

function

83

removing

with

STRIP

function

84

LEAVE

instruction
See

also

DO

instruction

description

43

example

43

use

of

variable

on

43

leaving

your

program

39

LEFT

function
description

79

example

79

LENGTH

function
description

80

example

80

less

than

operator

(<)

16

less

than

or

equal

operator

(<=)

16

less

than

or

greater

than

operator

(<>)

16

LIBDEF
before

load

342

example

333

LIFO

(last-in/first-out)

stacking

52

line

length

and

width

of

output

device

96

line

length

of

output

device

96

line

width

of

output

device

96

lines
from

a

program

retrieved

with

SOURCELINE

84

LINESIZE

function
description

96

LINK

host

command

environment

26,

205

linking,

definition

26,

205

LINKPGM

host

command

environment

26,

205

list
template

ARG

instruction

29

PARSE

instruction

46

PULL

instruction

51

Listen

function,

REXX

Sockets

292

literal

string
description

9

implementation

maximum

10

patterns

111

load-table

option,

FINDMSG

function

231

LOADACTN

option,

FINDMSG

function

231

LOADDD

field

(module

name

table)

403

loading

a

REXX

program

446

loading

and

calling

programs

26,

205

loadlist

$SVAREXX

527

local

function

packages

351

locating
phrase

in

a

string

94

string

in

another

string

81,

95

word

in

a

string

91

locating

current

non-reentrant

environment

431

LOCKMGR

function

98,

235

LOCPKFL

flag

399

logical
bit

operations
BITAND

66

BITOR

66

BITXOR

67

operations

16

looping

program
halting

325,

365

tracing

325,

365

loops
See

also

DO

instruction

See

also

looping

program

active

42

execution

model

37

indefinite

loops

325

infinite

loops

325

modification

of

42

repetitive

35

termination

of

43

lowercase

symbols

11

M
macro

DOM

219

MCSOPER

219

MCSOPMSG

219

MGCRE

220

WTO

218

WTOR

219

MAKEBUF

command

160

managing

storage

466

Index

551

mandatory

phases

527

mapping

macros
ARXARGTB

(argument

list

for

ARXEXEC)

342

ARXARGTB

(argument

list

for

function

packages)

349

ARXDSIB

(data

set

information

block)

451,

457

ARXEFPL

(external

function

parameter

list)

349

ARXENVB

(environment

block)

418

ARXENVT

(environment

table)

424

ARXEVALB

(evaluation

block)

345,

349

ARXEXECB

(exec

block)

341,

449

ARXEXTE

(vector

of

external

entry

points)

421

ARXFPDIR

(function

package

directory)

353

ARXINSTB

(in-storage

control

block)

343

ARXMODNT

(module

name

table)

402

ARXPACKT

(function

package

table)

407

ARXPARMB

(parameter

block)

395,

397

ARXSHVB

(SHVBLOCK)

359

ARXSUBCT

(host

command

environment

table)

364,

405

ARXWORKB

(work

block

extension)

420

mask

settings

397

mask,

GETMSG

function

233

masks

for

language

processor

environment

397

master

console

220

MAX

function
description

80

example

80

implementation

maximum

80

maximum

number

of

language

processor

environments

392,

424

MCONS=

in

DTSECTAB

223

MCSOPER

macro

219

return

and

reason

codes

268

MCSOPMSG

macro

219

return

and

reason

codes

268

MDB

(Message

Data

Block)

variables

234

MERGE

98

MERGE

function

236,

250

message
deleting

219

deleting

(DELMSG

function)

229,

262

error,

from

JCL

334

FINDMSG

function

230

GETMSG

function

233

highlighted

219,

229,

262

HOLD

state

219,

229,

262

multi-line,

with

FINDMSG

function

232

retrieving

(MCSOPMSG

macro)

219

routing

to

a

specific

partition

227,

245

sending

via

SENDMSG

function

239

Message

Action

Table

248

actions

249

Message

Data

Block

(MDB)

variables

234

message

identifier

replaceable

routine

470

message

IDs,

producing

470

messages
language

for

REXX

104,

396

storing

VSE/POWER

spool-access

services

messages

99

MGCRE

macro

220

MGCRE

macro

(continued)
return

and

reason

codes

269

MIN

function
description

80

example

80

implementation

maximum

80

minutes

calculated

from

midnight

87

mixed

DBCS

string

71

module

name

table
ATTNROUT

field

403

defaults

provided

409

description

401

EXECINIT

field

403

EXECTERM

field

404

EXROUT

field

403

format

401

GETFREER

field

403

IDROUT

field

404

in

parameter

block

394

INDD

field

403

IOROUT

field

403

IRXEXECX

field

403

LOADDD

field

403

MSGIDRT

field

404

OUTDD

field

403

part

of

parameters

module

394

STACKRT

field

403

MSG

command

238,

239,

251,

256

MSG

msgtype,

GETMSG

function

233

MSGIDRT

field

(module

name

table)

404

msgtype,

GETMSG

function

233

multi-line

messages

with

FINDMSG

232

multi-way

call

32,

55

multiple
assignments

in

parsing

114

string

parsing

117

multiplication
description

125

operator

15

N
name,

ACTIVATE

console

222

names
of

functions

61

of

programs

47

of

REXX/VSE

external

entry

points

421

of

subroutines

31

of

variables

11

reserved

command

names

142

negation
of

logical

values

16

of

numbers

15

nesting

of

control

structures

33

NetView

223

new

data

stack

flag

399

new

data

stack,

creating

161

new

host

command

environment

flag

399

NEWSCFL

flag

399

NEWSTACK

command

161,

428

NEWSTKFL

flag

399

552

REXX/VSE

Reference

nibbles

10

NOCONCAT

option,

FINDMSG

function

231

NOESTAE

flag

400

NOETMODE

45

NOEXMODE

45

NOLOADDD

flag

400

NOMSGIO

flag

103,

400

NOMSGWTO

flag

103,

400

non
writing

programs

for

139

non-reentrant

environment

400,

431

NOP

instruction
description

44

example

44

NOPMSGS

flag

104,

400

NOREADFL

flag

398

NOSTKFL

flag

398

not

equal

operator

16

not

greater

than

operator

16

not

less

than

operator

16

NOT

operator

12,

16

notation
engineering

129

exponential,

example

129

scientific

129

note
condition

traps

133

NOVALUE

condition
not

raised

by

VALUE

function

90

of

SIGNAL

instruction

134

on

SIGNAL

instruction

131

use

of

141

NOWRTFL

flag

399

null
clauses

18

strings

9,

14

null

instruction
See

NOP

instruction

number

of

language

processor

environments,

changing

maximum

424

numbers
arithmetic

on

15,

123,

124

checking

with

DATATYPE

71

comparison

of

15,

128

description

11,

123,

124

formatting

for

display

77

implementation

maximum

12

in

DO

instruction

34

truncating

89

use

in

the

language

130

whole

130

numeric
comparisons,

example

128

options

in

TRACE

58

NUMERIC

instruction
description

44

DIGITS

option

44

FORM

option

44,

129

FUZZ

option

45

option

of

PARSE

instruction

47,

130

settings

saved

during

subroutine

calls

33

O
obtaining

a

larger

evaluation

block

368

OC

exit,

OPERMSG

function

238,

256

OCCF
See

VSE/OCCF

opening

a

VSAM

file

without

reading

or

writing

any

records

170

operation

scenarios

(REXXCO)

248

operations
arithmetic

125

tracing

results

56

operator
arithmetic

description

14,

123,

124

list

15

as

special

characters

12

characters
description

12

implementation

maximum

21

comparison

15,

128

concatenation

14

examples

126,

127

logical

16

precedence

(priorities)

of

16

operator

communication

exit,

OPERMSG

function

98,

238,

256

operator

communication,

tracking

228

OPERMSG

function

98,

238,

256

option,

FINDMSG

function

231

options
alphabetic

character

word

in

TRACE

57

numeric

in

TRACE

58

prefix

in

TRACE

57

OPTIONS

instruction
description

45

OR,

logical
exclusive

16

inclusive

16

ORing

character

strings

together

66

OTHERWISE

clause
See

SELECT

instruction

OUTDD

field

(module

name

table)

403

OUTNAME

system

variable,

MERGE

function

237,

250

output

device
finding

width

with

LINESIZE

96

reading

from

with

PULL

51

writing

to

with

SAY

53

output

trapping

99,

202

OUTTRAP

function

99,

202

OUTTRAP

interface

routine

328

overflow,

arithmetic

130

OVERLAY

function
description

81

example

81

overlaying

a

string

onto

another

81

overview

of

parsing

119

Index

553

P
packing

a

string

with

X2C

93

pad

character,

definition

64

page,

code

8

parallel

outstanding

command

responses

227

parameter

block

394

format

395,

396

relationship

to

parameters

module

394

parameters

module
changing

the

defaults

416

default

values

for

409

defaults

392,

394,

409

ARXPARMS

394,

409

for

ARXINIT

436

format

of

394

providing

you

own

416

relationship

to

parameter

block

394

restrictions

on

values

for

417

parentheses
adjacent

to

blanks

12

in

expressions

16

in

function

calls

61

in

parsing

templates

115

PARSE

instruction
description

46

NUMERIC

option

130

PARSE

SOURCE

token

396

parsing
advanced

topics

117

combining

patterns

and

parsing

into

words

114

combining

string

and

positional

patterns

118

conceptual

overview

119

definition

109

description

109,

122

equal

sign

112

examples
combining

positional

pattern

and

parsing

into

words

114

combining

string

and

positional

patterns

118

combining

string

pattern

and

parsing

into

words

114

parsing

instructions

116

parsing

multiple

strings

in

a

subroutine

118

period

as

a

placeholder

110

simple

templates

109

templates

containing

positional

patterns

112

templates

containing

string

patterns

111

using

a

variable

as

a

positional

pattern

115

using

a

variable

as

a

string

pattern

115

into

words

109

multiple

assignments

114

multiple

strings

117

patterns
conceptual

view

121

positional

109,

112

string

109,

111

period

as

placeholder

110

positional

patterns

109

absolute

112

relative

113

variable

115

parsing

(continued)
selecting

words

109

source

string

109

special

case

118

steps

119

string

patterns

109

literal

string

patterns

111

variable

string

patterns

115

summary

of

instructions

116

templates
in

ARG

instruction

29

in

PARSE

instruction

46

in

PULL

instruction

51

treatment

of

blanks

110

UPPER,

use

of

115

variable

patterns
positional

115

string

115

with

DBCS

characters

119

word

parsing
conceptual

view

122

description

and

examples

109

partition
routing

messages

to

227,

245

see

SYSPID

variable

107

partitions
name

of

for

language

processor

environment

397

running

programs

140

using

REXX

139

parts
in

LIBDEF

example

333

passing

address

of

environment

block

to

REXX

routines

329,

415

patterns

in

parsing
combined

with

parsing

into

words

114

conceptual

view

121

positional

109,

112

string

109,

111

PAUSEMSG

function

101,

239

period
as

placeholder

in

parsing

110

causing

substitution

in

variable

names

20

in

numbers

124

permanent

command

destination

change

28

phase
calling

205

mandatory

527

recommended

527

place

job

on

VSE/POWER

queue

188

portability

of

compiled

REXX

programs

501

POS

function
description

81

example

81

position
last

occurrence

of

a

string

79

of

character

using

INDEX

95

positional

patterns
absolute

112

description

109

relative

113

variable

115

554

REXX/VSE

Reference

POWER

host

command

environment

25

POWER

jobname
see

SYSPOWJNM

variable

106

POWER

jobnumber
see

SYSPOWJNUM

variable

107

POWER

queue

entry,

retrieving

182

POWER

queue,

placing

a

job

188

powers

of

ten

in

numbers

11

PRD1.BASE

341

parameters

module

in

416

sample

job

ARXEOJTB.Z

211

precedence

of

operators

16

precision

of

arithmetic

124

prefix
operators

15,

16

options

in

TRACE

57

preloading

a

REXX

program

446

primary

data

stack

428

primary

messages

flag

400

PROCEDURE

instruction
description

49

example

49

producing

message

IDs

470

producing

output

data
See

SAY

instruction

profile,

console

221,

222

program

identifier

8

program

libraries
storing

REXX

programs

7

programming
restrictions

7

programming

services
ARXEXCOM

(variable

pool

access)

356

ARXHLT

(Halt

condition)

374

ARXIC

(trace

and

execution

control)

365

ARXLIN

(LINESIZE

function)

380

ARXOUT

382

ARXRLT

(get

result)

368

ARXSAY

(SAY

instruction)

372

ARXSUBCM

(host

command

environment

table)

362

ARXTXT

text

retrieval

376

description

327

function

packages

348

general

considerations

for

calling

routines

328

passing

address

of

environment

block

to

routines

329

summary

of

137

writing

external

functions

and

subroutines

348

programs
description

1

loading

and

calling

205

loading

of

446

overview

of

writing

137

preloading

446

retrieving

lines

with

SOURCELINE

84

running

140

running

in

batch

140,

333

writing

139

protecting

variables

49

pseudo

random

number

function

of

RANDOM

82

PTF

527

publications
bibliography

533

SAA

Common

Programming

Interface

REXX

Level

2

Reference

4

VSE/ESA

Messages

and

Codes

4

VSE/ESA

REXX/VSE

Diagnosis

Reference

4

VSE/ESA

REXX/VSE

User’s

Guide

4

PULL

from

SYSLOG

219

PULL

instruction
description

51

example

51

PULL

option

of

PARSE

instruction

47

PULLEXTR

464

PUSH

instruction
description

52

example

52

put

job

on

VSE/POWER

queue

188

PUT

VSE/POWER

spool-access

services

service

25,

181

PUTQE

command

188

Q
QBUF

command

163

QELEM

command

164

QSTACK

command

165

QT

(Query

Trace)

immediate

command

365

query
existence

of

host

command

environment

167

number

of

buffers

on

data

stack

163

number

of

data

stacks

165

number

of

elements

on

data

stack

164

query

current

console

settings

225

querying

TRACE

setting

88

QUERYMSG

command

194

queue
See

external,

data

queue

QUEUE

instruction
description

52

example

52

queue

space,

Console

Router

245

QUEUED

function
description

81

example

82

R
RANDOM

function
description

82

example

82

random

number

function

of

RANDOM

82

RC

(return

code)
not

set

during

interactive

debug

323

set

by

commands

23

set

to

0

if

commands

inhibited

58

special

variable

134,

141

Read

function,

REXX

Sockets

293

reading
NOREADFL

flag,

effect

on

398

reading

from

compound

variables

102

Index

555

reading

information

from

a

VSAM

file

170

readnig
with

EXECIO

147

reason

codes
for

ARXINIT

routine

438

librarian

reason

code
see

SYSLIBRCODE

variable

106

recommended

phases

527

recursive

call

32

Recv

function,

REXX

Sockets

294

RecvFrom

function,

REXX

Sockets

295

reentrant

environment

400,

431

relative

positional

patterns

113

remainder
description

123,

127

operator

15

removing

an

operator

communication

exit

98,

238

RENTRANT

flag

400

reordering

data

with

TRANSLATE

function

88

repeating

a

string

with

COPIES

69

repetitive

loops
altering

flow

43

controlled

repetitive

loops

35

exiting

43

simple

DO

group

35

simple

repetitive

loops

35

replaceable

routines

385,

388,

443

data

stack

462

exec

load

446

host

command

environment

459

input/output

(I/O)

450

message

identifier

470

storage

management

466

user

ID

468

reply
issue

via

SENDCMD

function

239

reponses

outstanding

in

parallel

227

request

(shared

variable)

block

(SHVBLOCK)

359

reservation

of

keywords

141

reserved

command

names

142

Resolve

function,

REXX

Sockets

296

resource

locking

235

RESP

msgtype,

GETMSG

function

233

response
GETMSG

function

233

restoring

variables

38

restrictions
embedded

blanks

in

numbers

11

first

character

of

variable

name

19

in

programming

7

maximum

length

of

results

14

restrictions

on

values

for

language

processor

environments

417

REstructured

eXtended

eXecutor

(REXX)

Language
See

REXX

REstructured

eXtended

eXecutor

language

(REXX)
built-in

functions

61

description

1

keyword

instructions

27

RESULT
set

by

RETURN

instruction

32,

53

RESULT

(continued)
special

variable

141

results
length

of

14

Resume

Typing

(RT)

immediate

command

166,

365

retrieve

a

message

(MCSOPMSG

macro)

219

retrieve

entry

from

POWER

queue

182

retrieving
argument

strings

with

ARG

29

arguments

with

ARG

function

65

lines

with

SOURCELINE

84

return

codes
ARXCONAD

228

command

processors

270

from

JCL

host

command

environment

205

librarian

return

code
see

SYSLIBRCODE

variable

106

MCSOPER

macro

268

MCSOPMSG

macro

268

MGCRE

macro

269

REXX

console

commands

228

REXXCO

253

VSE

JCL
see

SYSMRC

variable

106

VSE

system

macro
see

SYSERRCODES

variable

107

Return

Codes

242

RETURN

instruction
description

53

returnc
as

set

by

commands

23

setting

on

exit

39

returning

a

character

string

39

returning

control

from

REXX

program

53

REVERSE

function
description

82

example

82

rex
ARXEXEC

335

ARXINIT

335

ARXREXX

334

ARXTERM

335

REXALLRC

console

profile

221,

222

REXAUTO

console

profile

222,

224

REXNORC

console

profile

221,

222,

246

REXX
program

portability

501

REXX

compiler

support
See

also

compiler

interface

routines

description

503

identifying

a

compiled

program

503

REXX

console

217

commands

221

REXX

console

profile

222

REXX

external

entry

points

421

alternate

names

421

ARXEX

338

ARXEXC

356

ARXEXCOM

356

ARXEXEC

338

ARXHLT

374

556

REXX/VSE

Reference

REXX

external

entry

points

(continued)
ARXIC

365

ARXINIT

431

ARXINOUT

450

ARXINT

431

ARXIO

450

ARXJCL

335

ARXLD

446

ARXLIN

380

ARXLOAD

446

ARXMID

470

ARXMSGID

470

ARXOUT

382

ARXRLT

368

ARXSAY

372

ARXSTK

462

ARXSUB

362

ARXSUBCM

362

ARXTERM

440

ARXTERMA

497

ARXTMA

497

ARXTRM

440

ARXTXT

376

ARXUID

468

REXX

program

identifier

8

REXX

Sockets

API
function

descriptions
Accept

279

Bind

281

Close

282

Connect

282

Fcntl

284

GetClientId

285

GetHostByAddr

285

GetHostByName

286

GetHostId

286

GetHostName

287

GetPeerName

287

GetSockName

288

GetSockOpt

288

GiveSocket

289

Initialize

290

Ioctl

291

Listen

292

Read

293

Recv

294

RecvFrom

295

Resolve

296

Select

297

Send

298

SendTo

299

SetSockOpt

300

ShutDown

301

Socket

302

SocketSet

303

SocketSetList

303

SocketSetStatus

304

TakeSocket

305

Terminate

306

Translate

306

Version

308

REXX

Sockets

API

(continued)
function

descriptions

(continued)
Write

308

installation

of

REXX/VSE

SOCKET

function

321

overview

275

programming

hints

and

tips

275

sample

programs
client

311

server

313

tasks

276

REXX

vector

of

external

entry

points

421

REXX/VSE
See

REstructured

eXtended

eXecutor

language

(REXX)

REXX/VSE

commands

143

REXX/VSE

homepage

5

REXX/VSE.

commands
DELSTACK

143

DROPBUF

144

EXEC

145

EXECIO

146

immediate

commands
HI

160

HT

160

RT

166

TE

168

TQ

168

TS

169

MAKEBUF

160

NEWSTACK

161

QBUF

163

QELEM

164

QSTACK

165

SUBCOM

167

valid

in

REXX/VSE

139

VSAMIO

169

REXXASM

demo

program

263

REXXCO

application

framework

248

actions

249

error

codes

253

error

handling

253

invocation

250

termination

251

REXXCPUM

demo

program

259

REXXCXIT

demo

program

256

REXXDOM

demo

program

261

REXXFLSH

demo

program

255

REXXIPT

function

102

REXXJMGR

demo

program

262

REXXLOAD

demo

program

254

REXXMSG

function

103

REXXSCAN

demo

program

264

REXXSPCE

demo

program

257

REXXTRY

demo

program

262

REXXWAIT

demo

program

263

RIGHT

function
description

83

example

83

rounding
description

125

using

a

character

string

as

a

number

11

Index

557

routines
See

also

functions

See

also

subroutines

exit

444,

471

for

customizing

services

385

for

programming

services

327

general

considerations

328

replaceable

443

routing

codes

220

routing

messages

to

specific

partition

227,

245

RSCLIENT

EXEC

311

RSSERVER

EXEC

313

RT

(Resume

Typing)

immediate

command

166,

365

running

a

program

145

running

a

REXX

program
from

batch

333

in

REXX/VSE

140,

333

restriction

333

using

ARXEXEC

routine

338

using

ARXJCL

routine

335

running

off

the

end

of

a

program

39

RXHLT

475

rxs
return

codes

309

system

messages

309

S
SAA

book

1

books

4

general

description

502

SAA

REXX

1,

502

SAM

files,

reading

or

writing

to

147

SAY

instruction
description

53

displaying

data

53

example

53

SBCS

strings

481

scenarios,

console

automation

248

scientific

notation

129

search

order
active

PHASE

chain

63

for

external

functions

63

for

external

subroutines

63

for

functions

62

for

subroutines

32

searching

a

string

for

a

phrase

94

secondary

data

stack

428

seconds

calculated

from

midnight

87

security

administrator

223

security

checking

for

GETQE

command

185

security

considerations

223

security

user-id

223

Select

function,

REXX

Sockets

297

SELECT

instruction
description

54

example

54

selecting

a

default

with

ABBREV

function

64

semicolons
implied

13

semicolons

(continued)
omission

of

27

within

a

clause

8

Send

function,

REXX

Sockets

298

SENDCMD

function

220,

239

SENDMSG

function

218,

239

SendTo

function,

REXX

Sockets

299

sequence

numbers

7

sequence

numbers

in

file

446

sequence,

collating

using

XRANGE

92

serialize

a

REXX

program

98,

235

service

offerings

221

Servicing

REXX

527

SETLANG

function

104

SETSDL

demo

program

263

SetSockOpt

function,

REXX

Sockets

300

SETUID

command

166

shared

variable

(request)

block

(SHVBLOCK)

359

sharing

data

stack

between

environments

425

shift-in

(SI)

characters

481

Shift-in

(SI)

characters

486

shift-out

(SO)

characters

481

Shift-out

(SO)

characters

486

ShutDown

function,

REXX

Sockets

301

SHVBLOCK

request

block

359

SIGL
set

by

CALL

instruction

32

set

by

SIGNAL

instruction

55

special

variable

135,

141

example

135

SIGN

function
description

83

example

83

SIGNAL

instruction
description

55

example

55

execution

of

in

subroutines

33

significant

digits

in

arithmetic

124

simple
repetitive

loops

35

symbols

20

single

stepping
See

interactive

debug

skeleton

252

MERGE

function

236,

250

SKOCCF

224

variable

resolution

252

SKOCCF

skeleton

224

SLEEP

function

105

smples
in

LIBDEF

example

333

Socket

function,

REXX

Sockets

302

SocketSet

function,

REXX

Sockets

303

SocketSetList

function,

REXX

Sockets

303

SocketSetStatus

function,

REXX

Sockets

304

SORTSTEM

function

105,

240

source
of

program

and

retrieval

of

information

47

string

109

SOURCE

option

of

PARSE

instruction

47

558

REXX/VSE

Reference

SOURCELINE

function
description

84

example

84

SPACE

function
description

84

example

84

spacing,

formatting,

SPACE

function

84

special
characters

and

example

12

parsing

case

118

RC

141

RESULT

141

SIGL

141

variables
RC

23,

134

RESULT

32,

53

SIGL

32,

135

specify

output

destination

for

REXX/VSE

messages

103

SPSHARE

flag

400

stack

231

STACKRT

field

(module

name

table)

403

stem

of

a

variable
assignment

to

21

description

20

used

in

DROP

instruction

38

used

in

EXECIO

148

used

in

PROCEDURE

instruction

49

stepping

through

programs
See

interactive

debug

steps

in

parsing

119

storage
change

value

in

specific

storage

address

105

management

replaceable

routine

466

managing

466

obtain

value

in

specific

storage

address

105

STORAGE

function

105

restricting

use

of

400

storage

management

replaceable

routine

466

STORFL

flag

400

storing

REXX

programs

7

strict

comparison

15

strictly

equal

operator

15,

16

strictly

greater

than

operator

15,

16

strictly

greater

than

or

equal

operator

16

strictly

less

than

operator

15,

16

strictly

less

than

or

equal

operator

16

strictly

not

equal

operator

15,

16

strictly

not

greater

than

operator

16

strictly

not

less

than

operator

16

string
and

symbols

in

DBCS

482

as

literal

constant

9

as

name

of

function

9

as

name

of

subroutine

31

binary

specification

of

10

centering

using

CENTER

function

68

centering

using

CENTRE

function

68

comparison

of

15

concatenation

of

14

copying

using

COPIES

69

string

(continued)
DBCS

481

DBCS-only

482

deleting

part,

DELSTR

function

74

description

9

extracting

words

with

SUBWORD

85

finding

a

phrase

in

94

finding

character

position

95

hexadecimal

specification

of

10

interpretation

of

41

length

of

14

mixed

SBCS/DBCS

482

mixed,

validation

483

null

9,

14

patterns
description

109

literal

111

variable

115

quotation

marks

in

9

repeating

using

COPIES

69

SBCS

481

verifying

contents

of

90

STRIP

function
description

84

example

85

structure

and

syntax

8

SUBCOM

command

167

SUBCOMTB

table

228

subexpression

13

subkeyword

19

sublibrary

members,

reading

or

writing

to

147

subroutines
calling

of

31

definition

61

external,

search

order

63

forcing

built-in

or

external

reference

32

naming

of

31

passing

back

values

from

53

providing

in

function

packages

348

return

from

53

use

of

labels

31

variables

in

49

writing

external

348

subsidiary

list

38,

49

substitution
in

expressions

13

in

variable

names

20

SUBSTR

function
description

85

example

85

substring,

extracting

with

SUBSTR

function

85

subtraction
description

125

operator

15

SUBWORD

function
description

85

example

85

summary
parsing

instructions

116

supervisor

version
see

SYSVERSION

variable

107

Index

559

switch

to

a

console

session

225

symbol
assigning

values

to

19

classifying

19

compound

20

constant

20

DBCS

validation

482

DBCS-only

482

description

11

implementation

maximum

11

mixed

DBCS

482

simple

20

uppercase

translation

11

use

of

19

valid

names

11

SYMBOL

function
description

86

example

86

symbols

and

strings

in

DBCS

482

syntax
diagrams

3

error
traceback

after

60

trapping

with

SIGNAL

instruction

131

general

8

syntax

checking
See

TRACE

instruction

SYNTAX

condition

of

SIGNAL

instruction

132,

134

SYSCPIUD

107

SYSDEF

function

241

SYSDEF

function

(connecting

to

VSE/OCCF)

224,

242

SYSDEF

function

(disconnecting

from

VSE/OCCF)

242

SYSERRCODES

107

SYSERRCODES,

SYSVAR

function

242

SYSIPT
accessing

data

102

default

input

97

reading

from

compound

variables

102

reading

or

writing

to

147

SYSJOBNAME

106

SYSLST
default

output

97

reading

or

writing

to

147

SYSMRC

variable

106

SYSPID

variable

107

SYSPKFL

flag

399

SYSPOWJNM

variable

106

SYSPOWJNUM

variable

107

system

files
storing

REXX

programs

7

system

function

packages

351

ARXEFVSE

352

provided

by

products

352

REXX/VSE-supplied

352

system

variables,

MERGE

function

236,

250

system-supplied

routines
ARXEXCOM

356

ARXEXEC

333

ARXHLT

374

ARXIC

365

system-supplied

routines

(continued)
ARXINIT

(initialization)

431

ARXINOUT

450

ARXJCL

333

ARXLIN

380

ARXLOAD

446

ARXMSGID

470

ARXOUT

382

ARXRLT

368

ARXSAY

372

ARXSTK

462

ARXSUBCM

362

ARXTERM

440

ARXTERMA

497

ARXTXT

376

ARXUID

468

SYSVAR

function

106,

242

SYSVERSION

variable

107

T
table

of

authorized

programs

210

tail

20

TakeSocket

function,

REXX

Sockets

305

TE

(Trace

End)

immediate

command

168,

325,

365

template
definition

109

list
ARG

instruction

29

PARSE

instruction

46

parsing
definition

109

general

description

109

in

ARG

instruction

29

in

PARSE

instruction

46

PULL

instruction

51

templates
in

PULL

instruction

51

temporary

command

destination

change

28

ten,

powers

of

129

Terminate

function,

REXX

Sockets

306

terminating

a

language

processor

environment

440,

497

termination
REXXCO

251

termination

routine

(ARXTERM)

440

termination

routine

(ARXTERMA)

497

terms

and

data

13

testing
abbreviations

with

ABBREV

function

64

variable

initialization

86

text

formatting
See

also

formatting

See

word

text

retrieval

routine

ARXTXT

376

THEN
as

free

standing

clause

27

following

IF

clause

40

following

WHEN

clause

54

TIME

function
description

86

560

REXX/VSE

Reference

TIME

function

(continued)
example

87

implementation

maximum

87

tips,

tracing

59

TO

phrase

of

DO

instruction

34

token

for

PARSE

SOURCE

396

TQ

(Trace

Query)

immediate

command

168,

365

trace
tags

59

trace

and

execution

control

(ARXIC

routine)

365

Trace

End

(TE)

immediate

command

168,

323,

365

TRACE

function
description

88

example

88

TRACE

instruction
See

also

interactive

debug

alphabetic

character

word

options

57

description

56

example

59

Trace

Query

(TQ)

immediate

command

168,

365

TRACE

setting
altering

with

TRACE

function

88

altering

with

TRACE

instruction

56

querying

88

Trace

Start

(TS)

immediate

command

169,

323,

365

traceback,

on

syntax

error

60

tracing
action

saved

during

subroutine

calls

33

by

interactive

debug

323

data

identifiers

59

execution

of

programs

56

external

control

of

325

looping

programs

325

tips

59

tracing

flags
-

59

>.>

59

>>>

59

>C>

59

>F>

59

>L>

59

>O>

59

>P>

59

>V>

59

+++

59

tracking

of

operator

communication

228

trailing
blank

removed

using

STRIP

function

84

zeros

125

transaction

IEXM

247

TRANSLATE

function
description

88

example

88

Translate

function,

REXX

Sockets

306

translation
See

also

uppercase

translation

with

TRANSLATE

function

88

with

UPPER

instruction

60

trap

command

output

99

trap

conditions
explanation

131

trap

conditions

(continued)
how

to

trap

131

information

about

trapped

condition

68

using

CONDITION

function

68

trapname
description

132

TRUNC

function
description

89

example

89

truncating

numbers

89

TS

(Trace

Start)

immediate

command

169,

325,

365

type

of

data

checking

with

DATATYPE

71

types

of

function

packages

351

typing

data
See

SAY

instruction

U
unassigning

variables

38

unconditionally

leaving

your

program

39

underflow,

arithmetic

130

uninitialized

variable

19

unpacking

a

string
with

B2X

67

with

C2X

70

UNTIL

phrase

of

DO

instruction

34

unusual

change

in

flow

of

control

131

updating

information

in

a

VSAM

file

170

UPPER
in

parsing

115

instruction
description

60

example

60

option

of

PARSE

instruction

46

uppercase

translation
during

ARG

instruction

29

during

PULL

instruction

51

of

symbols

11

with

PARSE

UPPER

46

with

TRANSLATE

function

88

with

UPPER

instruction

60

user

console

220

user

function

packages

351

user

ID
replaceable

routine

468

user-defined

variables,

MERGE

function

237

USERID

function
description

96

userid,

specifying

with

SETUID

166

USERPKFL

flag

399

users,

identifying

96

V
validn

DBCS

symbol

482

mixed

string

483

VALUE

function
description

89

example

89

value

of

variable,

getting

with

VALUE

89

Index

561

VALUE

option

of

PARSE

instruction

48

values

used

to

initialize

language

processor

environment

411

VAR

option

of

PARSE

instruction

48

variable
compound

20

controlling

loops

35

description

19

direct

interface

to

356

dropping

of

38

exposing

to

caller

49

external

collections

89

getting

value

with

VALUE

89

global

89

in

internal

functions

49

in

subroutines

49

names

11

new

level

of

49

parsing

of

48

patterns,

parsing

with
positional

115

string

115

positional

patterns

115

reference

115

resetting

of

38

setting

new

value

19

SIGL

135

simple

20

special
RC

23,

134,

141

RESULT

53,

141

SIGL

32,

135,

141

string

patterns,

parsing

with

115

testing

for

initialization

86

translation

to

uppercase

60

valid

names

19

variable

pool

access

(ARXEXCOM)

356

variable

resolution

within

job

skeletons

252

vector

of

external

entry

points

421

VERIFY

function
description

90

example

90

verifying

contents

of

a

string

90

Version

function,

REXX

Sockets

308

VERSION

option

of

PARSE

instruction

48

VSAMIO

command

169

VSE

host

command

environment

25

VSE

job

as

an

″Action″

250,

257

VSE

security

user-id

223

VSE

system

macro
see

SYSERRCODES

variable

107

VSE/OCCF

223

connecting

224,

242

disconnecting

242

Message

Automation

Table

224

SKOCCF

skeleton

224

W
wait

for

a

specified

number

of

seconds

105

WHEN

clause
See

SELECT

instruction

WHILE

phrase

of

DO

instruction

34

whole

numbers
checking

with

DATATYPE

71

description

12,

130

word
alphabetic

character

options

in

TRACE

57

counting

in

a

string

92

deleting

from

a

string

75

extracting

from

a

string

85,

90

finding

in

a

string

94

finding

length

of

91

in

parsing

109

locating

in

a

string

91

parsing
conceptual

view

122

description

and

examples

109

WORD

function
description

90

example

90

word

processing
See

formatting

WORDINDEX

function
description

91

example

91

WORDLENGTH

function
description

91

example

91

WORDPOS

function
description

91

example

91

WORDS

function
description

92

example

92

work

block

extension

419

Write

function,

REXX

Sockets

308

writing
external

functions

and

subroutines

348

NOWRTFL

flag,

effect

on

399

REXX

programs

139

to

the

stack
with

PUSH

52

with

QUEUE

52

writing

information

to

a

VSAM

file

170

writnig
with

EXECIO

147

WTO

macro

218

WTOR

macro

219

X
X2B

function
description

92

example

92

X2C

function
description

93

example

93

X2D

function
description

93

example

93

562

REXX/VSE

Reference

X2D

function

(continued)
implementation

maximum

94

XOR,

logical

16

XORing

character

strings

together

67

XRANGE

function
description

92

example

92

Z
zeros

added

on

the

left

83

removal

with

STRIP

function

84

zone,

FINDMSG

function

231

Index

563

564

REXX/VSE

Reference

Readers’

Comments

—

We’d

Like

to

Hear

from

You

IBM

VSE/Enterprise

Systems

Architecture

VSE

Central

Functions

VSE/REXX

Reference

Version

6

Release

7

Publication

No.

SC33-6642-10

Overall,

how

satisfied

are

you

with

the

information

in

this

book?

Very

Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall

satisfaction h h h h h

How

satisfied

are

you

that

the

information

in

this

book

is:

Very

Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy

to

find h h h h h

Easy

to

understand h h h h h

Well

organized h h h h h

Applicable

to

your

tasks h h h h h

Please

tell

us

how

we

can

improve

this

book:

Thank

you

for

your

responses.

May

we

contact

you?

h

Yes

h

No

When

you

send

comments

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

your

comments

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Name

Address

Company

or

Organization

Phone

No.

Readers’

Comments

—

We’d

Like

to

Hear

from

You

SC33-6642-10

SC33-6642-10

����

Cut

or

Fold
Along

Line

Cut

or

Fold
Along

Line

Fold

and

Tape

Please

do

not

staple

Fold

and

Tape

Fold

and

Tape

Please

do

not

staple

Fold

and

Tape

NO

POSTAGE
NECESSARY
IF

MAILED

IN

THE
UNITED

STATES

BUSINESS

REPLY

MAIL

FIRST-CLASS

MAIL

PERMIT

NO.

40

ARMONK,

NEW

YORK

POSTAGE

WILL

BE

PAID

BY

ADDRESSEE

IBM

Deutschland

Entwicklung

GmbH

Department

3248

Schoenaicher

Strasse

220

D-71032

Boeblingen

Federal

Republic

of

Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

File

Number:

S370/390–39

Program

Number:

5686–066

Printed

in

USA

SC33-6642-10

Sp
in

e

in
fo

rm
at

io
n:

 �
�

�

IB
M

VS
E

/E
nt

er
pr

is
e

Sy
st

em
s

A
rc

hi
te

ct
ur

e

VS
E

C
en

tr
al

Fu
nc

tio
ns

R
E

X
X

/V
SE

R
ef

er
en

ce

Ve
rs

io
n

6

R
el

ea
se

7

SC
33

-6
64

2-
10

	Contents
	Figures
	Tables
	Notices
	Programming Interface Information
	Trademarks and Service Marks

	Summary of Changes
	Chapter 1. Introduction
	Who Should Read This Book
	The Compiler and the Library for REXX/370
	How to Use This Book
	How to Read the Syntax Diagrams
	For Further REXX Information

	Chapter 2. REXX General Concepts
	Where to Find More Information
	Structure and General Syntax
	Characters
	Comments
	Tokens
	Implied Semicolons
	Continuations

	Expressions and Operators
	Expressions
	Operators
	String Concatenation
	Arithmetic
	Comparison
	Logical (Boolean)

	Parentheses and Operator Precedence

	Clauses and Instructions
	Null Clauses
	Labels
	Instructions
	Assignments
	Keyword Instructions
	Commands

	Assignments and Symbols
	Constant Symbols
	Simple Symbols
	Compound Symbols
	Stems

	Commands to External Environments
	Environment
	Commands
	Host Commands and Host Command Environments.
	The VSE Host Command Environment
	The POWER Host Command Environment
	The JCL Host Command Environment
	The LINK and LINKPGM Host Command Environments
	The CONSOLE Host Command Environment

	Chapter 3. Keyword Instructions
	ADDRESS
	ARG
	CALL
	DO
	Simple DO Group
	Repetitive DO Loops
	Simple Repetitive Loops
	Controlled Repetitive Loops

	Conditional Phrases (WHILE and UNTIL)

	DROP
	EXIT
	IF
	INTERPRET
	ITERATE
	LEAVE
	NOP
	NUMERIC
	OPTIONS
	PARSE
	PROCEDURE
	PULL
	PUSH
	QUEUE
	RETURN
	SAY
	SELECT
	SIGNAL
	TRACE
	Alphabetic Character (Word) Options
	Prefix Options
	Numeric Options
	Tracing Tips

	A Typical Example
	Format of TRACE Output

	UPPER

	Chapter 4. Functions
	Syntax
	Functions and Subroutines
	Search Order
	Errors During Execution

	Built-in Functions
	ABBREV (Abbreviation)
	ABS (Absolute Value)
	ADDRESS
	ARG (Argument)
	ASSGN
	BITAND (Bit by Bit AND)
	BITOR (Bit by Bit OR)
	BITXOR (Bit by Bit Exclusive OR)
	B2X (Binary to Hexadecimal)
	CENTER/CENTRE
	COMPARE
	CONDITION
	COPIES
	C2D (Character to Decimal)
	C2X (Character to Hexadecimal)
	DATATYPE
	DATE
	DBCS (Double-Byte Character Set Functions)
	DELSTR (Delete String)
	DELWORD (Delete Word)
	DIGITS
	D2C (Decimal to Character)
	D2X (Decimal to Hexadecimal)
	ERRORTEXT
	EXTERNALS
	FIND
	FORM
	FORMAT
	FUZZ
	INDEX
	INSERT
	JUSTIFY
	LASTPOS (Last Position)
	LEFT
	LENGTH
	LINESIZE
	MAX (Maximum)
	MIN (Minimum)
	OUTTRAP
	OVERLAY
	POS (Position)
	QUEUED
	RANDOM
	REVERSE
	RIGHT
	REXXIPT
	REXXMSG
	SETLANG
	SIGN
	SLEEP
	SOURCELINE
	SPACE
	STORAGE
	STRIP
	SUBSTR (Substring)
	SUBWORD
	SYMBOL
	SYSVAR
	TIME
	TRACE
	TRANSLATE
	TRUNC (Truncate)
	USERID
	VALUE
	VERIFY
	WORD
	WORDINDEX
	WORDLENGTH
	WORDPOS (Word Position)
	WORDS
	XRANGE (Hexadecimal Range)
	X2B (Hexadecimal to Binary)
	X2C (Hexadecimal to Character)
	X2D (Hexadecimal to Decimal)

	Additional Functions Provided in REXX/VSE
	EXTERNALS
	FIND
	INDEX
	JUSTIFY
	LINESIZE
	USERID

	External Functions
	ASSGN
	LOCKMGR
	MERGE
	OPERMSG
	OUTTRAP
	Additional Variables That OUTTRAP Sets

	PAUSEMSG
	REXXIPT
	REXXMSG
	Overruling REXXMSG

	SETLANG
	SLEEP
	SORTSTEM
	STORAGE
	SYSVAR

	Chapter 5. Parsing
	Parsing Rules
	Simple Templates for Parsing into Words
	The Period as a Placeholder

	Templates Containing String Patterns
	Templates Containing Positional (Numeric) Patterns
	Combining Patterns and Parsing Into Words

	Parsing with Variable Patterns
	Using UPPER
	Parsing Instructions Summary
	Parsing Instructions Examples

	Advanced Topics in Parsing
	Parsing Multiple Strings
	Combining String and Positional Patterns: A Special Case
	Parsing with DBCS Characters
	Details of Steps in Parsing

	Chapter 6. Numbers and Arithmetic
	Introduction
	Definition
	Numbers
	Precision
	Arithmetic Operators
	Arithmetic Operation Rules—Basic Operators
	Addition and Subtraction
	Multiplication
	Division
	Basic Operator Examples

	Arithmetic Operation Rules—Additional Operators
	Power
	Integer Division
	Remainder
	Additional Operator Examples

	Numeric Comparisons
	Exponential Notation
	Numeric Information
	Whole Numbers
	Numbers Used Directly by REXX
	Errors

	Chapter 7. Conditions and Condition Traps
	Action Taken When a Condition Is Not Trapped
	Action Taken When a Condition Is Trapped
	Condition Information
	Descriptive Strings

	Special Variables
	The Special Variable RC
	The Special Variable SIGL

	Chapter 8. Using REXX
	Additional REXX Support
	Programming Services
	Customizing Services

	Writing Programs
	Running a Program
	Communicating with a User Console

	Chapter 9. Reserved Keywords, Special Variables, and Command Names
	Reserved Keywords
	Special Variables
	Reserved Command Names

	Chapter 10. REXX/VSE Commands
	Immediate Commands
	DELSTACK
	DROPBUF
	EXEC
	EXECIO
	Read Options
	Additional Options Required for SAM Files
	Closing Files

	EXECIO Input Checking
	Return Codes

	HI
	HT
	MAKEBUF
	NEWSTACK
	QBUF
	QELEM
	QSTACK
	RT
	SETUID
	SUBCOM
	TE
	TQ
	TS
	VSAMIO
	Return Codes
	Using the VSAMIO Command
	Reading Information from a VSAM file

	Chapter 11. ADDRESS POWER Commands
	Accessing Entries in VSE/POWER Queues
	GETQE
	Security Considerations

	PUTQE
	QUERYMSG
	Rules for Issuing Job Completion Messages

	CTL
	Submitting and Controlling Power Jobs

	Chapter 12. JCL Command Environment
	The JCL Host Command Environment
	Format of Address JCL Commands
	VSE JCL ON Conditions
	Unsupported JCL Commands
	VSE JCL Output Trapping
	Return codes from the JCL Host Command Environment

	Chapter 13. Host Command Environments for Loading and Calling Programs
	Host Commands
	The LINK Host Command Environment
	Return Codes from the LINK Environment
	The LINKPGM Host Command Environment
	Return Codes from the LINKPGM Environment
	Table of Authorized Programs

	Invoking VSE Utilities
	Invoking LIBR using ADDRESS LINK
	Invoking IDCAMS using ADDRESS LINK
	Invoking ASSEMBLE and LNKEDT
	Invoking DITTO

	Chapter 14. REXX/VSE Console Automation
	Benefits of a Programmable REXX Console
	A Look at VSE/ESA's Console Support
	Console I/O Interfaces
	WTO - Write to Operator
	WTOR - Write to Operator with Reply
	DOM - Delete Operator Message

	General-Use Console Interfaces
	MCSOPER - Activate Console
	MCSOPMSG - Retrieve Message
	MGCRE - Create Command or Reply

	Master Console versus User Console
	Master Console
	User Console

	Routing Codes
	Service Offerings

	Console Command Environment
	Console Commands
	REXX Console Commands
	VSE Console Commands

	Activating a Console Session
	Security Considerations
	Receiving Messages from VSE/OCCF

	Creating a Command and Response Correlation Token (CART)
	Querying the Current Console Setting
	Switching to a Console Session
	Deactivating a Console Session
	Temporarily Shutting off an (Unknown) Console

	Examples of REXX and VSE Console Commands
	Having Command Responses Outstanding in Parallel
	Routing Messages From and Replies To a Specific Partition
	Tracking of Operator Communication
	Console Host Command Replaceable Routine
	Entry for ARXCONAD in Table SUBCOMTB
	ARXCONAD Return Codes

	Console-related REXX Functions
	DELMSG
	FINDMSG
	Examples of Functions Calls
	Handling of Multi-line Messages

	GETMSG
	Function Format
	GETMSG Function Codes
	Message Data Block (MDB) Variables

	LOCKMGR
	MERGE
	OPERMSG
	PAUSEMSG
	SENDCMD
	SENDMSG
	SORTSTEM
	Examples of Function Calls

	SYSDEF
	SYSVAR
	Error Codes of Failing Functions

	Always Keep in Mind...
	Make Frequent Use of the GETMSG Function
	Do not Send Messages to "Yourself"
	Redirect Some Output to SYSLST
	Direct Messages to Only One Console (ECHOU Option)
	Remember the REXNORC Profile
	Split off a Time-consuming Task into a Separate Job
	Finish All Preparatory Work Prior to ACTIVATE CONSOLE
	Handle One Command at a Time
	Start Testing on a Small Scale
	The Most Important Rule...

	REXX/VSE CPU Monitor
	REXX Console Application Framework
	Operation Scenarios
	Concept
	Message Action Table Entries
	Actions

	How to Use the REXX Console Application REXXCO
	Loading
	Invocation
	Termination
	Event
	User-Supplied REXX Action Program
	User-supplied Job Skeletons
	Variable Resolution within Job Skeletons
	Error Handling

	Automated Operation Demos (Examples)
	REXXLOAD
	Invocation
	Error Conditions

	REXXFLSH
	Scenario
	Running the Demo
	Background Information

	REXXCXIT
	Scenario
	Running the Demo
	Background information

	REXXSPCE
	Scenario
	Before Starting...
	Running the Application
	Handling REXXVSMn Messages
	Creating DLBL/EXTENT Statements
	Writing into and Freeing up Work Space
	Summary Listing of Demo Parts

	REXXCPUM
	Scenario
	Invocation
	Error Codes

	REXXDOM
	Running the Demo
	Background Information

	Other Examples (Not Related to Console Functions)
	REXXTRY
	REXXJMGR
	REXXWAIT
	REXXASM
	REXXSSDL

	Miscellaneous Examples of Using the REXX Console
	Retrieve Messages using Filter and Timestamp
	Scan the Hardcopy File
	Scan Job Messages for One Partition

	Return and Reason Codes
	MCSOPER Macro
	MCSOPMSG Macro
	MGCRE Macro
	Command Processor Return and Reason Codes
	CORCMD Command for Problem Solving

	Chapter 15. REXX Sockets Application Program Interface
	Programming Hints and Tips for Using REXX Sockets
	SOCKET External Function
	Tasks You Can Perform Using REXX Sockets
	REXX Socket Functions
	Accept
	Bind
	Close
	Connect
	Fcntl
	GetClientId
	GetHostByAddr
	GetHostByName
	GetHostId
	GetHostName
	GetPeerName
	GetSockName
	GetSockOpt
	GiveSocket
	Initialize
	Ioctl
	Listen
	Read
	Recv
	RecvFrom
	Resolve
	Select
	Send
	SendTo
	SetSockOpt
	ShutDown
	Socket
	SocketSet
	SocketSetList
	SocketSetStatus
	TakeSocket
	Terminate
	Translate
	Version
	Write
	REXX Sockets System Messages
	REXX Sockets Return Codes
	Sample Programs
	REXX-EXEC RSCLIENT Sample Program
	REXX-EXEC RSSERVER Sample Program
	Sample Programs Using the TCP/IP SSL Support with the REXX/VSE Socket Function
	Server Program:
	Client Program:

	Installation of REXX/VSE SOCKET Function

	Chapter 16. Debug Aids
	Interactive Debugging of Programs
	Interrupting Program Processing
	Starting and Stopping Tracing

	Chapter 17. Programming Services
	General Considerations for Calling REXX/VSE Routines
	Parameter Lists for REXX/VSE Routines
	Specifying the Address of the Environment Block
	Using the Environment Block Address Parameter
	Using the Environment Block for Reentrant Environments

	Return Codes for REXX/VSE Routines

	Calling REXX
	Calling REXX Directly with the JCL EXEC Command
	Return Codes
	The ARXREXX Program

	Calling REXX with ARXEXEC or ARXJCL
	The ARXJCL Routine
	The ARXEXEC Routine

	External Functions and Subroutines and Function Packages
	Interface for Writing External Function and Subroutine Code
	Function Packages
	Directory for Function Packages
	Specifying Directory Names in the Function Package Table

	Variable Pool – ARXEXCOM
	Maintain Entries in the Host Command Environment Table – ARXSUBCM
	Trace and Execution Control Routine – ARXIC
	Get Result Routine – ARXRLT
	SAY Instruction Routine – ARXSAY
	Halt Condition Routine – ARXHLT
	Text Retrieval Routine – ARXTXT
	LINESIZE Function Routine – ARXLIN
	OUTTRAP Interface Routine – ARXOUT

	Chapter 18. Customizing Services
	Flow of REXX Program Processing
	Language Processor Environment Initialization and Termination
	Loading and Freeing a REXX Program
	Processing of the REXX Program

	Overview of Replaceable Routines
	Exit Routines

	Chapter 19. Language Processor Environments
	Overview of Language Processor Environments
	Using the Environment Block
	When Environments Are Automatically Initialized
	Characteristics of a Language Processor Environment
	Flags and Corresponding Masks
	Module Name Table
	Host Command Environment Table
	Function Package Table
	Values in the ARXPARMS Default Parameters Module
	How ARXINIT Determines What Values to Use for the Environment
	Values ARXINIT Uses to Initialize Environments

	Chains of Environments and How Environments Are Located
	Locating a Language Processor Environment

	Changing the Default Values for Initializing an Environment
	Providing Your Own Parameters Module
	Changing Values

	Specifying Values for Different Environments
	Parameters You Cannot Change

	Control Blocks Created for a Language Processor Environment
	Format of the Environment Block (ENVBLOCK)
	Format of the Parameter Block (PARMBLOCK)
	Format of the Work Block Extension
	Format of the REXX Vector of External Entry Points

	Changing the Maximum Number of Environments in a Partition
	Using the Data Stack

	Chapter 20. Initialization and Termination Routines
	Initialization Routine – ARXINIT
	Entry Specifications
	Parameters
	Specifying How REXX Obtains Storage in the Environment
	How ARXINIT Determines What Values to Use for the Environment
	Parameters Module and In-Storage Parameter List
	Specifying Values for the New Environment

	Termination Routine – ARXTERM

	Chapter 21. Replaceable Routines and Exits
	Replaceable Routines
	General Considerations
	Using the Environment Block Address
	Installing Replaceable Routines

	Exec Load Routine
	The Exec Block
	The In-Storage Control Block

	Input/Output Routine
	Functions Supported for the I/O Routine
	Buffer and Buffer Length Parameters
	Line Number Parameter
	I/O Control Block
	Data Set Information Block (DSIB)

	Host Command Environment Routine
	Data Stack Routine
	Functions Supported for the Data Stack Routine

	Storage Management Routine
	User ID Routine
	Function Supported for the User ID Routine

	Message Identifier Routine
	REXX Exit Routines
	Exits for Language Processor Environment Initialization and Termination
	ARXINITX
	ARXITMV
	ARXTERMX

	Halt Exit
	REXX Exit Data Areas and Parameters

	Installation-Supplied Exits
	Exec Initialization and Termination Exits
	Exec Processing (ARXEXEC) Exit Routine

	Chapter 22. Double-Byte Character Set (DBCS) Support
	General Description
	Enabling DBCS Data Operations and Symbol Use
	Symbols and Strings
	DBCS-Only Symbols and Mixed SBCS/DBCS Symbols
	DBCS-Only Strings and Mixed SBCS/DBCS Strings

	Validation
	DBCS Symbol Validation
	Mixed String Validation

	Using DBCS Characters in Symbols and Comments
	Instruction Examples
	PARSE
	PUSH and QUEUE
	SAY and TRACE
	UPPER

	DBCS Function Handling
	Built-in Function Examples
	ABBREV
	COMPARE
	COPIES
	DATATYPE
	FIND
	INDEX, POS, and LASTPOS
	INSERT and OVERLAY
	JUSTIFY
	LEFT, RIGHT, and CENTER
	LENGTH
	REVERSE
	SPACE
	STRIP
	SUBSTR and DELSTR
	SUBWORD and DELWORD
	TRANSLATE
	VERIFY
	WORD, WORDINDEX, and WORDLENGTH
	WORDS
	WORDPOS

	DBCS Processing Functions
	Counting Option

	Function Descriptions
	DBADJUST
	DBBRACKET
	DBCENTER
	DBCJUSTIFY
	DBLEFT
	DBRIGHT
	DBRLEFT
	DBRRIGHT
	DBTODBCS
	DBTOSBCS
	DBUNBRACKET
	DBVALIDATE
	DBWIDTH

	Chapter 23. ARXTERMA Routine
	Entry Specifications
	Parameters
	Return Specifications
	Return Codes

	Chapter 24. Support for the Library for REXX/370 in REXX/VSE
	Benefits of Using a Compiler
	Improved Performance
	Reduced System Load
	Protection for Source Code and Programs
	Improved Productivity and Quality
	Portability of Compiled Programs
	SAA Compliance Checking
	Compiler Publications

	Routines and Interfaces for the Library for REXX/370 in REXX/VSE
	Programming Routines for a REXX Compiler Runtime Processor
	Routines and Interfaces to Support a REXX Compiler
	Overview
	How REXX Identifies a Compiled Program
	The Compiler Programming Table
	The Compiler Runtime Processor
	Entry Specifications
	Parameters for the Compiler Runtime Processor
	Return Specifications
	Return Codes
	Programming Considerations
	Environment

	Compiler Interface Routines
	Compiler Interface Initialization Routine
	Entry Specifications
	Parameter List
	Return Specifications
	Return Codes
	Programming Considerations
	Environment

	Compiler Interface Termination Routine
	Entry Specifications
	Parameter List
	Return Specifications
	Return Codes
	Programming Considerations
	Environment

	Compiler Interface Load Routine
	Entry Specifications
	Parameter List
	Return Specifications
	Return Codes
	Programming Considerations
	Environment

	Compiler Interface Variable Handling Routine
	Entry Specifications
	Parameter List for the Compiler Interface Variable Handling Routine
	Return Specifications
	Return Codes
	Programming Considerations
	Environment
	Environment for the Programming Routines

	External Routine Search Routine (ARXERS)
	Entry Specifications
	Parameters for ARXERS
	Return Specifications
	Return Codes

	Host Command Search Routine (ARXHST)
	Entry Specifications
	Parameters for ARXHST
	Return Specifications
	Return Codes

	Exit Routing Routine (ARXRTE)
	Entry Specifications
	Parameters for ARXRTE
	Return Specifications
	Return Codes

	Appendix A. List of the Names of Macros Intended for Customers' Use
	General-Use Programming Interfaces
	Mapping Macros
	Product-Sensitive Programming Interfaces
	Mapping Macros

	Appendix B. Servicing REXX/VSE
	Appendix C. REXX Supplied Link Books
	Bibliography
	Index
	Readers’ Comments — We'd Like to Hear from You

